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Dynamic coupled thermoelastic problems
in micropolar theory. II

M. U. SHANKERt AND RANIJIT S. DHALIWAL(*) (CALGARY)

GeNERAL solution of the dynamic micropolar coupled thermoelastic equations has been obtained
for arbitrary distribution of body forces, body couples and heat sources in an infinite body
by the use of Laplace-Fourier transforms. Short time solutions have been obtained for the
cases of suddenly applied body force, body couple and heat source acting at a point. The cor-
responding classical coupled thermoelastic solutions have been derived by letting the parameter
a approach zero. Some numerical results have been illustrated graphically.

Ogolne rozwigzanie rOwnafi dynamicznej mikropolarnej sprzgzonej termosprezystosci uzyskane
zostalo metodami transformacji Laplace’a-Fouriera dla dowolnego rozktadu sit masowych, ob-
ciazeft momentowych i Zrodel ciepla w ciele nieograniczonym. Rozwiazania dla krétkiego
okresu czasu otrzymane zostaly dla przypadkéw naglego obciazenia silami masowymi, sitami
momentowymi i Zrédlem ciepla dzialajacym w punkcie. Odpowiednie klasyczne rozwigzania
sprzezonej termospreZystosci otrzymano jaleo graniczny przypadek zdaZajac z parametrem o
do zera. Niektore wyniki liczbowe przedstawiono na wykresach.

Ofmee pemeHne ypaBHEHHMIH QWHAMMUYECKON CONpsOKEHHON MHKPOMOJIAPHOH TEpMOYNPYTOCTH
moJIyueHo MeTofamu mpeoGpasoBanma Jlannmaca-Pyphe QA IMPOM3BOJIEHOIO paclIpelelicHAA
MACCOBBIX CEUI, MOMEHTHBIX HAPY30K ¥ TEIUVIOMCTOYHHKOB B HEOrDAHHYCHHOM Tesle. Pemnenus
ULl KOPOTKOIO OTpe3Ka BPEMCHH NOJNIYUCHBI [UIA CJIy4acB BHESANHOIO HATPY)KEHHS MAacco-
BBIMH CHJIAMH, MOMEHTHBLIMH CHJIAMH H TEIUIOMCTOYHHMKOM HelcTBylommM B Touke. CooTBer-
CTBYIOLIHME KJIACCHYECKHE PEllleHHA CONPSDKEHHOH TEPMOYNPYTOCTH MOJYYEHBI KAK DpENeih-
HEI cTyyall NpH CTpeMJIEHHH C IIapaMeTpoM « K Hymo. Hexoroprle UHC/IOBEIE PE3yIbTATEI
mMpefcTaBleHbl Ha rpadHiax.

1. Introduction

THE cLASSICAL theory of elasticity does not explain certain discrepancies that occur in the
case of problems involving elastic vibrations of high frequency and short wave length,
that is, vibrations due to the generation of ultrasonic waves. The reason lies in the micro-
structure of the material which exerts a special influence at high frequencies and short
wave lengths.

W. VoiGr [1] attempted to eliminate these discrepancies by suggesting that the trans-
mission of interaction between two particles of a body through an elementary area lying
within the material was effected not solely by the action of a force vector but also by
a moment (couple) vector. This led to the existence of couple stress in elasticity. Later
E. and F. CoSSERAT [2] gave a unified theory in which every material particle is capable
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of both linear displacement and rotation during the deformation of the material. Thus
in this Cosserat theory, the deformation of the body is determined by a displacement
vector and independently of this by a rotation vector,

The Cosserat continuum was unnoticed for a long time. This theory was revoked in
various special forms called Cosserat pseudo-continuum by GUNTHER [3], GrioL1 [4],
ArrO and KuvsHINSKI [5] and SCHAEFER [6]. Other investigators who considered the
linear and non-linear theory of elasticity for this Cosserat pseudo-continuum are TRUES-
DELL and ToupiN [7], TourIN [8] and MINDLIN and TIERSTEN -[9].

The general theory of non-linear and linear microelastic continuum was given by
ERINGEN and SuHuBI [10, 11]. This theory, in special cases, contains the Cosserat con-
tinuum and the indeterminate couple stress theory. A similar theory was also given by
PaLmov [12]. ERINGEN and SuHUBI [10, 11] renamed their theory and it is known now
as micropolar elasticity or asymmetric elasticity. Thus the micropolar elasticity deals with
such materials whose constituents are dumbbell-type molecules, and the elements are
allowed to rotate independently without stretch.

Only recently this micropolar elasticity was further extended to include thermal effects
by NowAck1 [13]. TAUCHERT, CLAUS, and ARIMAN [14] had also given the basic equations
of linear theory of micropolar thermoelasticity. Owing to the newness of the theory of
micropolar thermoelasticity, very few problems [15, 16, 17, 18, 19 and 20] have been solved
so far.

