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Combined dynamic loading on elastic/viscoplastic tube

J. BEJDA (WARSZAWA) and H. FUKUOKA (TOYONAKA)

The problem of stress wave propagation in an elastic viscoplastic tube under combined axial
and torsional impact is examined. To describe dynamic behaviour of material, PERZyNA's con-
stitutive equations were applied. The system of governing equations was solved numerically by
the method of finite differences along characteristics. The main features of the solution for mild
steel and aluminum are presented in the form of several diagrams. The analysis of propagation
velocities of longitudinal and shear loading and unloading waves and the attenuation of their
amplitudes are disscussed in detail.

Rozwazany jest problem propagaciji fal naprezenia w cienkosdciennej sprezysto lepkoplastycznej
rurze pod wplywem jednocze$nie przylozonego, naglego, osiowego i skretnego obciazenia.
Do opisu dynamicznego zachowania sie¢ materialu przyjgto rébwnania konstytutywne PERZYNY.
Podstawowy uklad réwnan rozwigzano numerycznie metoda réznic skonczonych wzdluz
charakterystyk. Gldéwne wyniki rozwiazania przedstawione zostaly w postaci licznych wy-
kreséw. Przeprowadzono szczegblowa dyskusj¢ predkosci propagacji podiuznych i poprzecz-
nych fal obcigzenia i odcigZzenia oraz ich tlumienia.

Hccnexyerca safaya O PacnpoCTPaHEHHH BOJIH HANDMKCHH B YNPYro-BASKOILIACTHYECKON
TpyGe pH OHOBPEMEHHLIX OCCBOM H KPYTHTe/ILHOM yaapax. J[ns onMcaHus OUHAMHYECKOro
COCTOAHHA MaTepHAa NPHHHMAETCA onpefensmouine ypaBHeHHA ITe)kuHbl. OcHOBHYIO CH-
CTemy YPaBHEHMIl DEIEHO YHMC/IEHHBIM MeTOAOM KOHEUHEIX pasHocTel BIOJE XAPAKTEPHUCTHK.
I'naBHbie pesyNbTaThl peLIEHHA Mpe/CTaB/IeHBl B BHAE HecKoNeKux rpadmxoB. [TompoGao
0o6CYHAAKTCA CKOPOCTH PACTIPOCTPaHeHHA MPOJOJIEHEIX M MONEPEYHLIX BOJH HATPY3KH B pas-
IPY3KH, 2 TAK)KE HX 3aTyXaHue.

1. Introduction

FURTHER theoretical investigations of plastic wave propagation phenomenon are necessary
to complement the experimental examinations. Nowadays there are two ways to study
experimentally the mechanical behaviour of material under dynamic loading:

1) to obtain the constitutive equations of material using short specimen which is
assumed to be uniformly deformed;

2) to observe the wave propagation phenomenon in a long specimen.

The second way of experiments, in particular concerned with the propagation of
incremental pulses in thin-walled tubes plastically loaded by combined tension-torsion
loads, is of special interest. Such a test for stress state beyond the elastic limit of the
material is expected to provide useful information regarding the dynamic plastic behaviour
of solids under combined stress states and this information is of fundamental importance
in the development of a three-dimensional theory of plastic wave propagation. Besides,
this is the only possible way to perform the experiments in combined state of stress com-
paratively easily.

A theory for wave propagation phenomena in a thin-walled tube based on rate-in-
dependent plasticity was first examined by CLIFTON [1] and FUKUOKA [2]. The stress and
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strain paths for combined longitudinal and torsional impact loading of a semi-infinite
tube initially prestressed to the plastic range by combined static longitudinal and torsional
loads were obtained in [1). It was found that there are three types of stress path accord-
ing to the value of combined step loading and that in particular there is a region which
cannot be reached without unloading in spite of the loading side.

Experiments verifying this theory were performed by LipKiN and CLIFTON [3] and by
FuxkuokA and Masur [4).

