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Thermodynamic properties of singular surfaces in continuous media 

K. WILMANSK.I (WARSZAWA) 

THE PAPER contains main thermodynamic relations for a singular surface in continuum. After 
the definition of such a surface we derive a generalized KoTCHTNE's condition, where surface 
sources are taken into account. It leads to startling consequences, which are presented in the 
following two sections. In particular, CLAUSIUS-DUHEM inequality for a singular surface seems 
to be of greatest importance in the theories of defects and propagation of waves. Finally, 
we show some examples of the application of the results obtained. 

W pracy om6wiono podstawowe zwiltzki termodynamiczne dla powierzchni osobliwej w o§rodku 
ciltglym. Po d~finicji takiej powierzchni wyprowadzono uog6lniony warunek KOTCHINE'a, 
w kt6rym uwzgl~dniono zr6dla powierzchniowe. Prowadzi to do ciekawych rezultat6w, kt6re 
przedstawiono w dwu nast~pnych punktach. W szczeg6lnosci nier6wnosc CLAusrusA-DUHEMA 
dla powierzchni osobliwej wydaje si~ miee duie znaczenie w teorii defekt6w i propagacji faJ. 
Wreszcie podano kilka przyklad6w zastosowan otrzymanych wynik6w. 

Pa6oTa CO~ep>KHT OCHOBHbie TepMO.Z:UWaMH'IeCI<He COOTHOWeHWI ,ttrul OCOOoH DOBepXHOCTH 
B CDJIOIIIHOH cpe~e. llocne onpe~eJieHHJI TaKOH DOBepXHOCTH BbiBO,I:UIM o6o6~em10e yCJIOBHe 
KotJHHa, B KOTOpoM yqreHbi noaepXHOCTHbie HCTO'liHHI<H. 3ro npHBO.lUfT K y~BHTeJibHbiM 
peayJILTaTaM, KOTOpLie npe~craaneHbi B ~ayx cne~yrol.IUIX nymcrax. B qacmoCTH HepaaeHCTBO 
Knayauyca-,llroreMa .ttru1 oco6oH: noaepXHoCTH KameTc.R HMeTL 6oJILwoe 3HatJeHHe B reopHH 
~e<PeKTOB H pacnpocrpaueHHH BOJIH. HaKoHe~ npe~CTaBJI.ReM HeCKOJILKO npHMepoB npHMe
HeHHH: noJiytieHHbiX peayJILTaTOB. 

1. Introduction 

Tms PAPER is an extended form of my earlier work [1]. Following the discussion after 
the lecture, I have weakened some assumptions, concerning particularly the properties 
of surface sources; at the same time, the physical interpretation is discussed in a wider 
range. 

In the second section of the paper we deliver the balance equation for a continuous 
medium and we repeat a definition of a continuous medium with a singular surface (for 
details, see [2, 3]). 

In the third section we derive the modified KoTCIDNE's condition for a singular surface. 
The fourth section contains the discussion of balance equations, resulting from 

KoTCIDNE's condition, for a singular surface. 
In the next section, we derive the main result of the paper- CLAUSIUS-DUHEM in

equality for a singular surface. 
The sixth section is devoted to the particular case of the material at rest before being 

reached by a singular surface and is an illustration of the problems under consideration. 
The seventh section is a resume of other conditions for a singular surface - HAI>A

MARD's lemma and MAXWELL's theorem. 
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518 K. WILMANSKI 

Finally, in the eighth section, we furnish some examples of applications. 
It can easily be seen from the above scope of the paper that we do not deliver many 

new results. The procedure is standard and the main theorems are known. However, 
a new thermodynamic condition, presented in the fifth section makes the repetition worth 
while. In addition, some minor changes in classical theorems extend the range of their 
applications; for instance, they can be applied in the presented form to the theory of 
mixtures .. Some other applications are also mentioned. 

2. Preliminaries 

In this section, we show only the most important notions and properties of continuous 
media. Details, concerning algebraic properties may be found in many papers (see revue 
in [21}, while the theory of balance equation has been presented in [3]. It is sufficient for 
the purposes of this paper to assume that we investigate a chosen configuration of a single 
continuum. It means, we are dealing with a certain collection of subsets of Euclidean 
space, which form Boolean algebra. We use in the paper the same notation for a member 
of this algebra and its volume measure. 