In this paper we consider the problem of determining the displacements, rotations
and temperature in an infinite micropolar thermoelastic medium under the action of
time-dependent body forces, body couples and heat sources. In Sec. 2 we have listed the
basic equations of coupled micropolar thermoelasticity as derived by Nowacki [13]. In
Sec. 3, we obtain the general solution of these equations by using Fourier-Laplace trans-
forms for any arbitrary distribution of body forces, body couples and heat sources in
an infinite medium. In Secs. 4, 5 and 6, respectively, we derive solutions for a sudden
body force, body couple and heat source acting at a point in an infinite medium. Exact
inversions have been obtained in the space domain but Laplace inversions only for small
time approximations which are quite appropriate for the problems under consideration.
Some numerical results have been illustrated graphically. Results for an impulsively
applied body force, body couple and heat source have also been obtained by the authors
recently [21].

2. Basic equations of thermoelasticity

For a homogeneous isotropic centrosymmetric body occupying the region ¥, we have
the following linearized equations of thermoelasticity [1]:

(A4+2u)VV - u—(u+0)Vx V xu+2aV x w+oX = pu+»V0,

@1 B+2))VV - w—(y+&)VxVxw+2aV xu—daw+JY = Jw,

l - Q
V20— —f— ==
0 kﬂ oV -l 7’
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where the kinematic relations and linear constitutive equations are given by
By = Wias Yiy = Ujit+Exuw,
01y = 2uyqy +2ayun+ (Aye—0) dy,

23) iy = 2vBap +2eBup+ PP by,
= C
§ = VWi + —T:':—G

In the foregoing equations we have used the following notations:

g;j the stress tensor components,
ui; the couple-stress tensor components,
u; the displacement field components,
w; the rotation field components,
X; the body force components,
Y; the body couple components,
7y the strain tensor components,
Bi; the curvature twist tensor components,
£x the unit anti-symmetric tensor,
§ entropy per unit volume,
Cg specific heat at constant deformation,
6 deviation from an equilibrium temperature To,
k coefficient of thermal diffusivity,
Q heat source of the body,
'IFTO
Cgk~
Here, A, u are Lamé’s constants and «, f, y, & are new constants of elasticity referring
to the isothermal state. The constant » depends on the mechanical as well as on the thermal
properties of the body. The symbols ( ) and [ ] denote symmetric and skew-symmetric
parts of a tensor, respectively; o is the density, J is the rotational inertia and dots denote

the time derivatives.

Ne =

3. The general solution of the basic equations

In this section we shall find the displacement u(x,, x,, X3, t), rotation w(x,, X,, X3, t)
and temperature field 6(x,, x,, x1, t) in an infinite micropolar thermoelastic body under
the action of time-dependent body forces X, body couples Y and heat sources Q, i.c. we
shall find the solution of equations given by (2.1) for —00 < x4, x,,x3 < 00, t =0,
under prescribed body forces, body couples and heat sources.

To solve these equations we shall first reduce the equations (2.1) to a simpler form
by decomposing the vectors u, w, X and Y into their potential and solenoidal parts, i.e.:

u = grad¢ +rot¥, div¥ =0,

3:1
@1 w = grad ) +rotH, divH = 0,

32) X = gradv +roty, divy = 0,
' Y = grad¢ +roty, divy = 0.

5
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Substitution of (3.1) and (3.2) into the basic equations (2.1) yields

(0:D-0d, V)¢ = —eDv——1-0,

(3.3) (0,04 +402V2)W¥ = 2arotn—oOeX,
(0204 +4a?V2)H = 2aproty—J0O,M,
03X +Jo = 0,
(3.4) (0y D—wd,V?)0 = —pnod,V?v— %D;Q,
where
D=vi-_a, © = 2nok/(A+2p),
= (A+2u) V2 -0}, 0, = (u+a)V2—0d7,

Os = (B+2y)V?—4a—J0;, [ = (y+8)V>—4a—J3?,

990 a %

ox; 0x;’ TN

To solve these wave equations, let us introduce the Laplace transform F()(x,, x;, X3, p)
of the function F(x;, x,, X3, ) by the relation

V2 =

(3.5&) F(“(xl sy X2y xs,p) = J. F(xl’ X35 X3, t)e-"dt
0

and also introduce the Fourier-Laplace transform
F®)(Ly, {3, L3, p) of the function F(xy, X3, X3, ) by

1
(S'Sb) 'th)(Cl.’ CZ! CS!P) = Tza?)fﬁ- J‘F(u(xls X2 xasP)exP(fxl CI)dE)
Ey
where dE = dx,dx,dx; and Ej; is the x,, x,, x3-space.

Application of (3.5) to the Egs. (3.3) and (3.4) yields a following system of algebraic
equations:

(@46 +0) +ogl 14 = o @+~ - 0%,
[(C2+62) (C2+4) +0ql?]0? = 3‘1— gtro®+ L = ©2+8DO,
@+ = —‘,— o,
(3.6) [(C2+83) (B2 +2+pY)—r*stPP = —— !stmfﬁ”+ @'2 +2s+BD) 1,

(€% +B2) (C* +25+pD) —r*s{ | HP = — ci% il 2f? + 7:3_ (> +8ms?,
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where
c§=l-:2y’ c§=p:a’ c§=+T2y, s F.}-a’
1=‘%s ﬁz=-f:: B p’-::u[.)’)i’ B —‘%,
=5, r-2% s=im ¢ = c+i3+a,

o is known as thermoelastic coupling constant and &, is the alternating tensor.
Taking the same Fourier-Laplace transform of (3.1) and (3.2) we obtain:

uP) = —il; P —ily e VP,

3.7 5
WP = —EQZ'( ’—iC;smHP’.

