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The stress and displacement functions for the “second” axisymmetric
problem of micropolar elastostatics

J. DYSZLEWICZ (WARSZAWA)

IN A FRAME of linear elastostatics of the continuous micropolar medium two methods of ‘the
solution of the “second” axisymmetric problem, characterized by the vectors u = (0, uy, 0),
@ = (¢r, 0, @), are proposed; namely the stress method and the displacement method. On the
basis of the nine governing homogeneous differential equations for the stress field in a simply
connected region the five solving functions (stress functions) are introduced. It was shown that
these stress functions may be reduced to two displacement functions solving the problem. The
method of elastic potentials applied by W. Nowack1 in [4] may also be obtained here. The solu-
tion of the particular case a = 0 is discussed.

‘W ramach liniowe;j elastostatyki ciaglego os$rodka mikropolarnego, dla “drugiego” zagadnienia
osiowo-symetrycznego, charakteryzowanego przez wektory u = (0, 45, 0), @ = (¢, 0, ¢;),
proponuje si¢ dwie drogi rozwiazania: naprezeniowa i przemieszczeniowa. W oparciu o dzie-
wie¢ podstawowych, jednorodnych roéwnan rézniczkowych pola naprezenh w obszarze jednospéj-
nym, wprowadza si¢ pie¢ funkcji rozwiazujacych (funkcje naprezen). Pokazano dalej, ze pigc
funkcji naprezeri mozna sprowadzi¢ do dwoch funkcji przemieszczen rozwigzujacych zagadnienie
i ze dochodzi si¢ na tej drodze do metody potencjaléw sprezystych W. NowACKIEGO z pracy [4].
Oméwiono rozwiazanie zagadnienia dla przypadku szczegélnego o« = 0.

B pamkax yuHeHHOM 3MaCTOCTATHKH CIUTOLLHOI MHKPOIOJAPHON cpeawl, /IA ,,BTOpoii’’ oce-
CHMMETPHM4eCKOlH 3a/auy, Xapaxrepuayrouleiica Bekropamu u = (0, ug, 0), @ = (¢, 0, @2)s
TIpeJIoXKeHbl ABa MYTH pellUeHNs: B HANPSHKEHUAX W B nepemelienunx. Onupasck Ha NeBAThH
OCHOBHBIX, OTHOPOHEIX [ucdepeHNHANLHEIX YPaBHEHRAH M0JIA HANPSDKEHUH B OJHOCRASHON
00nacTH, BBOJIUTCA NATH peinaromux byaxumi (byHxkumun Hanpskenwit). llanee moxasaHo,
YTO NATh (GYHKUMA HAENPAXEHHA MOMHO CBeCTH K JABYM (YHKUHAM NepemellleHnii, peuma-
IOLIMX 3afa4y ¥ YTO NPHUXOJUTCA IO ITOMY IIYTH K METOAY YIPYTHX noTeHumanos B. Hosaukoro
us pabotel [4]. OGcyxmeno peleHye 3afaun JUTA YacTHOrO cryyas oo = 0.

1. Introduction

IN LINEAR elastostatics of continuous micropolar medium the basic equations may be
reduced to the system of two vector equations from which the displacement vector u(x)
and the rotation vector ¢p(x) are determined [1].

It was shown in [2] that the axisymmetric problem of deformation of a medium may be
reduced to two independent problems. In a first problem the displacement field and the
field of rotations in cylindrical system of coordinates (r, 8, z) are described by the follow-
ing vectors u and ¢, respectively

(1.1) u=(4,0,u), ¢@=(,¢,0).

In the so called “second” problem the displacement field u and the field of rotations ¢
are represented by the vectors

(12) u= (09 Hg,O), ‘PE (q’n 0, Qz)-
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In each of the above problems the basic equations for the displacement field and the
rotations field are expressed in terms of three coupled differential equations.

Several methods of solution of these problems were discussed in the literature [2-7].
An exhaustive review of them may be found in [8].

In this paper the “second” axisymmetric problem is considered. For its solution both
the stress method and the displacement method are proposed.

The starting point for the stress problem considerations is the system of nine basic
homogeneous partial differential equations describing the stress field in a simply connected
region (see [17]). These equations will be given in Sec. 2. Basing on the stress equations
mentioned above we introduce five stress functions solving the problem (Secs. 3, 4). The
manner in which these functions were introduced is similar to that used in papers [9 and
10] where the stress functions were applied to the solution of the plane problems of micro-
polar elasticity.

Next, in Sec. 5, it will be shown that the five stress functions may be reduced to two
functions solving the problem (the displacement functions)(*) (compare [11]). In this
way we shall obtain (in Secs. 5, 6) a representation for the displacement u, and rotations
®,, ¢ derived earlier by W. Nowacki [4] by means of the method of elastic potentials.

