
Archives of Mechanics • Archiwum Mechaniki Stosowanej • '1.7, 3, pp. 385-406, Warszawa 197S 

Combined dynamic loading on elastic/viscoplastic tube 

J. BEJDA (WARSZAWA) and H. FUKUOK.A (TOYONAKA) 

The problem of stress wave propagation in an elastic viscoplastic tube under combined axial 
and torsional impact is examined. To describe dynamic behaviour of material, PERZYNA's con­
stitutive equations were applied. The system of governing equations was solved numerically by 
the method of finite differences along characteristics. The main features of the solution for mild 
steel and aluminum are presented in the form of several diagrams. The analysis of propagation 
velocities of longitudinal and shear loading and unloading waves and the attenuation of their 
amplitudes are disscussed in detail. 

Rozwazany jest problem propagacji fal napr~zenia w cienko5ciennej spr~zysto lepkoplastycznej 
rurze pod wplywem jednoczesnie przylozonego, naglego, osiowego i skr~tnego obci~enia. 
Do opisu dynamicznego zachowania si~ materialu przyj~to r6wnania konstytutywne PERZYNY. 
Podstawowy uldad r6wnan rozwictzano numerycznie metodct r6znic skonczonych wzdi\IZ 
charakterystyk. Gl6wne wyniki rozwictzania przedstawione zostaly w postaci licznych wy­
kres6w. Przeprowadzono szczeg6lowct dyskusj~ pr~ko8ci propagacji podlui:nych i poprzecz­
nych fal obcicti:enia i odci'li:enia oraz ich tlumienia. 

HcCJie.rzyeTCR: aa.Qaqa o paCIIpocrpaHeHHH BOJIH Hanp.IDKemtii B ynpyro-BH3KonnaCTHlleCKoA 
Tpy6e npH O,ZVIOBpeMeHHbiX OCeBOM H KpyTHTeJILHOM y.Qapax • .}liDI ODHCIUIHR: .QHHaMHlleCKOrO 
coCTOR:HHR: MaTepHa.Jia npHHHMaeTcR: onpe.Qemno~He ypaaHeHHR: ITe>KHHbi. OCHOBHYJO CH­
creMy ypaBHeHHH peweHO liHCJieHHbiM MeTO.QOM KOHeliHbiX pa3HOCTeif B.QOJ'IL xapaKTepHCTHK. 
rnaBHbie pe3y11LTaTbi peweHHR: npe.QCTaBJieHbl B BH.Qe HeCKOJ'ILKHX rpa<t>HKoB. ITo.Qpo6HO 
o6cy>K.Q810TCR: CKOpOCTH paCIIpOCTp8HeHHR: npO.QOJ'ILHbiX H nonepeliHbiX BOJIH Harpy3KH H pa3-
rpy3KH, a TaK>Ke HX 3a'cyXaHHe. 

1. Introduction 

FURTHER theoretical investigatiol)s of plastic wave propagation phenomenon are necessary 
to complement the experimental examinations. Nowadays there are two ways to study 
experimentally the mechanical behaviour of material under dynamic loading: 

I) to obtain the constitutive equations of material using short specimen which is 
assumed to be uniformly deformed; 

2) to observe the wave propagation phenomenon in a long specimen. 
The second way of experiments, in particular concerned with the propagation of 

incremental pulses in thin-walled tubes plastically loaded by combined tension-torsion 
loads, is of special interest. Such a test for stress state beyond the elastic limit of the 
material is expected to provide useful information regarding the dynamic plastic behaviour 
of solids under combined stress states and this information is of fundamental importance 
in the development of a three-dimensional theory of plastic wave propagation. Besides, 
this is the only possible way to perform the experiments in combined state of stress com­
paratively easily. 

