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A general theory for floating ice plates 

Notation 

KOLUMBAN HUTTER (ZURICH) 

THE NON-LINEAR basic equations which govern the motion of floating ice plates are developed 
from the three-dimensional theory of elasticity by means of a general expansion procedure. 
The result is a hierarchy of two-dimensional approximate equations. This theory is valid for 
non-uniform temperature distribution across the thickness of the ice and takes the effect of 
thermal stresses into account. A special simplified "generalized Reissner-von Karman" theory 
is derived, which reduces to the classical plate theory when the usual simplified assumptions 
are made. For a significant temperature profile, the plate constants are determined and it is shown 
that for fresh water ice the influence of the temperature variation across the depth is negligible. 
For sea ice the influence of the temperature distribution is substantial. Explicit calculations, 
however, will be presented elsewhere. 

Nieliniowe r6wnania podstawowe 174dZ4ce ruchem plywaj~cych plyt lodowych zostaly wypro­
wadzone z tr6jwymiarowej teorii spr~zystosci poprzez zastosowanie og6lnej procedury rozwinict· 
cia. W rezultacie otrzymano przyblii:one r6wnania teorii dwuwymiarowej. Teoria ta sluszna jest 
dla niejednorodnego rozkladu temperatury wzdlui: grubosci bryly lodowej oraz uwzglC(dnia 
wplyw napr~i:en termicznych. Wyprowadzona zostala szczeg6lna uproszczona ''uog6lniona 
teoria Reissnera- von Karmana", kt6ra, po dokonaniu zwykle przyjmowanych zaloi:en uprasz­
czaj~cych, sprowadza sict do klasycznej teorii plyt. Stale wystC(puj~ce w problemie plyty okre§lono 
dla znacznego zakresu temperatury. Wykazano r6wniei:, i:e dla lodu powstalego ze swiei:ej 
wody wplyw zmiany temperatury wzdlui: grubosci plyty jest pomijany. Dla lodu z wody 
morskiej wplyw rozkladu temperatury jest istotny. Konkretne obliczenia numeryczne bC(d~ 
przedmiotem innej publikacji. 

HeJIHHeHHbie ocHOBHbie ypaBHeHHH onwchmaKm~we .[(BH>f<eHue nJiaBaiOutmc Jie.[(.HHHX nJIHT 
BhiBe.[(eHhi H3 TpexMepHoH Teopmi ynpyrocTH nyTeM npHMeHeHH.H o6uteH: npo~e.[(yphi pa3JIO­
meHH.H. B pe3yJihTaTe noJiyt.:IeHbi npw6mm<eHHbie ypaBHeHH.H .[(ByMepHoH Teopww. 3Ta TeopWI 
cnpaBe.[(JIHBa .[(JI.H HeO.[(Hopo;~Horo pacnpe.[(eJieHH.H TeMnepaTyphr B.[(OJib TOJIII.tHHbi Jie,q.HHoro 
TeJia, a Tai<me yt.:IHThiBaeT BJIH.HHHe TepMHt.:IeCI<HX Hanp.HmeHHH. BhiBe,qeHa t.:IaCTHa.H ynpouteH­
Ha.H "o6o6uteHHa.H TeopwH PewccHepa-KapMaHa", I<OTopa.H, nocJie npoBe.[(eHH.H o6bi'IHO npHHH­
MaeMbiX ynpoutaiOutHX npe,qnOJIO)f{eHHH, CBO,ll;HTC.H I< I<JiaccHqeci<OH TeopHH nJIHT. ilOCTO.HH­
Hbie BhicrynaroutHe B 3a,qaqe nJIHThi onpe,D;eJieHhi ,qJI.H 3HaqHTeJihHoro HHTepaa.rra TeMITepa­
Typbi. iloi<a3aHO TO>f<e, t.:ITO ,l];JI.H Jlb,ll;a B03HHI<lllero H3 npeCHOH BO,ll;bl BJIH.HHHeM H3MeHeHWI 
TeMnepaTypbl B,ll;OJib TOJIII.tHHbi nJIHTbl MO>f<HO npeHe6pet.:Ib. ,UJI.H Jlb,l];a H3 MOpCI<OH BO,ll;bl BJIH­
.HHHe pacnpe,qeJieHH.H TeMnepaTypbi cyutecTBeHHO. KormpeTHhie qHcJieHHbie pact.:IeTbi 6y,qyT 
npe,D;MeTOM ,D;pyroH: ny6JIHI<a~HH. 

IN nns article symbolic and Cartesian tensor notation is used. Accordingly, Latin and Greek indices 
assume the values 1, 2, 3 and 1, 2, respectively. Einstein's stunmation convention is used according to which 
summation is understood over doubly repeated indices. Commas indicate differentiation with respect 
to a space variable, while dots denote total (material) time derivatives. 

Subsequently a list of symbols is given. 
Cii right Cauchy-Green deformation tensor, 

c&m> right Cauchy-Green deformation tensor of order m, 
rcjikl first-order elastic constants of three-dimensional anisotropic linear elasticity, 
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618 KOLUMBAN HVTIER 

G::~jJ, first-order elastic constants of order m of two-dimensional anisotropic finite 
linear elasticity, 

!7)< 0 >, ~0> zeroth and first-order plate rigidities, 
~<0>, ~< 1 > zeroth and first-order flexural rigidities, 

E modulus of elasticity, 
Eij elongation tensor or Lagrangian strain tensor, 

Elj> Lagrangian strain tensor of order m, 
1 

Eij = U(i,j> = 
2 

(ui,j+Uj,i), 

F stress function, 
Fij deformation gradient, 
fi body force per unit mass, 

Fi<m) body force of order m (per unit area), 
h thickness of the plate, 

.V constant in "macroscopic plane stress" situation, 
T<P> moment of inertia of order p, 

J det Fij, Jacobian determinant of the motion X(·), 
L reference length, 

vlt, m mass densities, 
M(P) averaged shear modulus of order pin isotropic finite linear elastic plates, 

Mx, Afy bending moments, 
Mxy twisting moments, 

Ni external normal vector in the reference configuration, 
.iV(P), 91tP) "generalized Poisson's ratios", 

Qi heat flux (Lagrangian), 
Qx, Qy shear forces, 

Rij = U[i,j] 

f/ surface area, static moment, 

s~P> surface load of order p, 

ti, t{ stress vector, 
Tij first Piola-Kirchhoff stress tensor, 

u velocity in the x 1-direction, 
ui displacement vector, 

ui<m) acceleration vector of order m, 
v velocity in the y-direction, 
vi velocity vector, 
V volume, 
w velocity component in z-direction, 

X, Y particle label, 
t:XiJ strain at constant stresses, 
r averaged shear modulus, 

Oij Kronecker delta, unit tensor, ~ii = 1, if i = j and tlij = 0, if if= j, 

'YJ = u~0> zeroth order displacement, 
'YJ entropy, 

cp = -u~ 1 > first-order displacement in the x-direction, 
0 empty set, 

1p = -u~1 ) first-order displacement in the y-direction, 
).; p. Lame's constants, 

A.<P>, M<P> averaged Lame's constants of order p, 

{} absolute temperature, 
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A GENERAL THEORY FOR FLOATING ICE PLATES 

f)(m), e<m> temperature resultants of order m, 
I:ij second Piola-Kirchhoff stress tensor, 

w frequency, 
Wii• w5ij thermal expansion coefficient. 