Now, let us shortly repeat the main notions, concerning a balance equation. We say, 
that a set function C/>, defined on the above algebra, satisfies a local balance equation, if 

(2.1) d>(v) = M(v, ve)+M*(v, ve) almost everywhere t, 

where dot means the time derivative, v is any member of the algebra mentioned above. 
M is said to be a total flux from ve to v, while M* is said to be a total source in v. We 
make the usual continuity assumptions 

V C/>(v) ~ rxv, 
«eR+ 

(2.2) 

In this way we obtain the following representation of the balance equation 

(2.3) :t J q;dv = f (p+p,*)ds+ J (1+1*)dv. 
V Ov V 

The only term, in which this equation differs from others discussed in literature, is the 
second one, describing the influence of surface sources (p*). We deal with its interpre
tation a little later. This equation is assumed to hold for any subset v (from the above 
mentioned algebra). If there is no singular surface, we can make a transition from (2.3) 
to the local form [see: the formula (7.6)]. However, our main aim is to describe a conti
nuum with such a surface. Therefore, as the next step, we define a singular surface. 

Let a surface a, oriented by a unit vector n, be a part of the region av- n v+. Both 
v- and v+ are members of the above algebra. The field q;, described by the balance equation 
(2.3), is smooth in v- and v+, i.e. it is continuously differentiable in v- and v+, it ap-
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THERMODYNAMIC PROPERTIES OF SINGULAR SURFACES IN CONTINUOUS MEDIA 519 

proaches limits cp- and cp+ for every point x E (], both limits are differentiable on any 
path on (], and grad cp approaches limits (gradcp)-, (gradcp)+ on (]. For the fields A., A.*, 
continuous in v-uv+ and p,, p,*, i approaching limits,_,-, p,+, p,*-, p,*+, :X-, x+ on(] we 
say, that the surface cJ is singular with respect to the balance equation (2.3), if at least one 
of the listed quantities has a jump on (], i.e. the limits of this quantity on (]are not equal 
(e.g. see [1]). 

We consider a continuum, in which a singular surface (] is moving with a velocity 
u(x), x e (], and the balance equation (2.3) is satisfied for any region v. In the next section, 
we check the consequences of the above assumption in the case of a singular surface, 
passing through the region v (see Fig. 1). 

FIG. 1. 

ov-=ov-u 6, 

ov*"=civ*"u 6, 
ov=ov+u ov-

3. Kotchine's condition 

In this section we repeat once again the derivation of the so-called generalized KaT
CHINE's condition [1]. The procedure is standard and the only difference lies in the partic~ 
ipation of surface sources in the balance equation (2.3). The left-hand side of the equation 
can be written in th~ form 

(3.1) !!_ r cpdv = !!__ J cpdv + !!__ f cpdv 
dt • dt dt 

v v- v+ 

where Vn is the normal component of a velocity of an arbitrary point on either av- or 
av+. If the point is lying on ov, then V = X, and Vn = Xn, while for Cf we have V = u. Sep
arating the common part of av- and v+, we obtain from (3.1) 

! f cpdv = f ~~ dv+ J ~~ dv+ J (/JXnds+ J cpX0 ds 
v r ~ ~ ~ 

+ J cp-u0 ds- J cp+un ds, 
a a 

where we have taken into account the change of orientation of the surface v+ n Cf. 

10* 
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520 K. WILMANSKI 

Similar manipulations on the right-hand side of (2.3) lead to the following result: 

(3.2) J ~~ dv + J ~~ dv + J (/JXnds + J (/JXnds 
'r v+ av- av+ 

+ J cp-unds- J q;+unds = J (p+p,*)ds+ J (p+p,*}ds 
a a &- &+ 

+ J (A.+A.*}dv+ J (A.+A.*)dv. 
v- tJ+ 

Under our assumptions, this relation must hold for any v. It means, we are allowed 
to take a limit V-+ 0 in (3.2). Under this condition, we shrink down av- and av+ to d. 