A theory for wave propagation phenomena in a thin-walled tube based on rate-in­
dependent plasticity was first examined by CuFTON [1] and FuKUOKA [2]. The stress and 
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strain paths for combined longitudinal and torsional impact loading of a semi-infinite 
tube initially prestressed to the plastic range by combined static longitudinal and torsional 
loads were obtained in [1]. It was found that there are three types of stress path accord­
ing to the value of combined step loading and that in particular there is a region which 
cannot be reached without unloading in spite of the loading side. 

Experiments verifying this theory were performed by LIPKIN and CLIFTON [3] and by 
FUKUOKA and MASUI (4]. 

In the apparatus designed by FuKUOKA and MASUI [4], the tube is prestressed quasi­
statically to the arbitrary values of tensile and shear stresses and then the incremental 
impact loadings are superposed. Measurements are made of strain-time profiles at some 
stations along the tube. A comparison of theoretical and experimental results, made in 
[5], leads to the following main conclusions. In the case of longitudinal impact, the strain 
response at the gages qualitatively corresponds to the arrival of a fast wave for which 
torsional strain decreases, while longitudinal strain increases followed by a slow simple 
wave for which both torsional and longitudinal strains increase. But in the case of torsion­
al impact, the strain response does not correspond to the theoretical results. In all cases 
the velocity of propagation of wave front was found to be that of the elastic one. 

Theory of combined plastic waves in a thin-walled tube was further widely developed 
in a series of papers by TING [6, 7, 8]. In [7] he has given a unified treatment of all known 
in literature combined plastic stress wave problems including both kinematic and isotropic 
work-hardening of material considered by GOEL and MALVERN [9], and also other prob­
lems which have not yet been studied in detail. 

Almost none experiments were done for the propagation of combined plastic waves 
in strain-rate sensitive materials. To compare the experimental and theoretical results, 
first a corresponding theory for strain rate-dependent material is needed to predict the 
main features of the wave propagation phenomenon. Thus the aim of this paper is the 
thorough numerical examination of the stress wave propagation process in an elastic 
viscoplastic tube under combined impact of longitudinal and torsional load. The combined 
waves propagating in a strain rate-dependent materials were first studied theoretically for 
a particular case of plane shear-pressure elastic viscoplastic waves by S. KALISKI and 
others [10-12]. The compilation of a large number of results concerning the problem of 
combined waves propagation in a rate-dependent plastic materials is given in [13]. How­
ever, until recent time, except short note [14], there appears to be no detailed analysis of 
incremental wave propagation phenomenon in a prestressed elastic-viscoplastic tube(!). 
Such analysis is presented in this paper. Special emphasis is laid on the proper choice 
of constitutive equations describing dynamic behaviour of rate-dependent plastic materials. 
In our opinion, PERZYNA's constitutive equations [15] are the only well elaborated and 
widely discussed constitutive equations, and therefore were applied in our investigation. 
The material constants and the shape of the relaxation function for mild steel and alu­
minium were chosen on the basis of one-dimensional experimental data. The system of 

(1) During preparation of this paper has appeared an interesting work by CLIFTON and Hsu [16] which 
contains an analysis of the propagation of plastic waves in a rate-sensitive plastic materials. Both ex­
perimental and theoretical results of combined stress waves in a thin-walled tube are presented. As a rate­
dependent plastic material the authors consider commercially pure alpha-titanium (Ti-SOA). 
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governing equations was solved numerically by the method of finite differences along 
characteristics. In the analysis of the convergence and stability of the difference solution, 
the emphasis is made on the energy method. The main features of the solution are given 
in the form of several diagrams. The analysis of velocities of longitudinal and shear loading 
and unloading waves and the attenuation of their amplitudes are discussed in detail. 
Attention is also paid to the distribution of the stress gradients with the propagation of 
front of the wave. 

2. Governing equations 

Consider a long slender thin-walled cylindrical tube of the mean radius R as shown 
in Fig. I. The theory considered is one-dimensional, the material is homogeneous and 
isotropic, elastic and plastic strain rates are separable, strains are assumed to be small 

FIG. 1. Stresses and velocities in the tube. 

and radial inertia effects are neglected. Under these assumptions and neglecting the change 
in the mean radius R the non-zero stress components are 

(2.1) O'xx(X, t) = 0', TxB(X, t) = TBx(X, t) = T 

and the velocity components in axial and circumferential direction are respectively 

(2.2) u(x, t) = u, v(x, t) = v. 