1. Statement and motivation of the problem 

61<} 

IN THE PAST, the analyses of floating ice plates subjected to static and dynamic loads were 
based on the theory of thin homogeneous elastic plates, although in actual floating ice 
plates the material constants may vary strongly with depth. The reason for the variation 
of the material constants is chiefly due to a non-uniform distribution of the temperature 
with depth, but also due to a non-homogeneity induced by the freezing process. 

With regard to the elastic behaviour, A. Assur has suggested that the elastic plate 
theory may be applied in floating ice plates provided the plate constant (Young's modu­
lus) is replaced by a quantity which is averaged over the depth of the plate [1]. This con­
jecture has 'been substantiated by KERR and PALMER [2], who on the basis of linear elastic­
ity theory show that the usual plate theory emerges when the pertinent equations are 
averaged over the thickness of the plate. Kerr and Palmer's result, however, is based on 
the tacit assumption that Poisson's ratio does not vary with depth, an assumption which 
is certainly not correct for sea ice. Moreover, they do not take thermodynamic arguments 
into account. These, so we believe, are nontheless important, because the temperature 
varies from one material point to another. 

A reinvestigation of the entire matter seems to be necessary, because, apart from the 
above reasons, various effects have not been studied in the past. First, it is not clear 
a priori that the non-uniformity of the temperature distribution can simply be interpreted 
as a nonhomogeneity of the material constants. In fact this is certainly not so in the theory 
of viscoelasticity. Second, dependent upon the local air temperature the corresponding 
temperature distribution in the plate will change and so do the local material constants 
and the averaged constants as well. Third, thermal stresses are induced through the tem­
perature variation. These thermal stresses, in general, will cause deformations in the plane 
of the plate. A proper derivation thus should include thermal stresses. Fourth, the situation 
is not too rare where displacements are of the order of, or larger than, the thickness of the 
ice plate. It therefore also seems to be justified that the von Karman plate theory is investi­
gated with regard to its validity in the situation of floating ice plates. 

So far, only the behaviour of the plates has been considered. An equally important 
part of the description of floating ice is the one of its underlying water, because it deter­
mines the boundary forces at the interface plate-water. While this interaction is generally 
only taken into account by assuming that the water pressure is proportional to the plate 
deflection, a moment thought shows that this is only correct in the static situation. Dy­
namic processes are much more complex. In particular, there are various physical situa­
tions for which a different set of differential equations applies. Generally, lake and sea 
ice require a different treatment of the fluid equations than ice on rivers, or ice interacting 
with tidal motion. We shall not list the equations for the fluid. They are contained in [3]. 
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620 KOLUMBAN H UTI'ER 

With regard to vari~us physical aspects we do not assume that the ice plate is in an 
isothermal state, because the water-ice interface is at freezing temperature, while its upper 
surface depends on the air temperature and may vary quite considerably. The time scale 
of these thermal processes is much larger than the one of the wave motion, so that it seems 
justified to neglect true thermoelastic effects and to simply assume that the plate material 
constants are inhomogeneous. All material coefficients depend upon a parameter - the 
temperature - which in turn is a function of position. 

Apart from this complication in the physical description of the ice plate other effects 
should also be included. Due to the thermal stress effects, prestress either as tension or 
pressure, may occur and a proper description should also take these effects into account. 
Moreover, the freezing process is such that various degrees of anisotropy are induced in 
the actual ice plate, which in general thus should not be treated as an isotropic material. 

The technique to derive the governing equations of two-dimensional elasticity, which 
we shall use is one which has become increasingly fashionable in recent years. The plate 
equatio~s shall be derived by a "smearing procedure" of the governing equations of three­
dimensional elasticity. The method goes back to CAUCHY [4], but has increasingly been 
applied recently. MINDLIN was the first to derive the two-dimensional plate equations 
by a Cauchy series expansion from the equations of three-dimensional elasticity. MINDLIN 
and MEDICK [5] derived a linear theory of plates using expansion procedures. GoLDEN­
VEIZER [6] discusses the possible aspect of such asymptotic or iterative methods. Similar 
methods are used by GREEN , LAWS and NAGHDI [7) and by DOKMECI [8, 9), DOKMECI 
and HUTTER [10), NIGUL [11), KALININ [12), KOITER [13) and WIDERA [14, 15) in other 
contexts of general plate and shell theories. 

Finally, we mention two recent accounts. The first by KAUL [16] deals with thermal 
oscillations, the second by GREEN and NAGHDI [17] is concerned with the derivation of 
general theories of shells and rods. While the intentions of Green and Naghdi's memoir 
is different, Kaul's approach appears to be very similar to ours. He, however, assumes 
that the material constants do not vary with temperature, an assumption not made by us. 

The major objective in the present paper is a consistent derivation of equations sim­
ilar to those of von Karman's plate equations. The conventional Kirchhoff-Love hypo­
thesis, that is the assumption that directors perpendicular to the middle surface remain 
perpendicular under deformation, is abrogated. The theory is developed by means of the 
Hamiltonian principle and a separation of variables technique is used by which the three­
dimensional field equations are converted into two-dimensional ones. A sequence of approx­
imate equations which include the effects of transverse shear and normal strains, accel­
eration and rotatory inertia is thus consistently constructed. The governing equations con­
sist of the macroscopic equations of motion together with the relevant boundary condi­
tions, the constitutive equations, the strain displacement relations and the strain energy 
expression. 

Specifically the paper is arranged as follows: 
In Sec. 2 the kinematic variables are introduced, while in Sec. 3 the strain displacement 

relations are derived. In Sec. 4, after presenting the local balance equations, the Hamilto­
nian principle is derived, which will be used to derive the plate equations of motion. With 
the definitions of the load and stress resultants of Sec. 5 and the presentation of the consti-
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A GENERAL THEORY FOR FLOATING ICE PLATES 621 

tutive equations in Sec. 6 we then possess the apparatus to derive the plate equations of 
motion in Sec. 7. These equations are then simplified in Sec. 8 where a generalized Reissner­
von Karman plate theory is derived. Sec. 9 finally deals with the numerical determination 
of the temperature dependent plate constants. 