Hence v- -+ 0, v+ -+ 0, preserving (]. Taking into account the definition of the singular 
surface, we obtain 

-J cp-x;ds+ J q;+x:ds+ j'" cp-unds- J q;+unds 
a a a a 

= J (p,- +p,*-)ds + J (p,+ +p,*+)ds, 
a a 

where, again, p,- is the limit of p, from v-, p,+ -from v+, and similarly for p,*. 
We use the standard notation of CHRISTOFFEL: 

(3.3) 

Then 

(3.4) 

(J~(Xn-un)]: = q;+(x:-un}-cp-(x;;-un), 

(f.t+p,*): = p,++p,*+-p,--p,*-. 

a 

Assuming the continuity of the integrand on u, we can take a limit from the above 
relation 

where s((]) is the area of surface (]. Hence, the relation (3.4) is equivalent to the following 
local formula 

(3.5) (q;(xn-un)l- (p,) = (p,*) almost everywhere s on u, 

which is called a generalized KoTCHINE' s condition. 

4. Surface balance equations 

For completeness we repeat the particular relations for a continuum, following 
from (3.5); 
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i) Balance of mass; in this case 

(4.1) q; = e, ft* = e* and ft = 0. 

Then 

(4.2) 

If the velocity field X
0

, density field e, and mass sources field e* are known, the normal 
speed u

0 
of the singular surface a can be found from this relation. Namely 

(4.3) 
u _ le.Xnl- le*J 
u- lel for [e) ::/= 0, a.e. s. 

Hence the jump of the velocity field [x
0

] is admissible if either [e) ::/= 0 (a classical 
condition for the propagation of shock waves), or [e*l ::/= 0, or both. The latter may be 
of some importance in the case of a shock wave in mixture. 

ii) Balance of momentum; here we have 

(4.4) qJ =: (!X, ft =: t, ft* =: t*, 

where t is a traction, and t* is a vector of surface sources of momentum. As a matter 
of fact, the existence of vectors t and t* cannot be proved. We are able to say only that 
ft + ft* is a vector, which is leading to the vector representation of either ft or ft*, when 
the remaining field is vanishing. Therefore (4.4) must be treated rather as an assumption 
for an arbitrary continuum. In such a case, we obtain from (3.5) the following result 

(4.5) 

It is interesting to check the consequences of (4.5) for a normal part of x. In this case, 
we have 

(4.6) 

where 

(4.7) 

Making use of (4.3), we get 

(4.8) [t 1 = (t*]- (ex2 ] +[ex/] - le*]-, for (n) ::1= o, 
D D D le] lel t:' 

a.e. s. 

This relation means, that the non-zero jump of e is creating the jump of tractions, 
if either the velocity field is not continuous ( [x

0
] ::/= 0), or the mass surface sources are not 

continuous (le*] ::/= 0). Even in the case of continuous fields X
0 

and e and hence e*, the 
traction 10 can suffer a jump with respect to the discontinuity of r:. The last two cases are 
important in the theory of mixtures. 

iii) Balance of moment of momentum; in the case of simple interactions (without 
couple stresses) we have 

(4.9) q; = ePI\ x, "" =pAt, P-* =pAt*, 

where p is a position vector of the arbitrary point with respect to some chosen origin. 
Using (3.5), we obtain 

(4.10) lepAx(x0 -uJ]- (pAt]= (pAt*], a.e. s. 
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If [p] = 0, we have 

(4.11) P" (ei(x0 -u0)]-P" (t] = P" (t*], a.e. s, 

which is an identity with respect to (4.5). For (p] ::/= 0, which may occur in the case of 
defects of materials, the full relation (4.10) must be used, independently of (4.5). 

iv) Balance of energy; now we have 

(4.12) 'I'= e(•+}X' ). p =X· t+q, p* =X· t*+q*, 

where e is the density of internal energy, q- heat flux, q* -intensity of energy surface 
sources. Making use of the generalized KoTCHINE's condition (3.5), we obtain 

(4.13) [ e ( e+ ~X' )<x. -u.) ]- (:i · t+q( = (i: · t• +q*(, a.e. s. 

We shall return to this relation a little later, discussing the implications of the second 
law of thermodynamics. 