X = —ilp®—ilyemuxf?,
Y = —il;0®P—ilyepni®.

Substituting for ¢, ¥, 3®, H® from (3.6) into (3.7) and taking into account the
relation

(3.8)

Ejkl Etmn = 6‘.B 6]- e 6&3 amj ’

along with the conditions divy = 0, divy = 0, where 8,; is the Kronecker delta, we
obtain

P = v 15, Q‘z’ il +9) oyl ,}u)_ "22!:1 2 +25+82) 2,

chk A 2 J
+ 2+ 2y -
B v~ ?5‘((;’(;&_{!-_5 oD+ iijz - & Cif;z) Z emnf®,

3(2) C +ﬁi Q{2)+ ﬂok qczn(n

where
= (248D (2 +9)+wgl® = (> - 1) (-
4, = (G2 +p3) (P +2s+pY)—r*sl? = (L2—pd) (2—pd)

and A}, and u?, are the roots of the equations 4,((?) = 0, 4,(;%) = 0, respectively.
From (3.8) we obtain

(3.10)

0@ = XD, 2P = - GambdP,

(3.11)

o® = ‘_gz Y®, 7P = - %ej"ﬁ 7,
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By substituting the above relations into (3.9) and simplifying we arrive at simple formulae
for displacements, rotations and temperature given by

{2+q

LT r¢
uf = E;;TICJQ‘Z’ | 27 IC;S:::Y§”+C§4152 LG X®
2+2s 2
+ ET%&(CZXjZ)—CijX{z)),
(3.12) 34,8
DRSNS A @ 9193 (i E4+82 v 2
WP = = ihemXi®+ e + s CYP-GLYD),

2 2
i Ck;ﬁl Q(z)+3—§§'f‘:*x§z)'
1

Thus, the above system of equations gives rise to the general solution for the deter-
mination of displacement, rotation and temperature field for any given body forces, body
couples and heat sources applied in the infinite medium by first inverting the Fourier
transform and then by inverting the Laplace transform.

Let us consider the particular case where a — 0. The Egs. (3.12), and (3.12), become
independent and give rise to the following classical thermoelastic solution

_ L | P-4 n®

N X a! . (2)
©==az c3d, ecf 10
or
BPA X} +(A,-BPA LX) | v .
e 1.~/ + it (2)’
§ 34,4, ect 10
where
B _ 2
dy=4pife, B =C4pPch, B =5 = Lﬂ‘
2

It may be noted that (3.12), gives w$® = 0 and (3.12); remains unchanged. In the case
of classical elastokinematics, it further reduces to

P 12 i 19158, 4
AC+p D) CHpPld)

which agrees with the previously obtained result [22].

4. Effect of suddenly applied body force

In this section we seek a solution of the equations of motion when a body force is
applied suddenly at the origin. For such a body force we may write

s

Y=0, Q=0.
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The Fourier-Laplace transform of (4.1) gives

F 1
(4.2) X(Z)(Cl 3 gZ! CasP) = -9"(2"_“)“5!7 (0’ 0’ ';) )

Y® =0, Q@ =0.
Using (4.2) in (3.12) and then integrating with respect to {,, {,, {3, we obtain:

5 iy o F d 3} 1 )
(4.3) {ui ub } (2::)39 5 {ax R 2 I~ o L],
F 1 d (1 1 1
1¢ — o AL 5E o T N A
4.4 u§'(x,y,z,p) = Gne 7 [; zZ\ e I, 2 Iz) + ) fs],
n ol SF i__a}
B {"’ﬁ W } = penyed L‘ay axf o
(4.6) wi(x,y,2,p) = 0,
kqfFF @
) e ONGE.
(47) B (X,J’, zsp) C?(Zﬂ)agp az 5

where I, to Is are given by

3) % J' f f Cz(cz(é':t)ng: 5 eI HD DG dE, dLs,
o &=f f [ w6 (gi)fi‘z) FRRTIR G
@.11) i =f_ f | (Cz_#%)' G s,
4.12) 1= ) _f | mrm,xumm@l dtydts.

To evaluate the integral I,, we let
x =rcosh, y=rsinf, (, =pscos¢, and {, = p;sing,

so that I, takes the following form:

o w 2n
= ~if3z (03 +03 +q)eiparcesd-9
e —'u[ G dCaéf J (E2+03) (02 +03-4D) (i +13—-4) 01dg,d¢.