2. Kinematic variables 

Consider an open regular region~ with boundary a~ in three-dimensional Euclidean 
space 8 3

• Let a~ = a~u u a~L u a~E where a~u, a~L and a~E are, respectively, 
the upper and lower faces and the edge boundary face. Clearly, 

~ u a~ = ~' a~u (") a~E = 0, 

a~u n a~L = 0, a~L n a~E = 0, 

where ~ is the closure of~. The edge boundary surface is taken as a cylindrical surface 
perpendicular to the flat middle surface of the undeformed plate. The plate in its reference 

FIG. 1. 

configuration is referred to a right-handed (convected) coordinate system xi of which the 
first two axes lie in the undeformed reference surface. The positive direction of the third 
coordinate x3 is taken to be upward and x3 = 0 coincides with a plane between the upper 
and lower faces, the position of which will be determined in the course of calculations. 

We assume the thickness h of the plate to be much smaller than any of its dimensions 
in the (x1 , x 2)-plane. Denoting the smallest value of the length dimension in the horizontal 
reference plane by L we thus have h/L ~ 1. This assumption allows us to treat the plate 
as a two-dimensional model of a three-dimensional deformable body. Moreover, it implies 
that stress and displacement fields do not vary violently across the thickness of the plate. 

In the subsequent calculations we shall choose the Lagrangian description for the mo­
tion of the plate. All coordinates are consequently taken in the reference frame. 

On the above basis the displacement components of a generic point in ~ can be re­
presented as 

00 

(2.1) ui(xk, t) = 2; Pm(X3)ui<m>(xa, t), i, k = 1, 2, 3, ex= 1, 2 
m=O 
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with 

(2.2) 

Here, the vector functions u1m> are unknown a priori and independent functions de­
fined on !!J. Moreover, it is assumed that the functions u~m> exist, are single valued and of 
class C2 at least. 

In the final analysis only the two functions P 0 and P 1 will be used. They will be con­
sidered to be taken from the set Pm (x3) = x';. If the displacement vector ui is analytic 
in !!J with respect to the coordinate x 3 then (2.1) can be interpreted as a Taylor series ex­
pansion of ui about x 3 = 0 which is uniformly convergent in!!J. However, in our case u1m> 
are independent. In fact, Pm could be any other convenient functions such as Legendre 
polynomials. 

By virtue of the representation (2.2) the Kirchhoff-Love hypothesis is eliminated, i.e. 
directors perpendicular to the middle surface need not remain perpendicular to the de­
formed middle surface in the course of the motion. 

3. Strain displacement relations 

The right Cauchy-Green deformation tensor, denoted by Cii is expressed in terms of 
the displacement components [18] by 

(3.1) 

and 

(3.2) 

with 

(3.3) 

Following TRuEsDELL and ToUPIN [18] (footnote, p. 306), we do not neglect in (3.2) the 
first two terms in the bracket as was done by NovozHILOV [19]. 

The series expansions in all displacement components as assumed in (2.1) imply thata 
the Cauchy-Green deformation tensor be of the following form: 

(3.4) 

where 

(3.5) 

00 

Cii = l5ii+ 2 x':C&m>(xa, t), 
m=O 

00 

+ 2 [ul~-Plul~Jl5iocl5pj+(p+1)ul~-P)u1P+l)bi3l5i 
P=O 

+ (p + 1)ul~oc-PluiP+ t) l5ioc l5j3 + (p + 1)(m-p+ 1)ulm-p+t)u1P+l)l5i3 bj3] 

is a measure of the strain of order (m). Equivalently, ufm) is the displacement field of 
order (m). 
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A GENERAL THEORY FOR FLOATING ICE PLATES 623 

The representation (3.1) is exact. A simpler approximate theory emerges when the 
Cauchy-Green deformation tensor is approximated by 

(3.6) 

The representation (3.4) still remains correct, but now 

m 

(3.7) Cf!'l) = u~m)<5. +u(m>c5. +(m+l)u<m+l)c53·+(m+l)u<.m+l)<5.3 + ~u<m-p)u(P{J><5. <5.:.. 
I} 1,a. }rt. J/1. lrt. I } J I ~ 3,0!: 3, lrt. }I' 

p=O 

In thin plates with moderately large displacements it is appropriate to retain only 
first-order terms and of the non-linearities of (3.7) only the zeroth order terms; then 

1 c<o> - E<o> - u <o> + 1 or; or; . __!_ c<t> - £(1) - ocp T a.{J - a.fJ - ( Y,f3) T OXa. OXp ' 2 11 - 11 - - ox 1 ' 

(3.8) __!_ c<o) - £(0) - __!_ (~ - )' 
2 13 - 13 - 2 oxl cp ' 

__!_ c(l> - E<t> - O'f/J 
2 22 - 22 - - ox2 ' 

__!_ c<o) - £(0) - __!_ (~ - ) 
2 23 - 23 - 2 ox2 1p ' 

where 

(3.9) 

We shall call this approximation the "von Karman approximation", because it corresponds 
to the one occuring in his plate theory [20]. 

4. The equations of balance 

The dynamic equations of balance of linear momentum and energy may essentially 
be stated in two different forms, dependent upon whether they are referred to the refer­
ence or present configuration. Here, where we have chosen the reference configuration 
they assume the following form: 

balance of linear momentum 

(4.1) 

balance of energy 

(4.2) 

Apart from these equations one also has the balance of mass eo = eJ and the balance 
of moment of momentum Fik Tik = Fik Tik. eo denotes the density in the reference config­
uration, while e is the density in the present configuration. fi and Tii are the body force 
and Piola-Kirchhoff stress tensor, respectively, Qk is the heat flux vector, r the energy 
supply and e the internal energy density. Moreover, 

(4.3) 
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and 

(4.4) 

where .E1k is the (symmetric) second Piola-Kirchhoff stress tensor adopting the definition 
of TRUESDELL and NOLL [21]. 

We shall henceforth neglect heat sources and restrict our considerations to processes 
fur which Tik.Fik is negligible. With appropriate boundary conditions, the energy equation 
then separates from the momentum equation. Moreover, the balance law of moment of 
momentum is satisfied identically once the constitutive equations are formulated. The 
only remaining field equation is then ( 4.1 ), because the balance law of mass can be con­
sidered to be an equation for f!· 

Let ti* and ur be the prescribed values of the stress and displacement vectors on the 
boundary surface. More precisely, let a~" and a~u be disjoint sets of the boundary surface 
such that a~ = a~ u u a~ Cl; then the boundary conditions can be written in the form 

(4.5) u:- uk = 0; (x1, x2) E a~u; r:- tk = 0; (x1' x2) E a~ (I 

with 

(4.6) 

where N1 is the normal vector in the reference configuration. 