Conservation of linear and angular momentum gives 

(2.3) 

where e is the mass density and suffixes t and x denote partial differentiation with respect 
to time and spatial coordinate, respectively. 

The following compatibility equations hold 

(2.4) 

where e and y denote longitudinal strain and shearing strain, correspondingly. 
To complete the system of governing equations it remains to specify the constitutive 

equations. The choice of the proper constitutive equations for the dynamic response of 
rate-dependent plastic material is essential in our analysis. From experimental data it is 
well known that all real materials are strain rate sensitive. The viscous effects are observed 
in elastic as well as in plastic range of deformation. A theory describing these effects is 
complex; difficulties arise specially in proper formulation of the yield criterion in visco-
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elastic range of strain. However, following [15] it is sometimes very useful to make certain 
idealization of the constitutive equations. Assuming that up to the yield point material 
behaves elastically and viscous effects prevail in a plastic range, we are able to determine 
in a unique way the yield criterion. In our case it does not differ from the yield criterion 
well known in classical theory of plasticity. It is thus assumed that the yield function 
is of the form 

(2.5) 

where f(u1b efJ) depends on the stress state u1J and plastic strain tensor efJ· As we pre­
viously assumed, the strain-rate tensor decomposes into elastic and nonelastic parts, 
i.e. eiJ = efJ + efb where efJ represents the coupling of viscous and plastic effects, ~ is 
a work-hardening parameter defined as 

(2.6) 
t 

~ = ~(WP) = ~ (f u11def1), 
0 

where WP denotes the energy of plastic deformation. There is no unique way of 
defining the parameter ~. The more complicated forms of the work-hardening parameter 
describing isotropic as well as anisotropic work-hardening of the material, as for example 
discussed in [17], may be assumed. The yield surface F = 0 in nine-dimensional stress-space 
is assumed to be regular and convex. Under the above assumptions the constitutive 
equations for strain-rate sensitive plastic materials, proposed first by PERZYNA [18], may 
be written in a form relating the stress-rate tensor a,j, strain-rate tensor eij and stress 
tensor u1J: 

(2.7) for F < 0, 

Here e1J and s1J are the components of the strain-rate and stress-rate deviators, respectively, 
y 0 , k, K and p. denote viscosity coefficient, yield limit in simple shear, bulk modulus and 
shear modulus, respectively. The first equation of (2. 7) holds in viscoplastic region, the 
second in elastic region and the compressibility equation in both regions. The above 
equations say that inelastic strain rate is a function of the state of stress which is a difference 
between actual state and the state corresponding to the static yield criterion. The function of 
overstresses determines the inelastic strain rate according to the Maxwell viscosity law. 

For metals further simplification of the constitutive equations may be made. Reason­
able results are obtained even under assumption of the function F in the form 

(2.8) F = r~~-1 k ' 
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where J2 is the second invariant of the stress deviator. In this case the constitutive equa­
tions (2. 7) take the following simpler form(l): 

(2.9) . 1 • Y m [ Y J2 J Stj e·· = -s1·+- < -v ---1 > --
•J 2 J 2 k .. ;-

y J2 
for F";?J:; 0, 

• 1 • 
eu = 2 s,b (2.10) for F < 0, 

(2.11) 
. 1 . 
Eil = 3K CJu. 

Although further analysis is practically independent of the complexity of the relaxa­
tion function l/J, in numerical computation, however, the simple form of constitutive 
equations is preferable and therefore we shall use the Eqs. (2.9)-(2.11). These equations 
have been verified experimentally by LINDHOLM [19, 20] and a very good agreement of 
experimental data with the results predicted by PERzYNA's theory was confirmed for 
mild steel as well as for aluminium. 