300 M. U. SHANKER AND R.S. DHALIWAL

Performing the ¢ integration we obtain

= i Ca(ot +C3+q)e%odt,
I = 291! Qi-fo(QLr)dai_w G = @D

On performing {; integration we obtain

-t [ [y s St VS

A3(A2-12)
B+ —aVe: I
;‘(3(222 q);;) “i-i e1Jo(e1r)do,,

where J,(z) is the Bessel function of order n and of the first kind. Using the known
integral [23], p. 514, we obtain:

[ 2O Ly t+g /2 I @)
RS ')[mg Va @+ BO-B) V w @y

R BT Y A+q 2 2] (iA,)*? A W
xKS!z(lll z.‘!_'_rZ)__ Ag(l%"lg) ;’ (zz+ri)a'¢4 Ks.‘q(liz ]/z"+r3) »
where K,(z) is the modified Bessel function of the third kind. Also

oL, _ 2,,2- 4I‘(’f'”r|zi 2 . lz|r

. Km(xm/zz T+ B +) ]/ R e Konliha V7777 |

Integral I, can be obtained from /; directly by replacing 4,,, by u, , and ¢ by 2s+p3.
Adopting the above procedure we obtain

414 L = (27?) l/% (i) 12 (22 +r3) 4Ky o (ipy Y 22 +17),

(27 2 . 12 2)-1/4 : 72 3 22
@415 I, = ~B ;'[(1.“1) (22 +r2)~"4Ky o (i Y 22 +1%)

= (i) (@ +17) Ko ipa V7 417
Integral I can be obtained from I; by replacing u,,, by 4;,. Now, we have

F x[1 ¢ 41z i+q
1 PN . (B -
(4.16) ui’(x,y,z,p) dmgp 1 [C% AF-13 '/E(zz_'_rz)s,'z 22— X
5 (12 152 2 ;
2 (iA)*Prlz| R = o A3+gq 2 (id)*rl2|
pe V';" 22 +rA)" Ks!’(’;ﬂ |/22+r )+c§1§(;_%_1§) 7y @ +ro)* X

l 2S+ﬁ4 AIGDp 7| _ ui+2s+p2
LW Va@ 4" ai-ud

(ipy)*rlz| o p3+25+P83 - /2 (iua)*rlz|
x WKSIZ(’#I. Vzi+r )+ P * A2 +ro)* X

~ K’R(I]u; l/zz + ,.z)] y

x Ksp(lj.; ]/Zz +r’) +
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(417) u&"(x,y, Z;P) = i “il)(xry’ Z’F),
d 1 2

4.1 1) L LW Y .

418)  u¥(x,y,z,p) = — - u§’(x,y,z,p) ) ="

x (iﬂl)”z(zz +!”')"”‘K1,z(l'p1 ]/Zz +r?),

Fs 2
419) w(x,7,2,p) = — ——sra—— 21/ = [(ipe) (22 +r2)-1*
@19 wi3(x..2.2) dnpci (Wi —pdp r ‘/:[(:m) P

Kl VEF72) = () P22+ 4K o V)],

(4.20) WX, »,2,p) = — %-wa"(x.y, z,p),
(4.21) w§(x,»,2,p) =0,
@22) 090G,y 2,5 = ——ToFVE 0 13,3 4 ) e (i, Y )

cHmg V(K- B)p
—(iA) P (22 +r) 1Ky a(id, V 22 +12)].

It is a formidable task to obtain the inverse Laplace transforms to the above set of
quantities. For this reason we have resorted to the case of small time approximations;

first, we note that

2 2 12 3
R L ]/ Pp _w
4.23) 243, = (6§ +5 U +w))i [ at® ( +w)] TR
2ty = —Q2s+Pi+P3+rs*)E VY 25 +pi+BE—rs*)—4B3(2s+p2),
then, expanding these binomially and retaining only the necessary terms, we obtain

LAY b il
(4.24) ;-1 ~ -E'l_ M 12 ~ p+ 4C1 3
ip Y.
(4.25) p = e’ p2 = P

in which only positive roots 4, and u;, are considered owing to the regularity condi-
tions at infinity and

_ c? w—1
d —-}-c—(l'}'w)'f'T .

The modified Bessel functions that appear in the above expressions can be expressed in
terms of a series by the relation [22]:

n+k)! 1

7z \12
(4.26) KH%(Z)=(§) < 2 Ra-h @)
k=0
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To obtain the Laplace inverse of the expressions (4.16) to (4.22), we expand the ex-
pressions in the inverse powers of p and retain the terms up to the order p=*. Thus on
inversion we obtain the following for the displacement, rotation and temperature field
for the case of suddenly applied force [24]:

dng _ xlz ATEP[( G 11
4.27) u(x,y,2,1) F ~ jpS2 ]/J‘_!: (Efc-'i-_c??)