In the apparatus designed by FUKUOKA and Masur [4], the tube is prestressed quasi-
statically to the arbitrary values of tensile and shear stresses and then the incremental
impact loadings are superposed. Measurements are made of strain-time profiles at some
stations along the tube. A comparison of theoretical and experimental results, made in
[5], leads to the following main conclusions. In the case of longitudinal impact, the strain
response at the gages qualitatively corresponds to the arrival of a fast wave for which
torsional strain decreases, while longitudinal strain increases followed by a slow simple
wave for which both torsional and longitudinal strains increase. But in the case of torsion-
al impact, the strain response does not correspond to the theoretical results. In all cases
the velocity of propagation of wave front was found to be that of the elastic one.

Theory of combined plastic waves in a thin-walled tube was further widely developed
in a series of papers by TING [6, 7, 8). In [7] he has given a unified treatment of all known
in literature combined plastic stress wave problems including both kinematic and isotropic
work-hardening of material considered by GOEL and MALVERN [9], and also other prob-
lems which have not yet been studied in detail.

Almost none experiments were done for the propagation of combined plastic waves
in strain-rate sensitive materials. To compare the experimental and theoretical results,
first a corresponding theory for strain rate-dependent material is needed to predict the
main features of the wave propagation phenomenon. Thus the aim of this paper is the
thorough numerical examination of the stress wave propagation process in an elastic
viscoplastic tube under combined impact of longitudinal and torsional load. The combined
waves propagating in a strain rate-dependent materials were first studied theoretically for
a particular case of plane shear-pressure elastic viscoplastic waves by S. Kariski and
others [10-12). The compilation of a large number of results concerning the problem of
combined waves propagation in a rate-dependent plastic materials is given in [13). How-
ever, until recent time, except short note [14], there appears to be no detailed analysis of
incremental wave propagation phenomenon in a prestressed elastic-viscoplastic tube(*).
Such analysis is presented in this paper. Special emphasis is laid on the proper choice
of constitutive equations describing dynamic behaviour of rate-dependent plastic materials.
In our opinion, PERZYNA’s constitutive equations [15] are the only well elaborated and
widely discussed constitutive equations, and therefore were applied in our investigation.
The material constants and the shape of the relaxation function for mild steel and alu-
minium were chosen on the basis of one-dimensional experimental data. The system of

(*) During preparation of this paper has appeared an interesting work by CLirron and Hsu [16] which
contains an analysis of the propagation of plastic waves in a rate-sensitive plastic materials. Both ex-
perimental and theoretical results of combined stress waves in a thin-walled tube are presented. As a rate-
dependent plastic material the authors consider commercially pure alpha-titanium (Ti-50A).



COMBINED DYNAMIC LOADING ON ELASTIC VISCOPLASTIC TUBE 387

governing equations was solved numerically by the method of finite differences along
characteristics. In the analysis of the convergence and stability of the difference solution,
the emphasis is made on the energy method. The main features of the solution are given
in the form of several diagrams. The analysis of velocities of longitudinal and shear loading
and unloading waves and the attenuation of their amplitudes are discussed in detail.
Attention is also paid to the distribution of the stress gradients with the propagation of
front of the wave.

2. Governing equations

Consider a long slender thin-walled cylindrical tube of the mean radius R as shown
in Fig. 1. The theory considered is one-dimensional, the material is homogeneous and
isotropic, elastic and plastic strain rates are separable, strains are assumed to be small

U

F1G. 1. Stresses and velocities in the tube.

and radial inertia effects are neglected. Under these assumptions and neglecting the change
in the mean radius R the non-zero stress components are

2.1) Oex(X,0) =0, Tw(x,1) = 10:(x,8) =1
and the velocity components in axial and circumferential direction are respectively
(2.2) u(x,t) =u, v(x,t)=o0.
Conservation of linear and angular momentum gives
(2.3) QU = Oy, 0V = Ty,

where p is the mass density and suffixes ¢ and x denote partial differentiation with respect
to time and spatial coordinate, respectively.

The following compatibility equations hold
(24) Uy = &, U = Vs
where ¢ and y denote longitudinal strain and shearing strain, correspondingly.