We proceed to formulate the variational principle. To this end, let t 1 and t 2 be two 
arbitrary but fixed times such that t 2 > t 1 and let 15 indicate variation. Then it follows 
that 

where 

t2 

(4.7) <53= J dt J [Tik,k-eo(ui-.fi)]l5uidv+ J (u:-uk)l5tkdA+ J (t:-tk)l5ukdA 
t1 fJ of!JU Of!JCT 

is equivalent to the local equations (4.1) and (4.5). In fact, because the variations Mk 
and 15ui are arbitrary, they can be varied independently, implying that the coefficients of <5u, 
and Mk must vanish separately over the body fl) and the boundary a~u and afl)"' respec­
tively. Choosing Mk = 0 and 15uk with compact support in-~ implies 

(4.8) <5~1 = 0. 

Similarly, one can show 

(4.9) 15~2 = 0 and <5~3 = 0. 

The variational integrals will be used in the following sections to derive the macroscop­
ic equations. We emphasize that its applicability is limited to the case when thermal 
effects are known a priori or when their change under the processes under investigation 
is insignificant. In particular, it cannot be used for the derivation of plate equations in 
thermoelasticity and other more complex theories. 
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A GENERAL THEORY FOR FLOATING ICE PLATES 625 

5. Load and stress resultants 

In order to facilitate notation in the subsequent analysis it is advantageous to intro­
duce the following shorthand notation. 

We define a body force resultant of order m by 

(5.1) Flm) = J eofiX'!J, ds' 
h 

a stress resultant 

(5.2) Tlr> = j x'!J,Iiids 
h 

surface loads of order m 

S~m) -- [xm3 ~3kJ"1 - xm ~ I xm ~ I .::..- - 3 k3k upper- 3 k 3 k lower' 

+*(m) = xmt*l +xmt*l 
1 k 3 k upper 3 k lower· 

(5.3) 

In the above relations ds is the line element and integration is over the height of the un­
deformed plate. 

Note that the definitions (5.1) to (5.3) are more or less arbitrary. In particular, one 
could also define Elm), etc. by integrating over the height of the deformed body or one 
could define Tlr> in terms of Tii rather than Iii· This arbitrariness, however does not 
correspond to a non-uniqueness in the emerging theory. But it means that the averaged 
quantities Ti~m>, Sfm> should by no means be given explicit physical meaning. Uniqueness 
is not required except for physically measurable quantities such as displacements, velocity 
and the like. A formulation must be unique only with respect to these definitely observable 
quantities. On the other hand, that (5.2) and (5.3) are the most convenient choices will 
be seen in Sec. 6. 

Similarly in (5.1) to (5.3) we define an acceleration resultant by 

00 

(5.4) jj.(m) = ~ J(m+P)[j~P) ' ~ ,, 
p=O 

where the m-th moment of inertia is given by 

(5.5) /(m) = J x'!j,ds. 
h 

Moreover, the prescribed stress resultant of order m is given by 

(5.6) t:<m> """ J x'!J, tk* ds. 
h 

Later, we shall also need two temperature resultants of order m which are given by {J(m) 

and e<m>: 

(5.7) {J(m) = J x';fJds, 
h 

00 

{} = ). xj e<n>. 
~ 
n=O 

It seems appropriate to recall here that we do not assume that J<0 = 0, which would 
imply that the plane x3 = 0 would lie midway between the upper and lower surfaces. 
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Note further, that it is through rt(m) that an interaction with the sublaying water or the 
wind load is achieved. Denoting the Cauchy stress tensor in the neighbouring fluid by aii 

it is readily shown that 

(5.8) 

-6. Constitutive equations. Elastic material 

Following the usual lines of argument-, introducing the Clausius-Duhem inequality 

(6.1) 

it can be shown that 

(6.2) 

. ( Qk) r eor;- -- ~eo-
{} 'k {} 

a~ 
r; = - a/J . 

Thus, according to (5.2) we have 

(6.3) T~'fl) = J x<m) a~ ds 
'J 3 a£.. . 

h I} 

Let{}' = {}-{}0 , where D0 is a reference temperature. The polynomial representation 

~ = ~ ~rjkl(Eij- {}' wij) (Ek,- {}' Wkz) 

neglects real thermoelasticity effects but it produces the constitutive law 

(6.5) 1:ij = ccijkl( D) (Ek,- D' wk,), 

which is linear in the elongation tensor Eii and accounts for thermal stresses. Note, how­
ever, that Eii is still the Lagrangian strain of finite elasticity. In the above equations CC;ikl 
and wii are the isothermal first-order elasticity coefficients and thermal expansion coeffi­
.cients, respectively. They satisfy the symmetry relations 

(6.6) ~ijkl = ccjikl = re klij, w;j = wji 

·Of hyperelasticity. In the case of isotropic material they reduce to 

(6.7) 

where w is the coefficient of linear thermal expansion an,d A. and fl are Lame's constants. 
One usually assumes 

(6.8) fl > 0, 3A.+2fl ,> 0. 

With ~(Eii' {}) being an unspecified non-linear function of the elongation tensor and 
the temperature [see (6.3)], not much simplification can be achieved when calculating the 
stress resultants. When ~( ·) is a polynomial, then a reduction is possible. In particular, 
the macroscopic constitutive equations in the linear form are obtained by substituting 
(6.5) into (5.2): 

(6.9) T;~m) = J x~CCijkl({}') (Ekz-D'wkl)ds. 
}; 
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In floating ice plates it is not justified to assume that the elastic constants be temper­
ature independent. Thus 

00 

(6.10) T1~m> = _2; [~.J:tP>[EU>-wk1B<P>], 
p = O 

with 

(6.11)(1) G:[j,!, = J xjrt'ijkz(#)ds. 
h 

In the isotropic case 

(6.12) 

with 

(6.13) 

00 

T;~m> = _2; {A<m+P>(EU)-3wf9<P>)~ij+2M<m+p>(E1<j'>-wf9<P>~;i)} 
p=O 

A<m> = J x~).({})ds, M<m> = J x';p,(#)ds. 
h h 

It is this law we shall use in the Iinearized theory of deflection of ice plates. Finally, from 
(6.10) it follows that 

(6.14) 

where 
00 00 

(6.15) ~ = -~ .2;.}; G:fjktq>[Eff>-w,if9<P>) [E~y>-wkle<q>]. 
p=O q=O 

A different representation of T1~m> is obtained when (5.7)1 is used instead of (5.7)2 • 

(6.12) then becomes 

(6.16) 

where 

(6.17) 

00 

Tlt> = }; [~_np> EU>- cxfj>. 
p=O 

cxfj> = J xr;rcijkl(#)wk,({}){}ds. 
h 

This representation lacks the symmetry properties enjoyed by (6.13) but may be advan­
tageous in special approximations. 

7. The plate equations of motion 

We now proceed to develop the non-linear field equations of plates in terms of the 
displacement components. In this Section our starting equation is the variational princi­
ple (4.7). 

(1) We have only made a &-dependence of rcijkl explicit. A correct notation would be f{i'i}kl (x3, -&(x3) ). 