— ah
= _ﬂ ah -1/2 A 1 ﬂh 112, e
Al e T
e P2 - &,, ( ]/ ¥ ),,) ( 16 d  a
+T8 D_ 7 — —‘E‘+-—2— X

y 2”'312 _1 (2(_. ]/ t‘”z]
1
_dyh
_ ""';; e [(1+'3/c}: ( ‘/") I+]3;};)A(t)

sy 3dey  Imey ex [,V
*( & T )B(')]" an [H(‘ c"z)

3('3 Am(r)+(3€2 264 )B*( )] 2.5'1’..':.2 |Z|x B**(I)’
2_ 4

hz
4.28) uy(x, 9,2, 1) = 2, x, 2, 1),
4mp ZrI“s"” 3z|z| 2c
@29) usx,p,2,0)—F = (lzlk’f’ - h’”)( 1)

zlz| ah ah _, ¥ 3 ah
—_— gl 12 hasdalls ¥
+l[ ,bm{w Bf(chl/2t ]/u cl]/ 2 x
o ah
e SC:'}_ i(_z_ - 32|z|) s e 1&2 ( ah £-172
(5] [Zlh hl '/;g _-‘ 2(31 T
d-a z|z| 2z 6zlz| |22 -5 ah,
'( 22 B T G R T Va ¢ ' D_s 201 gy

_dv/h
ve [(L 2] 2z & 3z]z]| )H(t_%_}l)

S HE Tkt ok
Iz 3iz|z| Iz|z| z 3zz]
("1'2”!_ e h* cfh’-’z-jz”,:!iz"' 132 A(1)
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d—4m 3z|z| m_ z|z|
o -+ 5 hm}B(')]
1ozl | 1 _]/b)_ 1 ( z 3zlzl) ;
+[(—cgr=rf+¥f/f)”" BV I R

2sc:  zlz| 2s¢z 1 z 3zjz|\ ., 2.5'64 -
(c;—cz A S Rl )B @,

z|z|

(W: w3l

@30) wxy,z,n 0Dy [A*(r)+ '/-B*(r)}

yea Ca
+ AL [A**(t) + ﬁ B**(t)] 5

4.31) wi(x, ¥, 2, 1) = —%w,(x,y,z, ),

(4‘32) wi!(xs Y, 2z, t) = 0

2:”

m ]/ah _— ( l/ah t'”z))

2(0 d) 1312¢ 15‘1 ( ‘l/ﬁ ;—11’2)
,/,, D4 2¢, 2
ah
ah §=1 1 ah (112 sk
T EE {( )Efc( ]/ ) '/:"l' A
" },:ﬂ a;d 2""13 1&’ ( ]/ah t_x,-'z)]
l/:n 2¢,

_dyvh
4c, ]/h z |a d z
—e [C—l- 7 (I—MT) (Lz_l—h(—z-—f")-l'w) A(1)
{_ (a— d)z 342 ad)+ z(a——d)}B(t)l-

W3z

[l

433) 0(x,p,z,0) Ao
Nk

“T6tw®

The corresponding classical solutions can be derived for this case by putting a = f =
=y =& = 0 and ignoring w,, w, and w;. Thus

& dmo _ x|z| 4¢P [ (e} 1\
(4.349) uf(x,y,z,0) = T s (E'F?;E)-’Z_

2 e ) e (L2 ,r,-m)__]/a%,l,z;%}
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ah
et Twedip (1o /ak ‘15& d  a
N V2 )t e )

Y
o (Rl 2 2 )

1(1+ % A(:)+(3"‘ -~ Iy +m) B(t)] ol [H( ‘/")

- k" ayh | Vh R
_ 3% 3c3? ps
—=AX 1)+ 2 B (¢
~Vi (1) o\
(4‘35) “g(x’.v! z, t) = “f(}'. X, Z, f),
> dmo _ 2™ z 3z 2¢i\
(4‘36) ua(x, Y2, r) F Vj; 'zlhg‘{z hsn 1+ ‘_‘_ak 2

ah
2|z| ah ah 1 EE )
[ zha,fz {( 4c2) E fc(2c1 ]/ o =12 ﬂ: lﬂ.e 1 }
Lis  ad 4? 'w—’ ( ak ,-m)
Cy |2|h “ _‘ 2C1

_[d—a zlz| " 2z 6z|z] | 2%/%¢2 _:scfxD 1 Eg—iﬂ
27 W G T ah | g ¢ -\2, V 2

_a/k,
te [( 1z =z 3z|z|) (t_ ( Iz 3lzlz| _ 2|

BT T ok TR cilzlh ™ ¢ h* T ik
z 3zz] d—am [z 3zlz]\ m z|z| 1 zz|
~ R + Tk )A(l)+= & (lzlh — 2 + FRE B(?) |+ EN R

h 1 z 3z|z] 32|z
— | H|t— —_— * *
cs? |/k) ( c!) A \@h ~ w0 (|z|h’*" | B

and the temperature 0 for this case is the same as that given by (4.33), where

0, for 0<t<™— '/h
4.37) A() = -

r-—l/—h for ¢ >ﬁ,

€1

r0, for O0<t< '—f—h,
4.38 B() = 1 _ o
(4.38) (0 i ‘_]/kz . ‘>]/k

bl ey R



DYNAMIC COUPLED THERMOELASTIC PROBLEMS IN MICROPOLAR THEORY. II 305

A*(t), B*(¢) are obtained from (4.50) and (4.51), respectively, by replacing ¢, by c,.
Similarly A**(¢), B**(¢) are obtained from these equations by replacing ¢, by c,; H is
the Heaviside step function and Erfc is the complementary error function, and