To complete the system of governing equations it remains to specify the constitutive
equations. The choice of the proper constitutive equations for the dynamic response of
rate-dependent plastic material is essential in our analysis. From experimental data it is
well known that all real materials are strain rate sensitive. The viscous effects are observed
in elastic as well as in plastic range of deformation. A theory describing these effects is
complex; difficulties arise specially in proper formulation of the yield criterion in visco-
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elastic range of strain. However, following [15] it is sometimes very useful to make certain
idealization of the constitutive equations. Assuming that up to the yield point material
behaves elastically and viscous effects prevail in a plastic range, we are able to determine
in a unique way the yield criterion. In our case it does not differ from the yield criterion
well known in classical theory of plasticity. It is thus assumed that the yield function
is of the form

@5 Floy, ) = 700 _y,

where f(0y;, &f}) depends on the stress state o;; and plastic strain tensor &f;. As we pre-
viously assumed, the strain-rate tensor decomposes into elastic and nonelastic parts,
i.e. &; = &f;+ef;, where &f) represents the coupling of viscous and plastic effects, x is
a work-hardening parameter defined as

(2.6) % = 2(W?) = x| 6[ ondefy),

where WP denotes the energy of plastic deformation. There is no unique way of
defining the parameter ». The more complicated forms of the work-hardening parameter
describing isotropic as well as anisotropic work-hardening of the material, as for example
discussed in [17], may be assumed. The yield surface F = 0 in nine-dimensional stress-space
is assumed to be regular and convex. Under the above assumptions the constitutive
equations for strain-rate sensitive plastic materials, proposed first by PERZYNA [18], may
be written in a form relating the stress-rate tensor ¢&;,, strain-rate tensor &; and stress
tensor LITH

- %.&,ﬁzkyo@(n%, for F30,
(2.7) éU = %3’;), for F< 0,

. 1

Exx = 'ﬁﬂ’n-

Here é;; and §;; are the components of the strain-rate and stress-rate deviators, respectively,
Yo, k, K and u denote viscosity coefficient, yield limit in simple shear, bulk modulus and
shear modulus, respectively. The first equation of (2.7) holds in viscoplastic region, the
second in elastic region and the compressibility equation in both regions. The above
equations say that inelastic strainrate is a function of the state of stress whichis a difference
between actual state and the state corresponding to the static yield criterion. The function of
overstresses determines the inelastic strain rate according to the Maxwell viscosity law.

For metals further simplification of the constitutive equations may be made. Reason-
able results are obtained even under assumption of the function F in the form

2.8) F=Y2-1,
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where J, is the second invariant of the stress deviator. In this case the constitutive equa-
tions (2.7) take the following simpler form(?):

s - Ll oW V7, B Sy
2.9) by =3 3!1"‘7 < (D[ Z 1] > '/72 for Fz=0,
(210) f:’g = -}z—sfu, for F<O0,
@.11) _—
. = 3E Tij.

Although further analysis is practically independent of the complexity of the relaxa-
tion function @, in numerical computation, however, the simple form of constitutive
equations is preferable and therefore we shall use the Egs. (2.9)-(2.11). These equations
have been verified experimentally by LiNDHOLM [19, 20] and a very good agreement of
experimental data with the results predicted by PERZYNA’s theory was confirmed for
mild steel as well as for aluminium.

It should also be stressed that the phenomenological equations (2.9)-(2.11) have
recently obtained proper physical justification [21]. In particular, the mechanisms res-
ponsible for plastic effects and rate sensitivity are discussed in detail.

In our problem

ot 0 %0' T 0
1
(2.12) ogy=|r 0 0), sy=| < -3 0o |,
1
_D 0 0_ —0 —Tcr_
"/La‘z-l-':2 .
Pt 2 oa R L
k s kk 3K
and the constitutive equations (2.9)-(2.11) are now:
.o 1. 2y
(2.13) €11 _u’"f'H'T VT o®(F),
1 1

(2.14) by = 0 = **L;; +®(F).

2u

The governing equations (2.3) and (2.4), (2.13) and (2.14) may be written in an abbrevia-
ted matrix form

(2.15) Aw,+Bw,+C =0,

(?) Derived in a different way the constitutive equations in [16] do not differ significantly from the
equations considered here.