5. Clausius-Duhem inequality for a singular surface 

The last balance equation, which should be considered for a continuum, is the entropy 
equation. In this case 

(5.1) (/) = f!'YJ, f' = h, p.* = h*, 

where 'YJ is the entropy density, h- entropy flux, h*- surface sources of entropy. Then 

(5.2) le'YJ(X0 - uJ]- (h) = (h*), a.e. s. 

We restrict this equation by the second law of thermodynamics. In general, it can be 
formulated, as in the following statement (e.g. see [2, 3]): "in any themrodynamic process 
the total entropy production in an arbitrary region v is non-negative". 

The analytic form of this statement for a continuum 

(5.3) J f!'YJ*dv+ f h*ds ~ 0, a.e. t, 
v av 

is said to be a CLAUSIUS-DUHEM inequality. In this formula 'YJ* is the density of volume 
sources of entropy. 

Re mark. Almost all researchers in thermodynamics assume that the total entropy 
production is described by the first term of the inequality (5.3)(1). Besides the formal 
arguments for the second term, which we discuss somewhere else [3], many physical exam
ples can be furnished to prove the necessity of its existence. Let us show the simplest. Let 
the thermally isolated container of surcharged steam be subjected to the impact, creating 
the shock wave. Due to the propagation of this wave, we can observe the condensation 
of steam beyond the front of the wave. In any region beyond the wave we may assume 
the thermodynamic process to be reversible. Simultaneously, the surcharged steam before 

(1) Certain surface terms have been discussed in [4] for a different purpose. 
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being reached by the wave was in a thermally stable state, and, hence, the process there 
was reversible as well. At the same time, the thermodynamic process in the whole container 
is irreversible, and it means, that there is an entropy production due to the sources on the 

front of the shock wave. Many more complicated examples may be found in materials 
with defects, propagation of shock waves, etc. 

For our purposes, the inequality (5.3) must be rewritten for the surface u. Repeating 

the considerations, delivered at the beginning of the third section, we have 

(5.4) lim { J (J'fJ*dv+ J e'YJ*dv+ J h*ds+ J h*ds} ~ 0. 
V-+0 v- v+ o~- a';r 

Now, bearing in mind the definition of the singular surface, we obtain 

- J h*-ds+ J h*+ds ~ 0. 
C1 C1 

Assuming again the continuity of integrands on u, we have 

lim -(
1 

) J [h*)ds ~ 0, 
s(a)-+0 S (/ v 

or, equivalently, 

(5.5) [h*) ~ 0 almost everywhere s on u. 

Joining the relations (5.2) and (5.5), we finally have 

(5.6) le'YJ(X8 -u..))-[h) ~ 0, a.e.s on u; 

this formula is said to be the CLAUSIUS-DUHEM inequality for a singular surface [1]. 
The inequality (5.6) is the main result of this work. It seems to be of great importance 

in many applications, such as the theory of defects, the theory of propagation of waves, etc. 

Some examples we discuss further in this paper. 

6. Material at rest 

To summarize the results presented we consider the material which has been at rest 

before being reached by the surface u, i.e. i = 0 at any point of v+. At the same time we 
assume the absence of all surfc.:.ce sources but the entropy sources h*. 

The generalized KoTCHINE's condition now takes the following form: 

(6.1) 

The balance of mass 

(6.2) 

for the entropy, 

for all remaining cases, 

almost everywhere s on (1. 

e-x;+ leluo = 0, a.e. s. 

Let us introduce the notation 

(6.3) 
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Then 

(6.4) u,, = - "x; a.e. s. 
The balance of momentum 

e-x-(.x;-uJ- (tJ = o, 
or, making use of ( 6.4) 

(6.5) (t) = e+".X; x-' a.e. s. 

This formula may be used in experimental verification of (t). 
The balance of moment of momentum in this case 

(6.6) 
or, taking into account (6.5) 

(6.7) p-" (t) +(pAt) = 0, a.e. s, 

which can be used to find (p). 
Finally, the balance of energy 

. 1 . 2(. ) . (6.8) leeJun+e-e-x;+ 2 e-x- x;-un-x-·t-+(q)=O, a.e.s. 

K. WILMANSKI 

For a given jump of energy, as for instance, in the theory of defects, the above relation 
can be used to find the discontinuity of heat flux [q). 

The CLAUSIUS-DUHEM inequality has, on the other hand, the following form: 

(6.9) (>-1]-X; + ((>'Y})U0 +(h)~ 0, a.e. S. 