0, for 0<t< g,
2
AX(t) = . _
’ Vh Vi
: f—a, for > FE
0, for 0<t< g,
BX(1) = _
(1) i e ) Vi
T® ‘—a‘ , for r>cg,
2
1=C_}:__%, k=x’+y2+zz,
4.41
. m"ﬁﬁﬂ—zﬁ-hci(d-—a) =t
) 4 8 2% s 2 0
and
Lol o ;
(4.42) D(r)=2% 47 *W; n 1 (—— t’),
e\ 2
(4.43) Wou() = LC20Miu(® | TROMy- (1)
1 1
P(y—#—k) I‘(? +,u—k)
l+# —lr 1
(4.44) My (v) =12 e 2 ,F, (—2— +pu—k;2u+1; 1),
(4.45) Fi(a;b; 1) = I'®) Ia+n)

I'(a) & I'(b+n) n’

is the confluence hypergeometric function.

5. Effect of suddenly applied body couple

In this section we consider the case where body couple is applied suddenly at the
origin

51) Y(x,7,7, ) = 1 36)80) 8 H(1) 0,0, 1),
X = 0’ Q =0,
and thus
. M 1
(5.2) Y®(y, 8, 6, p) = Cn)T ;(0, 0,1),

X® =0, 0®=0.
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Substituting (5.2) into (3.12) and integrating with respect to {,, {,, {3 we obtain

(5.3) [§"(x, y, 2, p), u§(x, y, 2,p)l ——— 04(2:r)” 1 [5% 1— %14],

(5.4 W(x,y,z,p), wi(x,y, 2, Dl ——F— (2“) . [3—1, ;;y(:—g Is— -:?I-;)].
(2::) g 1 a1 1 11

(5-5) s“(x Y, 2z, p) F 9z I:Ca Iﬁ 2 17} + ; ?E-Is’

(5.6) U =0, 6D =0,

where I, is given by (4.11) and

;.7 f f f{,‘z(;f:-ﬁz e~ G+ +bngr dt, dL,,

Cl ik —
(58) n=| _£ | oy ey s,
(9) 6= £ | ~Emim Gy e s,

in which u} , are the roots of the equation 4,((?) = 0. The value of the integral I is
already known from the previous section and, after evaluating the remaining integrals,
we find

610) I =% [ ‘/2:_1 rem }J;fz - l/ 2 £§,4 Ks32(Bs l/h)]

5/3
(5.11) % - -5 [ 4T G|z ]/: |Zl;ﬁ: Ks2(Bs ]/7:)]

V nhs;‘z

o B3 2I°Pr)z]  ui+p3 ~12 121Gy )2
¢ & _hz[#fui V2 ,uf(ﬂi—pz)( ) e Kol Vh)

2, p2 12 312
-8 (5] e vh)

ar, 22

4IG12p|z| s e o (“}-12
518 Tl | pigd iy BT +8y (=
S T % S [ﬁa(“‘ M) = )

o g - rlz ;
x (iuy)°? ;!:L Ksp2(ipy V) + pi(ui+B3) (%) (in2)*? ?3% Kspa(ip2 ﬁ)] s
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2, B2 2 (iu,)V? ) _
(.19 &=M{f;2 2 ) Ko V)

Hi— L
2 2
#2+p 2 (ip)'?
-V O Kt |
where x = rcosf, y = rsinf, h = r? +22.

The method used in evaluating the above integrals is similar to what has been adopted
in the previous section.

Converting the modified Bessel functions occuring in the above expressions into ex-
ponential form by the use of the formula (4.26) and making use of the relations (4.24),
(4.25), the above expressions reduce to

2Vh

dnJe,(c2—cd) yes ¢, e e
515  u{"(x,y,z, * = - 1+
( ) ( y P) r*MCz h"f‘fq. ]/hp

o/h
ye e
+'F;'2:[l+ ]/?' ]—f 5

(5.16) #MJAN=—%#ﬁJmm,

4nJ  x [2I'C1D |z| 41D 7| c3-
1) -_— LI S
G17) wi(x,»,2, p) 5 == (c”/; " oy h,,,) s+ CaE—a) "

_»VE ~2iE

ST WA SRERL (1M e Lt -
Vk P h P*lp resh ”’ |/h »’

rVE

_ - xl2 (1+ 3¢, L+ 3c2 ‘)i_ e
cicici(c—c2) h? p

Vhp kP

»

(5.18) W(x,,2,p) = Zwi(x, 3, 2,p),

4nJ  2IGH z 3zlz]  c3rz  3cirziz| 1
1) - = = Eei®
(5.19)  w§’(x,,z,p) M T [le;,a.-'z BZ T 2 B |p?