2 Arch. Mech. Stos. nr 3/75
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where
BN e 0 0 07 0 0 -1 07
0 0 0 0 0 0-1
1
(2.16) w=|o|, A=[0 0 & 0f B=|-1 0 0 0
1
T 00 0 — 0-1 0 0
| B £ | |
_ 0 _
0
2yo
= — @ )
C A (F)
2T o(F)
A )

In elastic range of deformations we put ¥ = 0, thus vector C = 0. For comparison, we
shall also need the corresponding equations for rate-independent plasticity. In this case
the basic system of equations takes the form [1]

2.17) A*w,+B*w, = 0

in which B* =B, C =0 and

o 0 0 0
0 o 0 0
1 a?
(2.18) A*=|0 0 —+pgz  Hoe

00 Hot i+Hi?"r2

and the yield condition is assumed in the form

2
(2.19) fo,7) = (F") 12 = k2,

where 6 is a constant and for 6 = /3 the Eq. (2.20) corresponds to the Huber-Mises
yield criterion (distorsion energy) and for 6 = 2 to the Tresca condition (maximum shear
stress), k denotes as previously the yield limit in pure shear,

dwe|dk

(2.20) H= —T

W? is plastic work and is determined here as

@21) WP = oe? +1y>.
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3. Characteristic properties of the governing equations and finite differences
3.1. Characteristics and equations along them

Let us examine first the system of the Egs. (2.15). The matrices A and B are symmetric
and besides, the matrix A is positive definite. Thus the Eqs. (2.15) constitute a standard
system of the first-order partial differential equations of hyperbolic type studied extensively
elsewhere [22]. To derive the differential equations along characteristics, the eigenvalues
and eigenvectors associated with the system of the Eqgs. (2.15) should be evaluated. The
eigenvalues or the characteristic wave velocities determined as the roots of the determinant

3.D |lcA-B|| =0

are
Y S - Y
Cy = — Cy = — Cy = — P Ca = — —
1 ]/ P 2 0 3 0 ’ 4 0 ’

where the indices 1 and 2 stand for longitudinal and shear waves, respectively. The left
eigenvectors associated with the system of the Egs. (2.15) serve to determining of the
characteristic conditions and are evaluated from the condition

(3.2 I"(cA—B) = 0,

where the index T is used to indicate the transpose vector. There are the following four
eigenvectors:

1 0 1 0
0 1 0 1
j - S 3 - 4 =
(3.3) ! oo, | ! o I’ I e |’ I 0
0 —oc; 0 oc;

Multiplying ™™ by the Eq. (2.15), we obtain the equation
3.4) FMAw, + FMBw, +1KTC = 0
which, after using the condition

(3.5) I'(cAiy—By) =0
holding along characteristics dx/dt = ¢, leads to

(3.6) FMA(w, +c,w,) = —IHC,

Since on the characteristics we have

dw

—— = CWx+W,,
we obtain finally

3.7 l“T’A——?w = —KNC,

2
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Thus, for example, for the first eigenvector we obtain explicitly

e 0 0 07 BN B 0 =
0o 0 0 v 0
00 ~ old 2 @
(33) (ls 09 —@cy, 0) .E'- E o |l= —(1 " 0', —pQcC, 0) 3 =Y = V__ (F) ¥
1
00 0 — T 2y &(F)
; 0 B i I/Jz J
or
du  pcy do 2
3.9 0ot I ot ——W(F),
(39) &~E G =3 ,/ A

Introducing the eigenvectors (3.3) into the Eq. (3.7), we obtain the required ordinary
differential equations along characteristics

d |\ 2 o
E‘(ﬂ—?ﬂ') = —3—'01?7-7—2. @(F‘) along l/—

i(ﬂ—%t)=20;y—j— &(F) along -—= ——,

dt 7. dt 0
(10 d 2 " d 'E
L W RS . Y G, L
% (u+—ga) ==—5ay 7 &(F) along % o
d c T dx u
= ‘IJ+?T) —2c,y V7 &(F) along o T =