It should also be stressed that the phenomenological equations (2.9)-(2.11) have 
recently obtained proper physical justification [21]. In particular, the mechanisms res­
ponsible for plastic effects and rate sensitivity are discussed in detail. 

In our problem 

0 
2 

0 (] T -(] T 
3 

(2.12) 0 0 
1 

0 dtj = T ' Stj = T --(] 

3 

0 0 0 0 0 
1 

--(J 
3 

and the constitutive equations (2.9)-(2.11) are now: 

(2.13) 

(2.14) . 1 1 . y l/J(F) el2= 2 vx= 2 -r+ .. 1_-r . 
1-' f J2 

The governing equations (2.3) and (2.4), (2.13) and (2.14) may be written in an abbrevia­
ted matrix form 

(2.15) 

(2) Derived in a different way the constitutive equations in [16] do not differ significantly from the 
equations considered here. 

2 Arch. Mecb. Stos. nr 3ns 

http://rcin.org.pl



390 J. BEJDA AND H. FuKUOKA 

where 

u e 0 0 0 0 0 -1 0 

V 0 e 0 0 0 0 0 -1 

0 0 
I 

0 -1 0 0 0 (2.16) W= (] A= E B= 

'! 0 0 0 0-1 0 0 
# 

0 

0 

C= 2yu <P(F) 
3 Jl12 . 

~<P(F) 
y!~ 

In elastic range of deformations we put y = 0, thus vector C = 0. For comparison, we 
shall also need the corresponding equations for rate-independent plasticity. In this case 
the basic system of equations takes the form [I] 

(2.17) 

in which B* = B, C = 0 and 

e 0 0 0 

0 e 0 0 

(2.18) A*= 0 0 
1 u2 

H(J-r £+#7f2 

0 0 Hu-r _!_ + HfP -r2 

# 

and the yield condition is assumed in the form 

(2.19) f(u. T) = (: r +T2 
= P. 

where () is a constant and for () = y3 the Eq. (2.20) corresponds to the Huber-Mises 
yield criterion (distorsion energy) and for() = 2 to the Tresca condition (maximum shear 
stress), k denotes as previously the yield limit in pure shear, 

(2.20) 

WP is plastic work and is determined here as 

(2.21) 
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3. Characteristic properties of the governing equations and finite differences 

3.1. Characteristics and equations along them 

Let us examine first the system of the Eqs. (2.15). The matrices A and Bare symmetric 
and besides, the matrix A is positive definite. Thus the Eqs. (2.15) constitute a standard 
system of the first-order partial differential equations of hyperbolic type studied extensively 
elsewhere [22]. To derive the differential equations along characteristics, the eigenvalues 
and eigenvectors associated with the system of the Eqs. (2.15) should be evaluated. The 
eigenvalues or the characteristic wave velocities determined as the roots of the determinant 

(3.1) lleA-BII = 0 

are 

c1 = v'!, c2 = v': , c. = - v'! • c. = -V : • 
where the indices I and 2 stand for longitudinal and shear waves, respectively. The left 
eigenvectors associated with the system of the Eqs. (2.15) serve to determining of the 
characteristic conditions and are evaluated from the condition 

(3.2) V(eA-B) = 0, 

where the index T is used to indicate the transpose vector. There are the following four 
eigenvectors: 

[1 = [ ~ l ' f2 = [ ~ l ' p = [ ~ l ' 14 
= [ ~ ]· -eel 0 eel 0 

0 -ee2 0 ee2 

(3.3) 

Multiplying [k<T> by the Eq. (2.15), we obtain the equation 

(3.4) 

which, after using the condition 

(3.5) 

holding along characteristics dxfdt = e, leads to 

(3.6) 

Since on the characteristics we have 

dw 
dt = ew.x+W,, 

we obtain finally 

(3.7) 