In the last section the particular case of the solution of the problem (a =0)is
discussed.

2. Formulation of the stress problem

In the problem (1.2) the stress field is described by two non-symmetric tensors: the
stress tensor and the couple-stress tensor. Their components are, respectively,

0 O, 0 HBrr 0 Hrz
(2.1) o= |05 0 5|, w=|0 0
0 o, 0 Hzr 0 Bz

The above components should satisfy the following differential equations of equilibrium
in which the body forces and moments are neglected:

a d d Her— Pop
Go: G':g-l-' 33' F‘rr'}’ az F’zr+_—r‘_'_' L 0,
4 d i
(22) Grg— Ogy +'3;‘ Hrz +'§E#n +T -~ 0,
a a Ty +°‘9r "
3 et 0.

(") In the same manner the Love function was introduced by J. H. MITcHELL in classical theory of
elasticity (compare A. E. Love [13], pp. 274-276).
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The strain field is described by two non-symmetric tensors, the strain tensor and torsion-
flexural tensor, the components of which are, respectively:

0 7, 0 #ey 0 2,
@3) Y=|7r 0 yu|l. x=[0 xp 0
0 Yz 0 Har 0 ¥z

The geometrical equations relating the state of strain and the states of displacements and
rotations are

. Ouy U _ _ Ouy
(2.4) Vo = F_ﬂn Yor = _T+?n Yor = —@ry Vo= "‘3‘;"]‘?-"1-:
and
_ 9, _ 9 _ O, _ Og. _ 9,
(25) Hpp = ar 3 Hop = Ts Hzz = —3;_’ Hpz = or ’ Har = _'a_z"'

The fields of stress and sfrain are connected by the following constitutive equations:

(2.6) 00 = (u+@) o+ (U—yer, Oor = (B+0) e +(E—D)Pre,
(2.7) 0o = (U +0)Yo: +(U— ) Y20, o = (+X) Yo+ (— ) Yo:
and

(2.8) for = 290, P2, s = 2y%pe+Px, P = 2px..+Px,

(2.9) e = P+ %+ (V=) %ry  for = P+ %er + (¥ — ) %y,
where

(2.10) %= ., +Hog+%,,.

The quantities a, f, y, ¢, u denote materials constants.

The components of the strain tensors (2.3) are not arbitrary but should satisfy the
geometrical compatibility equations. On the basis of [12] the following strain differential
compatibility equations for the problem considered are obtained:

o 2 2
(211) xzr"’r—aé_ =0, '3_2""_"3';‘”::' =0,
d 1 d
(212) ‘E?ﬂr +"_r'_' Vo~ ¥zz— %go = 0; "zr+"a"'£ Yoz = 0,
d d
2.13) o s e = 0,
d d
2.19) 37 Vo~ gy Yot ke t#, =0
and
d
_3_;' (rxﬂﬂ)_xrr = 0’
i)
(2.15) Bp (")’sz)+f'("aa +%,,) =0,

2
'5; ("}’ar)“l'?ro“r"u = 0.

2 Arch. Mech. Stos, nr /75
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Equations (2.11)-(2.15) may also be obtained from the geometrical relations (2.4) and
(2.5) by elimination of the displacement u, and the rotations ¢,, ¢,. Besides, in this way
one can get the following three differential or algebraic relations

2 1 2
(2.16) a2 7+ +Yor) + (T — *g;) Vao+70) =0

d 1
(2'17) xrr""—a“;' Yoz = 0, xﬂ&""T?ﬂz = 0’

which may be obtained also from the Eqs. (2.11)-(2.15) by integration.
Equations (2.16), (2.17) together with relations

d 1 d
(2'18) E?’Or""}"’?z&—xu_xﬂﬂ o 09 Har +E?&z = 0’

d
(2.19) o Vo) +yro—rre =0

give six relations from which the Eqgs. (2.11)-(2.15) may easily be derived. The equations
(2.12) and (2.15); are identical with the Eqs. (2.18) and (2.19), respectively, while the
Egs. (2.11), (2.13), (2.14) and (2.15);,, are obtained by algebraic or differential
transformations of the Eqgs. (2.16)-(2.19). The six relations (2.16), (2.19) constitute
the geometrical compatibility equations for the problem considered.