7 Arch. Mech. Stos. nr 4175 

http://rcin.org.pl



628 KOUJMBAN HUTTER 

To begin with, consider the contribution from the volume integral 

12 

(7.1) <5~1 = j dt [ j [Tii.i- eo(iii- ./i)] <5ui] dv 
11 9J 

12 

J dt [J dA J [Tii.i-eo(iii-Fi)]<5ui] ds. 
11 !/' h 

Substituting for uib and correspondingly for <5ui the representation (2.1), using (4.3), 
(4.4) and (5.1) and (5.2), we obtain 

12 00 

(7.2) <5~1 = J dt J dA {~ [-eo ihm>+Flm>+P{m>+N{m>}<5ufm>, 
l1 f/' m=O 

where 
00 

(7.3) Nfm> = TJr,J-mT~i- 1>+ ~ {T~';+P>u~~JfJ+pTJ~+P-t>uf!f}+T<';.tP>uf!'J 
P=O 

and 
00 

(7.4) P,<m> = ~ {S{m>+ [S!m+P>u~~>+pS~m+p-l>u~P>]}. 
P=O 

Note that it is pi<m> which contains any possible interaction with water and/or wind 
load. 

Further approximation is achieved by neglecting special terms. If only zeroth and 
first-order terms are retained and of the non-linearities only products with u~0>, then (7.3) 
and (7 .4) are approximated by 

(7.5) 

or 

(7.6) 

Nf0> = TJ?,~ + (TJ~>u~~~fJ + TJ~!ccu~~J) <5i3, 

NP> = T~f.~, 

P[0> = S{0> + S~0>u~~~ <5i3' 

pp> = S{t>' 

N~0> = TJ~!fJ, 
N1°> = TJg!tJ + (TJ~>u~~~a + r:~!cc u~?J), 
Nf 1

> = TM.~, 
p~O) = S~O)' 
P1°) = S1°) + S~0>u~~~' 
pp> = Sft>. 

The surface integrals in (3.20) are 

12 

(7.7) <5~2 = J dt J (ut-uk)<5tkdA 
89Jd 
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and 
t2 

(7.8) <5~3 = J dt { J (tt- tk) <5ukdA+ J (t:- tk) <5ukdA}. 
ft o~a o~r 

Here, a~d is that part of the surface where the displacement is prescribed. a~ a is the sur­
face portion on a~L or a~u, respectively, where the traction is prescribed, while O~t 
is that portion of a~ E where the streSS is prescribed. 

Using (4.3), (4.4), (5.2) and (5.3), performing the integrations in (7.7) and (7.8), we 
obtain 

t2 00 

(7.9) <5~2 = J dt J ~x)(ut<m>-ufcm>)<5tkdA, 
lt o~d m=O 

12 00 00 

(7.10) 0~~1 > = J dt ~ J {Jz<m>_s~m>_ ~ [S~m+P>uf~~+pS<~+P-l>u~P>]<5u~m>}dA, 
11 m=O o~" p=O 

12 00 00 

<5~(2) = J dt ~ f {t*<m>- r.<m> N - ~ [r.<m+P>N. u<P> +pT<m+p-l)N. u<P>]<5u<m>} ds 3 ~ k <Xk :I .L.J <X{J (X k,{J ~ 3 (X k k . 
t 1 m=O 'Cr p=O 

With (7.1), (7.9) and (7.10) we are now in position to apply the Hamilton principle. 
On setting separately each variation of the functionals ~k equal to zero, viz. 

(7.11) <5~1 = <5~2 = <5~~1 ) = <5~~2) = 0 

for arbitrary variations of the displacement and traction vector <5u1m> and ot~m>, the follow­
ing hierarchy of boundary value problems is obtained; 

(7.12) 

eoVlm> = Flm> + Nfm> + Pfm>, (xt, x2) e fl', 
ut<m>-u~m> = 0, (xl, X2) E a~d' 

00 

[Ft<m> = skm> + .r [S!m+P>ui~~ + pS~m+p-t>ufP>]' 
P=O 
00 

t *(m) _ 'T'(m)li.T + ~ ['T'(m+n)li.T U(n)+n'T'(m+n-1)71.T U(n)] ( ) am. 
k - .l.cxklYcx .L..J .J.a.{J 1Ycx k,{J .l.a.3 lYa. k ' Xl,X2 E ::ul. 

n=O 

These equations will henceforth be called the macroscopic equations of motion and bound­
ary conditions of order m. 

So far, a fully non-linear plate theory has been established. It consists of a one para­
meter family of differential equations and boundary conditions (7.12). The stress resul­
tants T&m> are given in terms of the elongation tensor Eii in (6.10) or (6.16), the latter being 
defined in Sec. 3 in terms of the strains. Note that for a well-set initial value problem the 
above equations must be complemented by initial conditions. Let u0 and u0 be the dis­
placement and velocity field prescribed at time t0 • Then, by a Taylor series expansion 

(7.13) 

00 00 

_ ~..Jn amuo I _ ~ m <m> 
Uo - ""'3 la m - / . X3 Uo ' m. X3 x 3=o ...-

m=o m=O 

one obtains the initial values for the u&m> and u~m). 

7* 
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630 KOLUMBAN HUITER 

Clearly, the set of equations introduced above is complex. In fact it forms an infinity 
of equations and in this form cannot be used for practical analysis. We ·must search for 
a consistent reduction of the equations by truncating the series. Thus the plate theory of 
order M is defined by 

(7.14) 

together with the condition 

(7.1~) 

M 

Ui(Xk, t) = 2 p m(X3)ufm>(x~, t) 
m=O 

u~m> = 0, for all m> M. 

Accordingly, only those quantities in (7.14) are considered the order of which is not 
greater than M. This results in a finite set of non-linear partial differential equations 
and corresponding boundary conditions. 

8. Further simplifications 

The general theory which characterizes the non-linear behaviour of plates has been 
formulated in the preceding Sections. This theory is still very complex and calls for 
further simplifications. Such various simplifications are possible, depending upon the 
degree of further neglections.·Here we derive a "generalized Reissner-von Karman theory". 

To begin with recall that the macroscopic constants A<i> and M<i> for plates isotropic 
in the (x1 , x 2)-plane are known, once the temperature variation across the plate thickness 
is prescribed. Note further that we have not fixed the (x1 , x 2)-plane yet. This will be done 
now with the condition 

(8.1) A<0 = J x 3 J.({})ds = 0. 
h 

We assume hencefotth that the coordinates (x1 , x2 , x 3 ) are chosen accordingly. To be 
precise, however, one must mention that the normalization (8.1) is only useful provided 
the temperature distribution is such that the surface x 3 = 0 is. flat. This implies that A. 
does not vary within· the (x1 , x2)-plane. 

Satisfying (8.1) does not, in general, imply 

(8.2) MU> = J x3 p,({})ds = 0, 
h 

but if it does, then p,({}) = KJ.({}) and this in turn implies that Poisson's ratio must be 
independent of the temperature. We shall not assume it in the sequel, because we are inter­
ested in its significance. 