In an even more particular case of a continuous entropy flux ([h] = 0), we have 

e-"1-.x; + le'YJJu ~ o, 
or, taking into account (6.4) and (6.3) 

(6.10) ".X; ['Y}) ~ 0, a.e. s. 

P. J. CHEN and M. E. GURTIN [5] have made an assumption 

(6.11) 

It is quite easy to see that such an inequality requires at the same time 

(6.12) 

which can be written as 

(6.13) x;lel ~ o. 

There is no reason to assume this inequality to hold in general. 

7. Other conditions 

In this section we present for completeness the classical theorems of MAXWELL and 
HADAMARD. 
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Let x = x(~) be any path on the singular surface a and cp be a smooth field in v. Then, 
HADAMARD's lemma asserts 

(7.1) 

or, subtracting these equations 

(7.2) 
d dx 
d~ (cp] = d~ · (grad cp]. 

This relation is called HADAMARD's compatibility condition. 
The following, particular case has many important applications, especially in the 

theory of the propagation of waves. Let us assume, that at any point x of the surface a 

(7.3) (cp] = 0. 

According to (7.2), we have 

(7.4) 
dx df ·(gradcp) = 0, 

for all paths on a. It means, that (gradcp) is perpendicular to the surface u. Hence 

(7.5) (gradcp) = an, 

where a is called an amplitude of discontinuity. If cp is a scalar field, a is a scalar field, as 
well, on the surface a. The relation (7.5) expresses MAXWELL's theorem. 

Except for KoTCHINE's balance equation and the above compatibility conditions, we 
can derive some ad<1itional conditions directly from balance equations. It is quite easy to 
prove that if there is no singular smface but a in v, then 

(7.6) q; = div(fL+fL*)+A.+A.*, a.e. v, 

where 

(7.7) • acp • d 
cp: = Tt +x · gra cp, 

(7.8) div(fL+fL*): = lim _!_ f (p,+p,*)ds. 
v-+0 V av 

Let us stress once again, that even if the limit in (7.8) exists, it does not mean, that 
there is a vector representation for both p, and p,*. We can easily establish the existence 
of a common vector representation for p, + p,* (CAUCHY's theorem), and the separation, 
leading to representations fL and fL * requires an additional assumption. 

Applying (7.6) in both v+ and v- and taking limit from both sides of a we finally 
obtain 

(7.9) 
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8. Some applications 

This section contains only very simple examples of the application of the CLAUSIUS

DUHEM inequality for a singular surface to emphasize its importance. Many others require 

further research. Among these the theory of shock waves should be re-investigated from 
the point of view of thermodynamics. 

Let us consider, for simplicity, a singular surface (f, moving through an isotropic 
material. According to the results of I. MOLLER [6], entropy and heat fiuxes are connected, 

in this case, by the relation 

(8.1) h = A(e, ~)q, 

where A is a coldness, which in the case of thermal equilibrium becomes the inverse of 

absolute temperature, e being an empirical temperature, and e- its time derivativative. 
If asume the continuity of coldness 

(8.2) [A] = 0, 

from (6.9) it follows 

(8.3) 

Making use of the balance equation of energy (6.8), we can eliminate the heat flux 
from this inequality. Namely: 

(8.4) {tn'1-- Ae-)- ; e-X-2 A }x; + {le('1-Ae)[ + ; e-X- 2A}u. + AX- ·•- .; o. 

We can read some interesting limitations from this inequality in particular cases. 
For instance, if a is a concentrated defect, moving through the material remaining at 
rest, then (i- = 0): 

(8.5) [?J- A e) U0 ~ 0, a. e. s, 

which means, that the defect is moving in the direction of the region with smaller value 

of 1J- Ae, or, roughly speaking, in the direction of smaller dissipation. 
More significant evaluation can be obtained from (8.3) by the use of the FOURIER

DUHAMEL relation 

(8.6) q = Kgrade, 

where K is the thermal conductivity of material. Taking into account MAXWELL's theorem 

we have 

(8.7) (8) = 0 & (K] = 0 => (gradB] = a8 n, 

where a6 is a thermal amplitude on (f. Under the above assumptions, it follows from (8.3) 
that 

le?Jiua ~ -e-?J-x;-AKaa, a.e. s. 