2* 
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Thus, for example, for the first eigenvector we obtain explicitly 

e 0 0 o- u 0 

0 e 0 0 'V 0 

1 2 (J 
0 0 0 d 

(3.8) (1, 0, - (!Cb 0) (J = -(1, 0, -eel, 0) 3y----=- (JJ(F) E dt y/2 

0 0 0 
T 

T 2y y'- (/>(F) 
1-' 12 

or 

du ec1 du 2 u 
(3.9) (!d- -y- = 3 ec1y y- (/>(F). 

t dt J2 

Introducing the eigenvectors (3.3) into the Eq. (3.7), we obtain the required ordinary 
differential equations along characteristics 

~ ( u- i ") = ; c 1 y v:, (/>(F) along :=V!· 
d ( C2 ) T (/>(F) along dx =V" dt v- -;;-r = 2c2y y'J; dt e' 

(3.10) 
d ( c, ) 2 " dx 'E 

- u+-u = --c1 y-=- f/>(F) along dt = --v -e·, dt E 3 y' J2 

d ( C2 ) T 
dt v+ /iT = -2c2y JIJ; f/>(F) along dx =_]I p 

dt e · 

3.2. Finite differences 

The method of finite differences along characteristics is applied to the solution of the 
system of the Eqs. (2.15). To obtain sufficiently accurate approximate solution, the second­
order difference schemes were introduced. Our method is of the second-order accuracy 
in the sense that if the solution is known at some time t the error introduced in the next 
step of time t + L1 t would be O(L1 t 3). Before deriving the difference equations the phase 
plane (x, t) was covered by the rectangular mesh net with mesh sizes L1x, LJt, the charac­
teristic element of which is shown in Fig. 2. The ratio L1x/L1t is chosen in such a way that 

a b 
t=t-1-LJ.t 1/1[ I L&J{::·M 

Q_ Q1 Qz a Q3 Q, Q+ i-1 l i r i+1 
I. L1x .1~ Llx .. 1 

t=t 

F'Io. 2. Elements of the characteristic net for interior points of the phase plane x, t. 
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the von Neuman stability condition is always satisfied. Taking the ratio r = t1xft1t equal 
to c1 and denoting for abbreviation 

D = y ct>(F), 
Jl J2 

the following explicit formulae for the unknowns u, v, a, r in the inner points P? (Fig. 2) 
are obtained : 

(3.12) 

0 E 1 . Et1x{ )0 } 
Gi = --

2 
(u,_t-Ut+t)+-

2 
(a,_t' Gi+t)- -

6 
- 2(Du i +(Da),_ 1 +(Du)1+1 , 

Ct Ct 

0 1 c2 r } 
Vi = T(v,+vr)-

2
/L (rz-ir)+ 2 L1x{(Dr),-(Dr)r , 

r? = -
2
"' (v1-v,)+ 

2
1 

('r1-r,)- 2
1LF t1x{2(Dr)?+(Dr)1+(Dr),}. 

c2 c2 

The functions with suffixes I and r are expressed in terms of functions with suffixes i, i- 1 
and i + 1, by means of the following second-order formulae: 

(3.13) 

where r = cl/cl. 

Ji +f, = 2Ji +F2 (fi-t -2fi +fi+ t) +0(t1t 3), 

Ji-f, = Ui-t-.fi+t)+O(t1t 3
), 

On the right-side of the Eqs. (3.12) appear the terms with superscript 0 containing 
unknown functions w?. Therefore the iteration method is applied here, using as the first 
iteration the values of these functions with subscript i. 

Before starting the numerical computations of our problem the initial and boundary 
conditions as well as material constants should be determined properly. By analogy with 

Rigid end plate 

Fixed end 

Targed c:r-:-=-::======~--=..._-0 Fixed · 
erid end -r--------------- ':--

1-----------------
L 

x-o "/ 
x=L 

FIG. 3. The type of boundary-value problem for combined dynamic load. 
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the experiments performed in which the rotating bullet was striking a rigid target closing 
a hollow cylinder (specimen) which was fixed at the other end to the rigid wall, we named 
the corresponding boundary conditions as the "target" and "fixed end" conditions (Fig. 3). 
At the target end the velocities 

(3.14) u(O, t) = u(t), v(O, t) = v(t), 

the stresses 

(3.15) u(O, t) = a(t), -r(O, t) = =i(t) 

or mixed stress-velocity conditions may be prescribed. At the fixed end we have: 

(3.16) u(L, t) = v(L, t) = 0. 