The theory presented here can be considered to be an order "1" theory. Accordingly 
we shall keep 0(1)-terms, while neglecting all higher-order terms. With regard to the strain 
displacement relations we shall keep the non-linear terms which correspond to the von 
Karman assumption. The theory presented here may therefore be called a physically linear 
but geometrically partially non-linear theory. We also assume isotropy(l), so that the stress 

(2) More precisely we assume that the macroscopic equations are isotropic. This only requires the 
equations of three-dimensional elasticity to be orthotropic such that material properties in the plane of the 
plate and perpendicular to it are different. 
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strain relations (6.12) can be used. These formulas are used to calculate the zeroth-order 
stress resultants: 

Tf~> = Qx = 2M<0>E~~+2M<1>Ei~>, 

T~0] = Qy = 2M<0>E1~>+2M(l>E.g>, 

(8.3) Ti~> = Nx = A<0>E1Z>+2M<0>Ei~>-w(3A<0>+2M<0>)e<0>+2M(I>(£Pt>-we(l>), 

T1~> = Ny = A<0>E~Z>+2M<0>Ei~>-w(3A<0>+2M<0>)e<0>+2M(l>(En>-we(l>), 

Tf~> = Nxy = 2M<0> Ef~>+2M<t> Ei~>, 

which we shall assume to be nonzero. The resultant T1~>, however, is assumed to be zero. 
Thus, 

(8.4) T~D.] = A <O> E~2> + 2M<0> E~~- (3wA <O> + 2M<0>)e<o> + 2M<1>(EiV -we<0 ) = 0. 

As far as first-order stress resultants are concerned it seems appropriate to assume that 
T~V, T11] and TH> are nonzero, while all other first-order stress resultants do vanish, viz: 

TiV = Mx = 2M0>Ei~>+A<2>E~l>+2M<2>£1\> 

- [2M(l>w@<0> + 3A <2>we(l> + 2M<2>we<1>], 

(8.5) T1~> =My = 2M<1>£1~>+A<2>E~l>+2M<2>E~~> 

- [2M0 >we<o> + 3A<2>we<o + 2M<2>weu>], 

and 

rg> = 2M<0 Ei~ + 2M<2> Eg> = 0, 

(8.6) rg> = 2M<0 E~~> + 2M<2> EH> = o, 
T1\> = A<2>(£~~>-3rueu>)+2M<2>(£~~-rue<o)+2M<0(E33 -w@<0>) = 0. 

It follows from (8.6) that some zeroth and first-order strains are not independent. In 
particular (8.6) imply that 

(8.7) 
M<o 

£<1> - £<0) 
13 - M<2 > 13, 

M<o 
E (l) - £(0) 

23 - M<2 > 23, 

while (8.4) and (8.6h lead to 

(8.8) 
E~0J = A<0>E!~>+B<0>E~~>+c<o>, 

with 

(8.9) 

(8.10) c<o> = w[(A< 2>+2M<2>)(3A<0 >@<0>+2M<o>e<o>+2Mu>gu> 

- 2M<0 (3A<2>e<o + 2M<2>e<o + 2Mu>e<0>)]/L1, 
and 

A0 > = 2A<0 > M 0 >JLJ, n<1> = -A<2 >(A<0 >+2M<0 >)JL1, 

C<1> = ru[(A<o> + 2M<0>)(3A<2 >go> + 2M<2>eu> + 2M<0 @<0>) 

- 2M0 >(3A <o>g<o> + 2M<o>g<o> + 2Mu>g<1)]/ L1 , 

http://rcin.org.pl



632 KOLUMBAN HUTIER 

where 
L1 = [A<0>+2M<0>] [A< 2>+2M<2>]-4(M<0)2 • 

Note that B<o> and A0 > vanish when M<o = 0. Substituting (8. 7) and (8.8) into (8.3) 
we obtain 
(8.11) 

with 

(8.12) 

and 

(8.13) 

where 

(8.14) 

Nx = 2)<0>(£~~> + K<o> E~~) + !i)<0 (EPl + K<o E~~) +ff, 

Ny = !i)<0>(K<0>E~0l+E~~>)+!i)<1>(K0 >Efi>+Ei~>)+ff, 

Nxy = 2M(O) £1~) + 2M(l) EH\ 

A<O> 
Ar(O) = -- (A(O) + 1) 

./r 2)(0) . ' 

A/'(1) = _1_ (A<O>B<O>) 
./1 2)<0 ' 

ff = [A<0>C<0 >-w(3A<0>+2M<0>)E)<0 >-2wM<0 E)0 >]. 

M<l) = 0 implies !i)<l) = 0 and !i)<0 y<l) = 0, in which case the relations (8.13) simplify 
considerably. 

Similarly, one obtains from (8.5) the following relations: 

Mx = l)<O>(Ei~>+m<o>E~~)+XJU>(EPl+9l<1)Ei~)+X, 

(8.15) My = 1)<0>(9!<0> Ei~> + Ei~>) + 1)<0 (9!<0 Eg> + Ei~) +X. 

Mxy = - [2M<1>E1~+2M<2>Ei~], 
where 

m<o> = _t_ (A<2> AO>) 
1)<0) ' 

(8.16) 

X=- {[2Mu>g<o>+3A<2>eo>+2M<2>eu>]-A<2>c<0 }. 

Observe again that in the case M<o = 0, then 1)<0> = 0 and l)<o>m <o> = 0. In this case 
there is a true separation of (8.'15) from (8.13). 

With the definitions 

(8.17) (]of(O) = Jf, !/ = (]ofU>, J = (]of<2>, 

the equations of motion can be obtained in the form 

Jt'' !/" _ oNx oNxy r<O> 
u- cp - ox +-----ay-+ x ' 

J(" !/" _ oNxy oNy r<o> 
V - 1p - ---ax- + ----a:Y + y ' 
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(8.18) 

( oNx oNxy ) O'YJ ( oNxy oN>') 01J + -+-- --+ --+--ox oy ox ox oy oy ' 

6 .. -J o2
cp = oMx _ oMxy -Q r<1> 

U Of 2 OX 0y x+ X ' 

where we have defined 

(8.19) 

and 

(8.20) 

Note that the unknown u~1 > in the equations (8.18) can be expressed in terms of u, v, cp, 1p 
and 'YJ· To this end, observe that [see (3.9)] C~D.] = 2E~D.] = u~1 >. On the other hand, 
the Eq. (8.8) must hold. Thus 

(8.21) u~l) = ~- {A<o> [ou + ov + _!_ (O'YJ)
2 

+ __!_ (O'Y})
2

] ot 2 ox oy 2 ox 2 oy 

- B<O>[ocp + 01p] + c<O> +eo>}. ox oy 
With this set of equations a definite set has been obtained describing the dynamic response 
of ice plates to instationary motions. The equations of motion are (8.18); they form a set 
of 5 equations for the unknowns u, v, cp, 1p, and 'YJ· The stress-strain relations for the 
macroscopic equations are (8.11), (8.13) and (8.15), while the strains are given in (3.8). 