_pVE

4 _Cales=c3) [( z _Zzlzl)L+c( z 3z L]i g
esci(c3—cd) [\ [2lk B> | p "\l B p* | p

_»Vk

[ lz|)1 1 =z 32|zl)l]i Ves
'3ﬂmm FE*ahmm‘hmi?p

2VE

)

_ 1 el z  3zz]\ 1 e z 32\ 1 e o
aVh  cicsci(ci—cl) (|Z|h TR )p T\l2R T R P | |p

(5.20) uP =0, 6 =0
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The above expressions are quite suitable for the Laplace inversion. Thus on inverting

we obtain
B* t l
( )

B ::,i [A“(:)+ - B"*(r)]

4nJcy(c3—cd) ye.
S2) w20 H=E) w%fm+

(5.22) %m%an=—§mmmam
4nJ _ x (TOD |z 20 rie] ci—c3
(5.23) wix,p,2,0)5 (*gﬁgﬁ— csy/m k’“) c,ci(c%—ci)

xizl ( ( ) 3¢ A*(r)+3—:’8*(r)) il :,fz FO+7r G(r))

resh

ci—c2 x|z|( ) 3c2 A**(r)+ 3c2 B“*(t))

- 5254(02—34) h?

(524) w;(x Y, 2, r) ——W1(y, X, Z, t),

4nJ  2I'GD z 3zlz|  cdrz 3c§rz|z|
625 wix,y,7, 0 [ ]T

= =3 ]/— Izl ka;z hs,-'z Izlhlﬂ b!.“.’.

ca(cs—ci) 2z|z|\ ., 3zlz|
+ [( z h: A UHQ(H:T"E hm)B*( )]

csci(ei—ci) L\lzlA

1 z |Zl z 3z|z|
—-[‘-‘3"2 (W 7|0+ (Iz!h3Jr2 TR G(‘)] [ 2k H(t_—~

c3—C3 z 3z)z| z 3z]z|
T ER R et < L)

ciescq(c3—c?)

(526) u!(ny:z’t)=09 B(x,}',Z, f)=0,
where
0, for 0<t< ']//i,
(5.27) G(1) = 2
( ]/h for > i—
I3 cs’
0, for 0<t< "/—,
C3
{5.28) F(t) = — . .
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6. Effect of suddenly applied heat source

Consider a heat source of constant strength S applied suddenly at the origin. Then

(6.1 Q(x,y,2,1) = §8(x)8(y) 8(2) H(1),
X=Y=0.
In our transform notation this can be written as
s 1
(6.2) 0Ny, 82,85,p) = W;,
X3 =Y? =0,
Substituting from (6.2) in (3.12) we obtain:
Do gy S
(63) (U‘ ,u§ ’"5 ) PQC'}(ZTF)HZ A.I. (Cls ;2: CS):
2 2
6.4) OBy, B i B 5 g S

pkQ2m)** A,

Performing the Fourier-inversion with respect to £, , {,, {3 to the above set of equations,
we obtain:

1) (1) )y —»§ 9 9 9
(65) (“s ); ﬂi )’ H§ )) o pgc?k(za)g;z ax ’ 3}’ ’ 32 )!S;
3
©6) 0, 3, 2,9) o = 21,
where I is defined in (4.12) and
~ 2 4 B2
(6.7) I = fff (:3—153’;(g;—132’) e~ Cr+tar gl dl, dl 5.

On performing the integration, we find that
A8t /2 (i) ,
©8) I = 2::’[ yrmY ]/ T Kz +r?)

A3+pi 2 (i) ja - f—a =g
RV E i s

where x = rcosf, y = rsinf.

It may be noticed that it is a spherically symmetric case and we will find the radial
displacement ug instead of u,,u,,u;. To obtain the Laplace inversion, we as usual
expand the right-hand terms of the equations (6.5) and (6.6) in the ascending powers

of p~!. Thus we obtain
- 191 E

20,9 = - L[ (Ly/a L, L) &=V
69 URGP = - g [(c 25yp Vil
dVh _pVh

11 2+a-d 1\ 1) % o 1
S Crd i v U

6 Arch. Mech. Stos. ar 2/75
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aph
s 1[f1_d1 (3 ad)1)aaVT
(1) =—_—— R ot e
(6.10) 6WX(h, p) dnk ﬂ[{ 2 2+( 16 4)?3}8

_4VE _pVi
+i=L_(£_£)L}e A 0(1
217 8 T 2) 7 R

On inverting we obtain displacement and temperature field for the case of suddenly ap-
plied heat source. Thus

6.11) Ug(h, t) = Wk 75 ‘[c, ]/ at ,n_‘;( %, ]/
+]/5_34129-5(261—1]/%)]9_%“*[%A('H(“z‘; d }/ )B(:)] dﬁ},
(6.12) O(h, 1) = 4Sk i {Eff(zil %)‘%[( ) (2c1 ]/ah)

ah
F]
1t

ak
— - 4 e
YE ey
_avh

5d a 4ey

g2 (=g )

7. Numerical results and conclusions

We have calculated the displacements, rotations and temperature for two typical
values of time, namely ¢ = 1.0, 1.5 and at a plane z = 1, for the results of sections 4, 5
and section 6 are spherically symmetric. Similar calculations are also carried out for the
case of classical coupled thermoelasticity and compared with the micropolar theory. In
all these calculations we have assumed ¢; = 5.2, ¢; = 3.8, ¢; = 3.45, ¢, = 1.5 and ¢} =
= 3.8 with thermoelastic coupling constant & = 0.0729 for the sake of convenience. We
may say that since the temperature field is independent of the micropolar effect, the solu-
tions thus obtained for temperature in our analysis are in fact the solutions for the classical
coupled thermoelasticity.