The initial conditions are prescribed for undisturbed case (for the region t < xfct) 

(3.17) u(x, 0) = v(x, 0) = u(x, 0) = -r(x, 0) = 0, 

as well as for the prestressed conditions 

(3.18) u(x,O) = v(x,O) = 0, a(x,O) = <1~, -r(x,O) = T~. 
To the evaluation of two remaining unknown functions at the target and the fixed end, 
the difference equations of the same order of accuracy should be derived. When the 
method of characteristics is applied it may easily be done by eliminating the difference 
equations along certain characteristics, i.e. for target points equations along the character­
istics (i- 1 , i 0) and (I, i 0 ), whereas for the fixed end points equations along the character­
istics (i + 1, i 0

) and (r, i 0
), Fig. 2b. If the stress or velocity conditions are prescribed 

for target points, we obtain the following two sets of equations: 

b 

1 m 2 3 L-2 L-1 e L 
li:J.rget Fixed end 

FIG. 4. a- Element of the characteristic net for target points. b- Element of the characteristic net for 
the fixed end points. 

(3.19) 

ii) for velocity conditions 

<1~ = ~ u2 +<12-~ u~-
3
E L1x{(DaW + (Duh}, 

c1 c1 c1 
(3.20) 
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where 

f, = (1-I) (2-I} r +F(2- P\r- (1-I)f 
m 2 J 1 .L JJ2 2 3 • 

For fixed end points we hawe (Fig. 4b) 

u~ = v~ = 0, 

(3.21) 

where 

(1-I}(2-I) (1-I) 
fe = 

2 
.fL+(2-F)fL-1- -

2
-fL-2· 

395 

Since the mathematical investigation of the convergence and stability of approximate 
difference solution is difficult to perform, we have limited our consideration to the energy 
method. The energy balance equation may be obtained from the following relation 

(3.22) J J w· (Aw,+Bw.x+C)dxdt = 0 

which leads to 
L L T L 

(3.23) J[ ~ (u2 +v2)}/x+ J[ ;~ + ;2 ]dx+ J J [; Da2+2DT2Jdxdt 
0 0 1-' 0 0 

T L L 

=- [ (ua+vT]%:0dt+ f[ ~ (u02 +v*')}x+ f[ ~~ + ;; Jdx. 
The integrals on the left-hand side of the Eq. (3.23) represent the kinetic, elastic and visco­
plastic energy respectively, whiJe the right-hand side terms are by turn the input energy, 
initial kinetic energy and initial elastic energy. The error of computation is determined by 
the formula 

(3.24) Error = 1 - Edet + Ettn 

Etnp + Etnitial ' 

where Eder denotes the deformation energy as a sum of elastic and viscoplastic energy, i.e. 

(3.25) Edef = Eelastlc + Eviscoplastic = f J (U.xct+'V.xT)dxdt. 

Et1n and E 1np are respectively the kinetic energy and input energy, whereas E 1nutal is 
a sum of initial kinetic and elastic energies. 