Often one is concerned with a theory where the following simplifying assumptions 
are made: 

(i) g = 0, 

(8.22) (ii) M<1> = 0, 

(iii) T1°> = T~0 > = T11
> = T~1 > = 0. 

This theory could justly be called a generalized Reissner-von Kdrman theory. Assumption 
(ii) implies that ::n<o> = .@<1> = !)<0 >91<0 > = .@O> y<l) = 0. (iii), on the other hand, 
implies that there are no horizontal surface forces. Drag due to wind and water motion is 
thus neglected. 

For ftexural motion further simplification is achieved by neglecting horizontal acceler­
ations u and v. In this event the equilibrium equations (8.18) 1 , 2 for the membrane forces 
are satisfied identically by introducing the stress function: 

(8.23) 
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Using the stress-strain relations it then can easily be shown that the equilibrium equations 
for the membrane forces reduce to 

(8.24) 

with 

(8.25) 

where use has been made of the fact that temperature varies only in the direction perpen­
dicular to the plate reference plane. Note that an equation similar to (8.24) also occurs 
in the von Karman plate theory with ~ = 2. Here, we note that this assumption cannot 
be made. 

The equations of motion and constitutive equations on the other hand reduce to 

(8.27) 

M,= -!)<•{:; +ln Z]+x. Q, = ~r(:; -w). 
M = -M<2>( ocp + O'lfJ) 

xy ox oy . 

Moreover, neglecting all non-linear terms we obtain the linear bending theory accounting 
for shear deformation. Similar, but not entirely the same equations, have been derived 
by REISSNER [22] and, by a different method of derivation, also by GREEN [23] (see also [24]). 

9. Numerical values for the plate constants 

The preceding calculations made use of various constants which are different from the 
familiar ones in ordinary plate theory. To make this theory amenable to explicit calcula­
tions we shall list the pertinent constants in this section. Because temperature variation 
is essential in this theory; we first need some information with regard to the temperature 
variation of the elastic constants, such as for Young's modulus, the shear modulus, Poisson's 
ratio and Lame's constants, respectively. For polycrystalline ice with randomly oriented 
crystals these constants have been calculated by various authors from the corresponding 
single crystal properties. RoTHLISBERGER [25] summarizes the work of JoNA and 
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SCHERRER [26], BASS [27] et a/, BROCKAMP and QUERFURTH [28] and BENNET (29]. After 
some reinterpretations, these results can be summarized as follows: 

E({}) 
E(O) = 1-0.00146{), E(O) = 9.21 x 1010 [dynes/cm2

], 

11 ({}) = 0.314, 

ft ({}) 
p,(O) = 1-0.00146{), p, (0) = 3.5 x 1010 [dynesjcm2

], 

(9.1) 
).({}) 
).(0) = 1-0.00146{), ). (0) = 5.95 x 1010 [dynesjcm2], 

In these formulas the temperature is given in centigrades. 
In order to obtain numerical values for A<m> and M<m> as given by (6.13) we assume 

for the sake of simplicity a linear distribution of the temperature across the thickness 
of the ice with temperatures {)" and {)' at the upper and lower face, respectively. Without 
loss of generality we may assume {)1 = 0, because the water temperature at the lower 
face is at freezing point. Then (Fig. 2) 

(9.2) A1 = J (x3-t5)).({})ds = 0, 
h 

implies 

(9.3) 
t5 h = 0.5+0.0001220·", 

6 

h 

FIG. 2. 

where {)" is to be expressed in centigrades. Furthermore, after lengthy manipulations, 
one deduces 

A<O> = ).(O)h[1-0.0007320"], 

(9.4) A<2 > = ).(~~h
3

·[1-0.0002930•J, 

!1)< 0
> = ~).~? h (1- 0.000732 0")' 

(9.5) y<o> = v; 91<1) = v, 

(9.6) r = 2p, (O)h(1-o.ooo732 {)"). 

With (Fig. 2) 

(9.7) 

M(O) = ft (0) h [1- 0.000732 {)"], 

M< 2 > = p,(~~h
3 

[1- 0.000293 {)"], 

l)<O =~- 2ft (O) (1-0 000293 {)") 
12 1-v · ' 
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where 

(9.8) 

·we also obtain 

(9.9) 

Plate constant a 10 l and ~ 11 > for sea 
ice as function of the temperature .{> 

and solid salt content 50 

1010,------~---------.­
( -11· (JB10>/h 2)· ( dynes/cm2 I 

(-1).(:>11)/ h2 ).(dynes/cm 2) 

IF Poisson's ratio 
v # FCT (~) then 
aco>. o I 
~(1)!!0 ' 

it 
Temp profile 

Poisson's ratio V=0.333+0.61 exp (~/5 .48) 

FIG. 3. 

e<o> = ( 1- ! )o• "" 0.50", eu> = -D~jh, 

K 
g- = -3wh-

1
-(1-0.000732D"), 
-Y 

(9.10) ~ = -wh3 
4

({_Y) (1-0.000732Du), 

where K is the bulk modulus, given by 

(9.11) K = (3).(0)+2,u(0})/3. 

KOLUMBAN HUTF.ER 

The above calculations are performed for fresh water ice and they amply indicate that 
the influence of the variability of the temperature across the thickness of the ice is negli­
gible. This is not so for sea ice as will be demonstrated now. 

The reason for the different behaviour of sea ice must be sought in the presence of salt 
which not only makes the freezing point of brine temperature dependent, but also deter­
mines the amount of brine inclusions according to the phase diagram. Therefore, depend­
ent upon the temperature distribution there is a more or less substantial contribution 
of brine inclusions in the ice which weakens its strength. Extensive studies have been per­
formed recently. Among those, we mention the illuminating article by AssuR [30] 
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which among many other things presents the numerical values for the relative volume of 
brine, n (volume porosity), in "standard sea ice" as a function of the temperature. It then 
suffices to relate the elastic properties of a solid without porosity to those of the same solid 
when containing holes. This relation, that is, the dependence of the elastic moduli 
upon the porosity has extensively been studied from an experimental point of view (see 
WEEKS and AssuR [31]). It seems that Young's modulus is linearly related to the porosity 
but there is insufficient information on the variation of Poisson's ratio with the state of 
the sea ice. 

Rather than relying on such insufficient information our ultimate goal would be to 
perform a model calculation, by assuming that the voids are of special form. These results 
are not available now but extensive computer calculations based on results of [31] have 
proved that there is in fact a substantial influence of the temperature distribution on the 
plate constants. The calculations are tedious and not pertinent to the matter in hand. 
It may suffice to substantiate the above conjectures by Fig. 3 where .@<1> and !)<O> are 
plotted as functions of the surface temperature {} and the solid salt content S0 • 

References 

1. A. AssUR, Flexural and other properties of sea ice sheets, Research Report 206, US-Army Cold Region 
Research and Engineering Laboratory, 1967. 