If, again, material remains at rest, we have 

(8.8) 
AKa9 (?J]U0 ~ ---, a.e. s. 

e 
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Two important cases are to be distinguished; first - a defect increasing the entropy 
of medium (rJ- > 'fJ+); the second- a defect, changing the entropy continuously (lrJ] = 0). 
The former is described by the following relation: 

AKa8 
un ~ ( - +) ' e rJ -rJ 

(8.9) 

which means, that such a process may occur only for sufficiently fast defects. The latter is 
limited by the inequality 

(8.10) a8 ~ 0, 

which means, that the medium is sharply cooled down by the defect of this type (Fig. 2; 
r is a distance from the singular surface a). 

e 

r 

FIG. 2. 

To emphasize the connection of the generalized CLAUSIUS-DUHEM inequality (5.6) 
and the theory of constitutive equations, we investigate one more example. The problem is, 
more or less, academic, because the relation assumed below has not been established 
experimentally. However, the required relation has never been sought and seems to be 
sufficiently reasonable to work on. Namely, let us investigate again an isotropic material 
with a singular surface. We have in this case 

{8.11) lerJ(X0 -u.J]-AKaa ~ 0, a.e. s, 

for [A) = 0, and IKJ = 0. Let us assume that the velocity field is continuous ((i) = 0). 
According to (4.2), we obtain 

(8.12) le*J = o ==> le I = o. 
Under these assumptions 

(8.13) e(x0 -U0 }[rJ]-AKa8 ~ 0, a.e. s. 

The main constitutive assumption, we make now, is a linear relation between the entropy 
jump ('f}), and the velocity of defect u

0
: 

(8.14) lrJJ = -dU0 , 

where d is a positive material constant. It is quite obvious that (8.14) does not satisfy the 
requirement of equipresence, but up to now no better relations are available. We shall 
return to this equation in another paper. 

Let us enumerate, however, the properties of defects, described by (8.14). 
i) If the normal velocity u0 of defect is vanishing, there is no jump of entropy (rJ). 

It means, the distribution of entropy is continuous through a defect at rest. 
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ii) If the jump of entropy [17) is vanishing, a defect is at rest. It means, we can treat the 
jump (17) as a "thermodynamic force", moving singular surfaces. 

The positive sign of d is assumed to obtain an extremum of dissipation being maximum. 
Now, substituting (8.14) into (8.13), we obtain 

2 • AKa8 (8.15) U0 -U0 X 0 - -er~ 0. 

Three cases can be distinguished: 
i) 

(8.16) d= 
4AKa8 ---.-2-. 

exn 

In this case (8.13) is satisfied if, and only if, 

(8.17) 

and, furthermore, processes, connected with the motion of a defect, are reversible - in
stead of inequality (8.15), we obtain an identity. This case may be used to verify experimen
tally the assumption (8.14). Namely, if (8.17) is satisfied for a sequence of X0 , we should 
obtain the same value of d through (8.16). If it is not, d is not a material constant, and 
(8.14) is wrong as well. 

Making use of the formula (8.14), the value of entropy jump can be calculated. Namely 

(8.18) ['17) = _ 2A~a8 • 
exn 

For the distribution of entropy of a system being homogeneous in the undeformed 
state, the plot of 'fJ against the distance r from the surface a is shown in Fig. 3. 

r 

FIG. 3. 

ii) 

(8.19) d 
4AKa9 • 

> --.-2-, 
exn 

now, we obtain 

1 ( . -. / . 2 4AKae) 1 ( . -. / • 4AKaa) 
(8.20) 2 XD- Jl XD- ed ~ UD ~ 2 xn+ V XD-~' 
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which means that thermodynamics delivers definite lower and upper bounds for a velocity 
of a defect. 

On the other hand, if U0 is equal to its lower (upper) bound the process is again rever
sible, if it is so beyond the surface a. 

iii) 

(8.21) d < 4A~ae ; 
ex a 

it is easy to check, that these values of dare thermodynamically forbidden. In other words, 
the CLAUSIUS-DUHEM inequality (8.15) cannot be satisfied, which means the linear relation 
(8.14) does not work in this case. 
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