4. Numerical results 

For evaluation of the unknown functions u, v, et, T by means of the Eqs. (3.12)-(3.21), 
the computing programme was prepared in which different parameters as. for example, 
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loading functions, material constants, work-hardening, relaxation function or mesh size 
may easily be changed. Numerical computations were performed for mild steel and alu­
minium alloy. The following data were assumed in computations: 

(
yJ2 p 

relaxation function: (F) = k-- - 1) 
material constants: 

(4.1) 

for mild steel 

E = 2.1 x 106 kg/cm2
, 

p = G = 0.82x 106 kg/cm2
, 

ao = 4.2x 103 kg/cm 2
, 

k =To= 2.44x 103 kg/cm2, 

1 
'Y = 750-, 

sec 
p = 1, 
f! = 7.8 x 10-6 kgcm-3 s2

, 

for aluminium 

E = 0.714x 106 kg/cm2, 

G = 0.26 x 106 kg/cm 2
, 

ao = 0.66 x 103 kg/cm 2
, 

ro = 0.380x 103 kg/cm2
, 

1 
1' = 17.000-, 

sec 
p = 4, 
!! = 2.7x 10-6 kgcm-3 s2• 

Data (4.1) were determined on the basis of one-dimensional tests performed for mild 
steel by HARDING, WOOD and CAMPBELL [24] and for aluminium by KARNES and RIPPER­

GER [25]. The way of their evaluation is described in detail in [23]. 
Two loading functions at the target end are assumed: 
i) "step" function, i.e . function increasing from zero to a certain value and then kept 

constant (Fig. 5). The increasing part of the curve should be very small and is introduced 

Target conditions 

FIG. 5. "Step" load function. 

here to avoid singularities in computation. T is dimensionless quantity and equals c1 t/L', 
T = 1 corresponds to the time necessary for longitudinal wave to reach the fixed end of 
a tube. 

f{T)='fo[ Fora 
1 

=Fa For b 

-73-T =.£
73

_
12 

Fore 

=0 Ford 

f{r) 
a b c d 

0 71 Tz 73 T 

FIG. 6. "Impulse" load function. 
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c d 

Q4 ~Q4 k0 =2:42x103 kg/cm 2 
E 

~ ~ 
0') 

E .,.""< 
,.,.,u Q2 ~ Q2 
~ ~ 
~ ~ 

::.. 

a X L a X L 
Target end Fixed end Target end Fixed end 

Fro. 7. a. Distribution of u along mild-steel tube for different times for "step" velocity target loading. 
b- Distribution of v along mild-steel tube for different times for "step" velocity target loading. c- Distri­
bution of G along mild-steel tube for different times for "step" velocity target loading. d- Distribution 

of 'l' along mild-steel tube for different times for "step" velocity target loading. 

-2 

6 

.--..,4 
0\j 

§ 
":.'. 
~ 2 

IT') 

~ 
"'0 

-2 

a 

b 
T-1/8 

u0=-2~<103 cm/s 
v0 .:-2x103 cm/s 

u0 =-2x1D3cm/s 
'lo=-2><1D3cm/s 

Q8 
X 

FIG. 8. a- Distribution of G along mild-steel tube for different times for "impulse" velocity target load­
ing. b -Distribution of 'l' along mild-steel tube for different times for "impulse" velocity target loading. 

[397] 
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ii) impulse function (Fig. 6) f(T) is described by the relation 

for segment a, 

for segment b, 

for segment c, 

for segment d. 

] • BEJDA AND H. FUKUOKA 

Such type of impulse is almost always observable in specimen during impact experiments. 

The results of computations are presented in the form of diagrams. In Figs. 7a-7d typical 
curves of distribution of velocities u and v and the stresses Cl and T along a tube for different 
times in a case of "step" loading are given. The amplitude of load is sufficiently large to 
cause plastic deformations. It is seen from Figs. 7c and 7d that the diagrams of stresses 
a and T are linear in elastic range and the stresses propagate with elastic velocities c1 

and c2, respectively. However, when the loading enters the plastic range, the velocities 
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Fio. 9. a- Distribution of u along mild-steel tube for different times for "impulse" stress target loading. 
b -Distribution of the reduced relaxation function D = y<P(F)f{I; for different times for "impulse" 

stress target loading. 
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of stress propagation decrease and the shape of the stress distribution changes gradually 
with increasing of time. The diagrams of v and T in elastic region are not exactly linear, 
as are diagrams of u and G, because they propagate in already disturbed region. Perhaps 
also the cumulated error of computation plays a certain role. An interesting phenomenon 
may be seen in Fig. 7a for the curve T = 1, where the positive gradient of the velocity u 
is observable. Since the explanation of this phenomenon is not possible immediately, 
we shall pay some attention to the problem of distribution of the stress gradients in our 
next work. 