3.2. Finite differences

The method of finite differences along characteristics is applied to the solution of the
system of the Egs. (2.15). To obtain sufficiently accurate approximate solution, the second-
order difference schemes were introduced. Our method is of the second-order accuracy
in the sense that if the solution is known at some time ¢ the error introduced in the next
step of time 7+A4t would be 0(4¢3). Before deriving the difference equations the phase
plane (x, t) was covered by the rectangular mesh net with mesh sizes Ax, At¢, the charac-
teristic element of which is shown in Fig. 2. The ratio Ax/4t is chosen in such a way that

a b

t=tept Plt) lo [ttt

At

t=t : _ I
e & q G Q4 Qs -1 1 i roi+T
Ax Ax

FiG. 2. Elements of the characteristic net for interior points of the phase plane x, 1.
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the von Neuman stability condition is always satisfied. Taking the ratio r = Ax/At equal
to ¢; and denoting for abbreviation

b
=L o),
V2
the following explicit formulae for the unknowns u, v, o, 7 in the inner points P{ (Fig. 2)
are obtained:

1 ¢ Ax
uf = 7 (i g 234 4)— “2—;?‘ (01-1—0ip 1)+ T{(D“)i—l - (Do‘);“},

E 1 EA
07 = — — (Upoy —t1y )+ 5 (04- 17 Oi41)— ?{ {2 (Do) + (Do), +(D0o)is 1},
(3.12) ; ! . P !
o = 5 (vi+9,)— ﬁ (ni—7)+ —Z-Ax{(Dr),—(Dr),},
o_ __H#
= 2c,

The functions with suffixes / and r are expressed in terms of functions with suffixes i, i—1
and i+1, by means of the following second-order formulae:

Sitfe = 2+ (fie 1 = 2fi+fi41) +0(413),
Si=fr = (fii=fis1) +0(413),

vi—9,)+ % (11— 7,)— %I: Ax{2(D7)} + (D7) +(D7),}.

(3.13)

where I' = ¢,/c, .

On the right-side of the Eqgs. (3.12) appear the terms with superscript 0 containing
unknown functions w{. Therefore the iteration method is applied here, using as the first
iteration the values of these functions with subscript i.

Before starting the numerical computations of our problem the initial and boundary
conditions as well as material constants should be determined properly. By analogy with

Rigid end plate  Hollow cylinder

Rigid wall

RN

x| % ‘ ng
"I Bullet
Lg

AN

o

N

Fixed
end

-

AN AN

x=0
FiGc. 3. The type of boundary-value problem for combined dynamic load.
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the experiments performed in which the rotating bullet was striking a rigid target closing
a hollow cylinder (specimen) which was fixed at the other end to the rigid wall, we named
the corresponding boundary conditions as the “target” and “fixed end” conditions (Fig. 3).
At the target end the velocities

(3.14) u(0,1) = u(r), ©(0,1)=9(1),

the stresses

(3.15) a(0,1) =a(1), (0,1 =7(¢)

or mixed stress-velocity conditions may be prescribed. At the fixed end we have:
(3.16) u(L,t) =v(L,t) =0.

The initial conditions are prescribed for undisturbed case (for the region t < x/c;)
(3.17) u(x,0) = o(x,0) = o(x,0) = 7(x,0) =0,

as well as for the prestressed conditions

(3.18) u(x,0) = v(x,0) =0, o(x,0)=0%, z(x,0) =13

To the evaluation of two remaining unknown functions at the target and the fixed end,
the difference equations of the same order of accuracy should be derived. When the
method of characteristics is applied it may easily be done by eliminating the difference
equations along certain characteristics, i.e. for target points equations along the character-
istics (i—1, i°) and (/, i°), whereas for the fixed end points equations along the character-
istics (i+1,i° and (r,i°, Fig. 2b. If the stress or velocity conditions are prescribed
for target points, we obtain the following two sets of equations:

o @ b 8
1 1
7 m 2 3 (-2 [-1 e L
Target Fixed end

Fic. 4. a — Element of the characteristic net for target points. b — Element of the characteristic net for
the fixed end points.

i) for stress conditions (Fig. 4a)
Cy

L 1- S = 2 (D) + (Do),

H? = U +
(3.19)

9? =Um+ % Tm— C_; fg_PAx {(Dt)?‘i'(pt)m} ’
ii) for velocity conditions

E E E
of = o U +0,— 0—1 uj— -y Ax{(Do)} + (Do), },

(3.20)
B = Loptra— L08— L Ax{(D1)2+(D2),},
C [ C2
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where
1- 2—
fom 82080 piro -y - £50
For fixed end points we hawe (Fig. 4b)
up =0 =0,
(21) N L S L
c, ¢ 3¢y
L A _ "
1 =-0f v+ 7. I"Ax{(Dt)L+(Dr),},
(2] Ca
where
1— 2— 1
o T T L