2. A. D. KERR and W. T. PALMER, The deformations and stresses in floating ice plates, Acta Mechanica, 
15, 1972. 

3. K. HUTTER, On the fundamental equations of floating ice, Report Nr 8 of the Laboratory of Hydraulics, 
Hydrology and Glaciology, Swiss Federal Institute of Technology, Zurich 1973. 

4. A. L. CAUCHY, Sur /'equilibre et le mouvement des corps elastiques, Mem. Acad. Sci. Inst. France, Serie 2, 
8, 1829. 

5. R. D. MINDLIN and M. A. MEDICK, Extensional vibrations of elaMic plates, J. Applied Mech., 26, 1959. 
6. A. L. GOLDENWEIZER, Methods for justifying and refining the theory of shells, Prikl. Mat. Mekh., 32, 

1968. 
7. A. E. GREEN, N. LAWS and P. M. NAGHDI, Rods, plates and shells, Proc. Camb. Phil. Soc: Math. and 

Phys. Sci., 64, 1968. 
8. C. M. DoKMECI, On a non-linear theory of multi/ayer shells and plates, Abstr., of 12th IUTAM Congr. 

Stanford 1968. To the Memory of Professor lnan, ITU, press. 
9. C. M. DoKMECI, Theory ofmicropolar shells and plates, Recent Advances in Engineering Science, edited 

by A. C. ERINGEN, 5, Gordon and Breach, 1970. 
10. C. M. DoKMECI and K. HUTTER, Theory and finite element analysis of micropo/ar plates, Abstr. CAN­

CAM 1971, Canadian Congress of Applied Mechanics, Calgary. 
11. U. K. NIGUL, Asymptotic theory of statics and dynamics of elastic circular cylindrical shells, Prikl. Mat. 

Mekh, 26, 1962. 
12. V. S. KALININ, On the calculation of non-linear vibrations of flexible plates and shallow shells by the 

small parameter method, Theory of Shells and Plates, edited by S. M. DuR'GARYAN, NASA TT 
F-341, 1966. 

13. W. T. KOITER, Foundations and basic equations of shell theory, A survey of recent progress, Proc. I UT AM 
Symp. on the Theory of Thin Shells, edited by F. I. NIORDSON, Springer Verlag, Berlin 1969. 

14. 0. WIDERA, An asymptotic theory for the vibration of anisotropic plates, lng. Arch., 38, 1969. 
15. 0. WIDERA, An asymptotic: theory for the motion of elastic plates, Acta Mechanica, 9, 1970. 
16. R. K. KAUL Finite thermal oscillations of thin plates, lnt. J. Solids and Structures, 2, 1966. 
17. A. E. GREEN and P. M. NAGHDI, Non isothermal theory of rods, plates and shells, Int. J. Solids and 

Structures, 6, 1970. 

http://rcin.org.pl



638 KOLUMBAN HUITER 

18. C. A. TRUESDELL, and R. A. TOUPIN, Classical field theories, Handbuch der Physik, Vol. 111/1, edited 
by W. FLiiGGE, Springer Verlag, Berlin 1960. 

19. V. V. Novozmwv, Foundations of the non-linear theory of elasticity, Graylock Press, 1953. 
20. Th. von KARMAN, Enzyklopiidie der mathematischen Wissenschaften, 4, 1910. 
21. C. A. TRUESDEL~ and W. NoLL, The non-linear field theorie of mechanics, Handbuch der Physik, Vol. 

111/3, edited by W. FLOGGE, Springer Verlag, Berlin 1965. 
22. E. REISSNER, On bending of elastic plates, Quart. Appl. Math., 5, 1947. 
23. A. E. GREEN, On Reissner's theory of bending of elastic plates, Quart. Appl. Math., 7, 1949. 
24. A. S. VOLMIR, Flexible plates and shells, Engl. Translation. Tech. Report, Wright Patterson Air Force 

Base, Ohio. 
25. H. RoTHLISBERGER, Seismic exploration in cold regions, CRREL, Cold Regions Science and Engineer­

ing Monograph II-A2a, 1972. 
26. E. JONA and P. SCHERRER, Die elastischen Konstanten von Eis-Einkristallen, Helvetica Physica Acta, 

25, 1952. 
27. R. BASs, D. RosENBERG and G. ZIEGLER, Die elastischen Konstanten des Eises, Zeitschrift fi.ir Physik, 

1957. 
28. B. BROCKAMP and H. QUERFURTH, Untersuchungen iiber die Elastizitiitskonstanten von See- und Kunsteis. 

Polarforschung, 5, 34, 1964. 
29. H. F. BENNBT, Measurements of ultrasonic wave velocities in ice cores from Greenland and Antarctica, 

CRREL, Research, report 237. 
30. A. AssUR, Composition of sea ice and its tensile strength, National Academy of Science, National Re­

search Council. Publ. 598, 1958. 
31. W. F. WEEKS and A. AssUR, The mechanical properties of sea ice; Proc. of Conference on Ice Pressures 

against Structures, Laval University, Quebec City, Canada 1966. 

Added in proof. The linear version of the plate theory of this article has been applied to simple plate bending 
problems. Results on the deflection of floating plates to strip like loads and the response of such plates 
to plane waves are reported in [32, 33 and 34]. It is shown in these articles that for sea ice the dependence 
of the Poisson ratio on temperature (or brine content) may have an influence on the solutions which deviate 
from the classical solutions only by roughly 3-7%. For natural ice this is too small to be of any significance. 

Thus, the theory presented in this article has turned out to be too general for ice plates. Nevertheless 
for composite plates and laboratory ice where deviations of 3 to 7% can experimentally be detected, because 
there are fewer imurities present, the above plate theory does have its values. 

32. K. HUTIER, On the significance of Poissons ratio for floating sea ice, Report No 11 of the Laboratory 
of Hydraulics, Hydrology and Glaciology. Swiss Federal Institute of Technology, Zurich 1974. 

33. K. HUTTER, Floating sea ice plates and the significance of the dependence of the Poisson ratio on brine 
content, Proc. Royal Soc. 343 A, 85, 1975. 

34. K. HUTTER, The significance of the shear rigidity and the Poisson ratio for sea ice plates, to appear 
in Proc. Third Int. Conf. Port and Ocean Engineering under Arctic Conditions, University of Alaska. 

LABORATORY OF HYDRAULICS, HYDROLOGY AND 
GLACIOLOGY ANNEXED TO THE FEDERAL INSTISTUTE OF TECHNOLOGY, ZURICH. 

Received October 9, 1974. 

http://rcin.org.pl