Let us analyze now the propagation of pulses caused by the load shown in Fig. 6. 
The numerical results for mild steel are presented in Figs. 8-10 and for aluminium in 
Figs. 11-12. Both zero and prestressed initial conditions are considered. Figures Sa and 
8b show the variation of the stresses a and T along the tube for the case of the velocities 
prescribed at the target end. In Figs. 9a and 9b the distribution of the velocity u and the 
reduced relaxation function D = yFfJ/ 12 is shown for stresses given at the target. The 
variations of shear stress e and D along the tube for different times in a case of initially 
prestressed tube are presented in Figs. 1 Oa and 1 Ob, respectively. Distributions of the 

a 60 z=1x10 3 K6/cm 2 

fa • 1x 103 KG/cm 2 

CJ"-3x10 3 K6/cm 2 

r*-1.5x103KG/crn2 

F1o. 10. a- Distribution of T along prestressed mild-steel tube for different times for "impulse" in· 
cremental stress target loading. b- Distribution of D along prestressed mild-steel tube for different times 

for "impulse" incremental stress target loading. 
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FIG. 11. a- Distribution of u along aluminium tube for different times for "impulse" stress target load­
ing. b - Distribution of v along aluminium tube for different times for "impulse" stress target loading. 
c -Distribution of u along aluminium tube for different times for "impulse" stress target loading. 

d- Distribution of r along aluminium tube for different times for "impulse" stress target loading. 
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FIG. 12. a- Distribution of u along prestressed aluminium tube for different times for "impulse" in­
cremental stress target loading. b- Distribution of v along prestressed aluminium tube for different 
times for "impulse" incremental stress target loading. c- Distribution of a along prestressed aluminium 
tube for different times for "impulse" incremental stress target loading. d -Distribution of T along 

prestressed aluminium tube for different times for "impulse" incremental stress target loading. 
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sought-for quantities u, v, u and 1: along the tube are demonstrated in Figs. lla-lld for 
zero initial conditions and in Figs. 12a-12d for prestressed conditions. 

From the figures presented some interesting wave phenomena in a combined state of 
stress in an elastic viscoplastic tube are observed. In general our results confirm the facts 
observed earlier experimentally and theoretically, but some of them, which will bementiion­
ed below, seem to be new. 

For a tube initially prestressed, the unloading wave propagates with the velocity ranging 
from the velocity of longitudinal wave to the velocity of shear wave (Fig. 1 0). 

The boundary B dividing the elastic and viscoplastic region is propagating with the 
velocity of longitudinal wave c 1 (Fig. 8). 

The value of relaxation function D decreases exponentia11y with time T (Fig. 9) and 
the attenuation is the quicker the larger is the value of initial loading, initial prestress or 
incremental loading. It is observed also that the attenuation of wave in aluminium tube 
is smaller than in mild steel tube. 

In some situations two viscoplastic regions appear at the same time (Fig. 1 0). 
In the case of velocity target conditions the negative values of stresses remain in the 

vicinity of the target after unloading (Fig. 8) and small values of velocity in the case of 
stress target conditions (Fig. 10). 

During reflection of the longitudinal wave from the fixed end of a tube the region of 
large stresses suddenly appears and then rapidly decreases (Fig. 9b ). 

There are different shapes of a plane segment b of the pulse for aluminium and for 
mild steel (Fig. Sa and Fig. 11c). In the case of aluminium it is ascending, whereas for mild 
steel it is descending. 

It was not possible to compare our results with experimental ones because up to now 
there are no confident and repetitive experimental data on combined stress wave propa­
gation in a thin-walled tube made of mild steel. 
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