In the case of suddenly applied body force we observe that the radial displacement
U, undergoes a jump at t = }/ hley and at t = Vh/c,. The magnitude of these jumps at
these points, respectively, are

dyh

(i) ©

and —|z|/c3h>.
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We note that these discontinuities diminish with distances from the origin of dis-
turbance. At t = J/h/c, we observe that U, does not suffer any jump. This is due to the

fact that the functions of the type 4**, B** vanish identically when ¢ = ]/E/c‘. The same
phenomenon is observed for the displacement component U,. The magnitude of the
jumps at ¢t = ]/ ?:_,fcl and ¢t = ]/ hje, for U, are, respectively,
_4vVE
z|z| z 3z|z| dcy
(W T ek T ek )
and

z|z| 1
where rotation components w; and w, are continuous. The temperature 6 undergoes
dvk

cf e % and decreases with distance from the
origin of disturbances. It is worth mentioning here that the corresponding classical
thermoelastic problem was considered by E. Soos [25] (the body force is applied suddenly)
by a different method for small times. Our results are in agreement with E. Soos [25].
We shall also make a comment that the same classical results were derived for temperature
field by ACHENBACH [26] who solved the above problem for small times in spherical
coordinates.

In the case of suddenly applied body force, the displacement component U, along
r-axis and U, along z-axis are plotted in Figs. 1, 2, for two values of time along the radial

a jump at t = }/chx of magnitude —

U,
ot

70

50

—==== (lassical ao
—a4 Micropolar

L 1 | L1 1 | 1
25 ao 40 50 60 70 80 90

P

Fie. 1. u, = 2 u, vs. r for the case of suddenly; applied body force.

6*
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0 L
15 20 ao 40 50 60 70 40 0 r
4
Fig. 2. U; = Fp ug vs. r for the case of suddenly applied; body force.
-6x102)

120 -

100

80

&0

40

Fi1G. 3. Temperature 6 = —%EF—B ot r for the case of suddenly applied body force.
distance r. Figure 3 shows the graph of the temperature distribution. The corresponding
classical thermoelastic solutions are shown in these graphs by dotted curves and the
points of discontinuity are shown by vertical dotted lines. We have compared the classical
and micropolar solutions for only one value of ¢t = 1.0 for the sake of clarity of the graphs.

From Fig. 1 we see that the disturbances are quite high behind the first wave front
and are small behind the second wave front, whereas we observe from Fig. 2 that the dis-
turbances are quite small behind the first wave front and are high behind the second



-20 t=15

4nJ
Figc. 4. W, = ™ w; vs. r for suddenly applied body couple.

WA

agr-

= =1
- =1
e
SESES SR

-a5H t=15

-1k

FiG. 5. Wy =

4nJ
vy wz vs, r for suddenly applied body couple.

313)
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wave front. These disturbances slowly damp out as r increases. From these figures we
also note that the micropolar effect is more pronounced behind the first and second
wave front. This micropolar effect is negligibly small after the second wave front.

When body couple is applied suddenly we see that w, has discontinuities at # = J/h/c,
and ¢ = /hjc,, whereas w, has only one discontinuity at ¢ = }/h/c, of magnitude 1/c,)/h
and this discontinuity diminishes with distance. The displacement components «, and u,
are continuous function, since at ¢ = }/k/c, and ¢ = }/h/c,, the functions of type A*, B*
and A**, B** vanish identically at these points.

Thus we see that the displacement components undergo a jump if the body couple
is impulsive and are continuous when a continuous body couple is applied.

Figures 4 and 5 show the plot of the rotation components w, and w, for two values
of ¢ along the radial distance for suddenly applied body couple.

In the case of suddenly applied body couple we see from Fig. 4 that w, is negative
behind the first wave front and positive ahead of this wave front. From Fig. 5 we observe

that w, has a single discontinuity at the wave front.
In the case of suddenly applied heat source we observe that Ui and @ are both con-

tinuous. Figures 6 and 7 are the plots of Ug and 0, respectively.
U,zlk

0
50

30

4k
Fig. 6. U; = s

10 ug vs. R for the case of
i} L :
10 20 40 &0 ao 100 20 R sudden heat source.
ox10"% |
90+~

4k
: 1 L . E- F1G. 7. Temperature 6 = —S-B vs. R for the

case of sudden heat source.
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