Since the mathematical investigation of the convergence and stability of approximate
difference solution is difficult to perform, we have limited our consideration to the energy
method. The energy balance equation may be obtained from the following relation

(3.22) [ w- (AW, +Bw.+C)dxdr =

which leads to
L L T L

(3.23) [él(uz +v’)]d>:+ [ ] + [ De? +2Dt’]dxa'r
J 2 f 2ET7 of of

T

= —f[uu+w],,odr+f|: (ut2+v*2)]dx+f[a*= %:_]‘L(

0
The integrals on the left-hand side of the Eq. (3.23) represent the kinetic, elastic and visco-
plastic energy respectively, while the right-hand side terms are by turn the input energy,
initial kinetic energy and initial elastic energy. The error of computation is determined by
the formula
Ecel' + Ekln
Elnn by ¢ Einmll )

where E,,, denotes the deformation energy as a sum of elastic and viscoplastic energy, i.e.

(3.24) Error = 1-

(3.25) Eqer = Eerastte + Eviscoptastic = | | (ux0+0,7)dxdt.

E,,, and E,,, are respectively the kinetic energy and input energy, whereas Ej,jq i
a sum of initial kinetic and elastic energies.
4. Numerical results

For evaluation of the unknown functions u, 9, o, T by means of the Egs. (3.12)-(3.21),
the computing programme was prepared in which different parameters as. for example,
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loading functions, material constants, work-hardening, relaxation function or mesh size
may easily be changed. Numerical computations were performed for mild steel and alu-
minium alloy. The following data were assumed in computations:
: . N
relaxation function: (F) = (Lki - )

material constants:

for mild steel for aluminium
E = 2.1x10%kg/cm?, E = 0.714x 10°kg/cm?,
pu =G =0.82x10%kg/cm?, G = 0,26 x 10%kg/cm?,
4.1 do = 4.2x 10%°kg/cm?, ao = 0.66 x 10°kg/cm?,
k = 1, = 2.44x 10%kg/cm?, 7o = 0.380x 10°kg/cm?,
1 1
= 750 —, » = 17.000 —,
sec sec
p= 1, pP= 4|

g = 7.8x10-kgem—3s?, p = 2.7x10-%kgem~3s2,

Data (4.1) were determined on the basis of one-dimensional tests performed for mild
steel by HARDING, WooD and CAMPBELL [24] and for aluminium by KARNES and RiPPER-
GER [25]. The way of their evaluation is described in detail in [23].

Two loading functions at the target end are assumed:

i) “step” function, i.e. function increasing from zero to a certain value and then kept
constant (Fig. 5). The increasing part of the curve should be very small and is introduced

Target conditions
<
5
=
-
$ 4 . 1
a as 1 15 7

Fi1G. 5. “Step™ load function.

here to avoid singularities in computation. T is dimensionless quantity and equals ¢, t/L’,
T = 1 corresponds to the time necessary for longitudinal wave to reach the fixed end of
a tube.

o A7)l
F{T)—-F,_‘,TI—Fora i - R - RS- -
- >
=f Prb
5T
5@_—7.2 forc
=0 ford 0 7; E "% T

FiG. 6. “Impulse” load function.
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FiG. 7. a. Distribution of # along mild-steel tube for different times for “step” velocity target loading.
b — Distribution of v along mild-steel tube for different times for “step” velocity target loading. ¢ — Distri-
bution of ¢ along mild-steel tube for different times for “step” velocity target loading. d — Distribution
of 7 along mild-steel tube for different times for “step” velocity target loading.
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\ % b "\.\
as 1
_j— e x
_zr

Fi1G. 8. a — Distribution of ¢ along mild-steel tube for different times for “impulse” velocity target load-
ing. b — Distribution of 7 along mild-steel tube for different times for “impulse” velocity target loading.
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ii) impulse function (Fig. 6) f(T) is described by the relation

~ T

Jo s for segment a,
T,

~ Fo for segment b,

TN T eoment ¢
OTS"TZ’ gm L]

0, for segment d.

Such type of impulse is almost always observable in specimen during impact experiments.

The results of computations are presented in the form of diagrams. In Figs. 7a-7d typical
curves of distribution of velocities  and v and the stresses o and 7 along a tube for different
times in a case of “step” loading are given. The amplitude of load is sufficiently large to
cause plastic deformations. It is seen from Figs. 7c and 7d that the diagrams of stresses
o and 7 are linear in elastic range and the stresses propagate with elastic velocities ¢,
and c,, respectively. However, when the loading enters the plastic range, the velocities

3
T8 158 a Gy=8x 0° K6/em?
2508 35 T =4x10° KG/em?
2 LY ‘\ 6"7“"0 SN |
—_ K LY o {,8 w
Q| N\ S~ 68 V] 98
SR A N Vgsi~ S|
i 3 4 N
5 X
]

L.
e

az0
G =8x10°KG/em?
Ty=ax 0 KG/em®
a5 c¥=1*=0
i
el 98
T 08
2 o0 o
NE i
8
S f’
aos
g /i
™.
~A
0 a8 g O

Fia. 9, a — Distribution of u along mild-steel tube for different times _for “impulse” stress target loading.
b — Distribution of the reduced relaxation function D = y®(F)/y/J; for different times for “impulse”
stress target loading.
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of stress propagation decrease and the shape of the stress distribution changes gradually
with increasing of time. The diagrams of v and 7 in elastic region are not exactly linear,
as are diagrams of u and o, because they propagate in already disturbed region. Perhaps
also the cumulated error of computation plays a certain role. An interesting phenomenon
may be seen in Fig. 7a for the curve T = 1, where the positive gradient of the velocity u
is observable. Since the explanation of this phenomenon is not possible immediately,
we shall pay some attention to the problem of distribution of the stress gradients in our
next work.

Let us analyze now the propagation of pulses caused by the load shown in Fig. 6.
The numerical results for mild steel are presented in Figs. 8-10 and for aluminium in
Figs. 11-12. Both zero and prestressed initial conditions are considered. Figures 8a and
8b show the variation of the stresses o and 7 along the tube for the case of the velocities
prescribed at the target end. In Figs. 9a and 9b the distribution of the velocity v and the
reduced relaxation function D = yF/}/J, is shown for stresses given at the target. The
variations of shear stress ¢ and D along the tube for different times in a case of initially
prestressed tube are presented in Figs. 10a and 10b, respectively. Distributions of the
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sought-for quantities ¥, v, ¢ and 7 along the tube are demonstrated in Figs. 11a-11d for
zero initial conditions and in Figs. 12a-12d for prestressed conditions.

From the figures presented some interesting wave phenomena in a combined state of
stress in an elastic viscoplastic tube are observed. In general our results confirm the facts
observed earlier experimentally and theoretically, but some of them, which will be mention-
ed below, seem to be new.

For a tube initially prestressed, the unloading wave propagates with the velocity ranging
from the velocity of longitudinal wave to the velocity of shear wave (Fig. 10).

The boundary B dividing the elastic and viscoplastic region is propagating with the
velocity of longitudinal wave ¢, (Fig. 8).

The value of relaxation function D decreases exponentially with time T (Fig. 9) and
the attenuation is the quicker the larger is the value of initial loading, initial prestress or
incremental loading. It is observed also that the attenuation of wave in aluminium tube
is smaller than in mild steel tube.

In some situations two viscoplastic regions appear at the same time (Fig. 10).

In the case of velocity target conditions the negative values of stresses remain in the
vicinity of the target after unloading (Fig. 8) and small values of velocity in the case of
stress target conditions (Fig. 10).

During reflection of the longitudinal wave from the fixed end of a tube the region of
large stresses suddenly appears and then rapidly decreases (Fig. 9b).

There are different shapes of a plane segment & of the pulse for aluminium and for
mild steel (Fig. 8a and Fig. 11c). In the case of aluminium it is ascending, whereas for mild
steel it is descending.

It was not possible to compare our results with experimental ones because up to now
there are no confident and repetitive experimental data on combined stress wave propa-
gation in a thin-walled tube made of mild steel.
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