In the following, the strain compatibility equations will be expressed in terms of stresses.
For this purpose, the constitutive equations (2.6)-(2.10) solved with respect to strains are
used

1
Vo = _ (arﬂ + Uﬂr) + (0',,3 Gﬂr) ’

1 1
Yor = H (00 +Uﬂr)_H (0,0~ 04,),

(2.20)
1 1
Y20 = 4 (Uzﬂ +daz)+ (aaﬂ aﬂz)s
o e e e i)
Yo: = 4# z0 0z 4a 20 0z
and
o = =By o = e =B, e = o (e )
Tr 2? rr ] Hpp = 2 (ﬂﬂﬂ %) 2z 2? 2z ’
(2'21) Har = 4')" (ﬂzr +o“rz)+ (Fzr J“rz)’

1
=i F (‘“zr +.p“rz) . "'4? (Hn—#u),

# is expressed here in terms of stresses. From the Egs. (2.8) and (2.10) we obtain

1

2,22 =
(329 % 2y+3

ﬂ (!‘rr +{uﬂﬁ +.u:z)
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Substituting the Egs. (2.20)-(2.22) into the Egs. (2.16)-(2.19), we have:

d 1 d
(2.23) 2z (0,9 +05,) + (‘;‘ - “3-;) (06+03:) =0
and

1 P 1 1
27 (e — B) + g lzp— (0.0+05.) — e (026— Uaz)] =

_2—’1_— (ﬂﬂﬂ"_‘ﬁx) 2 o : [ (G'zﬁ +°'81) I (028 G&z) = Oa

d

32 [ (arﬂ + G'ar) == -'"_ (arﬂ aﬁr)] e [—— (ozﬂ +aﬂz)

(2.24) {
i 7y (00— O'sz)} = g (poo + 1., —2P%) =

Ay (Auzr +Pr:)+ (Auzr .|urz)+ 32 [ ! ( 28+Uﬂz)_4_la' (azﬂ_'a'ﬂz)] = 01

| d l
'2;“ (o,0+05,) +1—— o [ (0ro+09,) — (Ura Uar)]

1
=r {4_},'(!‘“ +.'ur!) - g (ﬂzr'—#rz)] = 0.

Formulating the problem in terms of stresses (for the simply connected region), we
require that the components of the state of stress [Egs. (2.1)] should satisfy three equa-
tions of equilibrium (2.2), six equations of geometrical compatibility expressed in terms
of stresses (Eqgs. (2.23-2.24)), and given boundary conditions expressed also in terms of
stresses. The state of deformation in a body is determined by means of the constitutive
equations (2.20)-(2.22), while the displacement u, and the rotations ¢,, ¢, may be obtained
by integration of the geometrical relations (2.4) and (2.5).

3. Introducing of the stress functions

Basing on the stress equations derived in a previous section we shall introduce five
stress functions. As a starting point we have the equilibrium equations (2.2) and geometrical
compatibility equations (2.23). The stress functions will be introduced in such a way that
after relating them with the stresses, the four above-mentioned equations (2.2), (2.23)
will be satisfied identically.

Let us introduce first the function @(r, z) assuming

a 1 é
G.n Org+ 0oy = (_a}‘—';')qj, Gp: +0:0 = *3?@-

The Eq. (2.23), when Eq. (3.1) is taken into account, is satisfied identically. Determining

pid
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the stresses ¢,, and o, from the Eq. (3.1) and substituting them into the Eq. (2.2); we
obtain v
t/ /] 9? a2
gﬂar‘ka a ey ¢+ 222 D,
The equilibrium equation (2.2); will be satisfied identically if a new function ¥(r, z)
expressed on the basis of the Eq. (3.2) by means of the relations

a 0 d a

(3.3) Oor = 'EF ¢+Eq{ Gz = —a;q}—g v

(3.2)

is introduced.
The Egs. (3.1), after taking into account the Egs. (3.3), take the form

1 0 J
(3.4) Ty = ——';' ¢—E T, Tz = ? l},.

Next, let us assume the couple-stresses in a form of sum

(3.5) Bo=p
The stresses " are related to the functions @ and ¥ in a following way:

(3.6) e = Poo = oz =2, prz = —py, = P.
Substituting the Eqgs. (3.6) into the Egs. (2.2),,, we obtain, respectively

d o i 1y #::-_#3:9 o
(3°7) "é'r Jurr+' az P:r+ " = 0;

d

(38) ( )+3Z .p“zz =0.

roor
The equilibrium equation (2.2); will be satisfied identically if two functions £2(r, z) and
A (r, z) determined on the basis of the Eq. (3.7) by means of the formulae
w_ _ @ o @ Vij B d

3.9 My = EQ’ pzr"EQ—Ts Moo = _EQ Ed
are introduced.

To satisfy identically the eqjuilibrium equation (2.2);. we introduce the function x(r, z)
which satisfies, on the basis of the Eq. (3.8), the following relations:

14

e a e
(3.]0) Tlyr = EZ’: Bzz = _T ar

From the Egs. (3.5), (3.6), (3.9) and (3.10) we obtain finally the following representation
for the couple stresses:

d a d d
(3.11) Her = ZYI'—'—E'Z‘-Q, Hoe = ZYI‘—*E'E-Q“-E‘;A, M2z = 2?—75
(.12) o B, i el

or r r oz



THE STRESS AND DISPLACEMENT FUNCTIONS FOR THE “SECOND" AXISYMMETRIC PROBLEM 21

The stress functions introduced are not arbitrary functions but should satisfy the system
of five differential equations obtained from the Egs. (2.24) into which the relations (3.3),
(3.4), (3.11) and (3.12) were substituted

1 d d 1 @
W‘s‘ﬁ[“”""("ﬂﬁ)‘a””g"*ﬁazl
d |atp o 1 0 _
m[m&"‘ﬂ@?“’]-“’
1 ' d 2 1 9
2yQy+3p) I,‘”"F‘ (2””)5?9“2(”*3)?5?"*‘87?"]

[a+,u & d
dou 0z 2u or

i[a+y3¢_a—pl¢+law]+l[ap3 13!{,]

oz | dau or dop r  2a 9z dau Oz ¢+ﬁ§

-

(3.13)
- 19
T 20y +3h) [8:»?'— @y-$) EQ—&H&)(E 4 +T§x)] =0,

y+s(_@_g_-_l__ yela 1
or r Ay 7 oz % 2

+,§_[a_t&i _1
0z | 4ua 0z 20 dr

3 [0 8 [atu 0 5 a—p 1 13]
2u (quj T‘p)”a [4,ua F i dap T Em T

yte 1 0 y—e(i _1 )]_

[ i 4ye r zr” 4ye 3r9 rA =
The solution of the problem formulated in terms of stresses (Sec. 2) is reduced now to the
determination from the Eqs. (3.13) of five stress functions which should satisfy the given
stress boundary conditions.

s

4. Further equations for stress functions

The seperate higher order differential equations describing the stress functions may
be determined from Egs. (3.13). For simplicity of transformations let us replace the func-
tions y and A by the functions y*(r, z) and 4*(r, z), respectively, using the formulae

ad
R R |
(4.1) x=ry*, 4 rarA.
Introducing the Eqgs. (4.1) into the system of the Eqs. (3.13) we obtain the following
fourth-order differential equations for the functions @ and ¥

4.2 ViDe®@ =0, V?H¥Y =0
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and the eight-order equations for the function y* and the combination (£2— 4*) respectively
(4.3) ViVaHDox* =0, V2V2ZHD(Q2-A4%) = 0.
The operators introduced V2, V3, D, D, H, H, have a form
V2 = 3%|or? +1/rd|or+9%|8z%?, Vi =V:—1/r}, D =[*Vi-],
Dy =1?Vi—1, H=v*V3—1, H,=1V3—-1.

The quantities /> and »* denote the following constants

12 = (p+e)(u+a)/dua, 9 = (2y+p)da.

Having the solution of the Egs. (4.2) and (4.3), the expression (£2—4%) may be separated
by means of the formula

(4.4) LTRSS . W L

oz r ey 0z a or

d 1[1 @ ya]

where
ao = 2opufy(u+a).

5. Transition from the stress functions to the displacement functions

We shall show in this Section that the solution of the second axisymmetric problem
may be reduced to the solution of two equations for two displacement functions @*(r, z)
and ¥*(r, z) obtained from the stress functions discussed above. For this purpose let us
substitute the Eq. (4.1) ihto the Eqs. (3.13) and treat the equations obtained as a system of
equations for the unknowns

d 1 0 a 9?

— S o *y T A%
a”’ar(g YT g Qr - A%

These unknowns we express in terms of the derivatives of the functions @ and ¥ which,
to distinguish them in further analysis, are denoted now by @* and ¥*:

.
R :r("‘*)“ —2‘8 vzw_—ﬁwwzw_%%[_}%(r@*)],

"a?‘Q" fa v 2 ¢ W*+2W*+alo ;;z o+,

ettt te)
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Substituting the relations (5.1) into the formulae [obtained from the Egs. (3.11), (3.12)
and (4.1)]
32

d 1 @
=Pk _ = ;___ A* =Pk _ = C (pa*
(52 p,=2¥ 3 Q, gy =2¥" Q—r——— o dh  bu 2y o (rx®),

¢ o 9

= — ¥ £ — /% — L N IR |

(5.3) Hazr o* + ar (2-4%), W=D +32 X s

we obtain that the couple stresses become dependent only on two functions ®* and ¥*.
The formulae (3.3) and (4.4) determining the stresses after a change of notations take the
form

o 3

(5.4) o = -_qs* +— W o= O,
1 o 2

-3 G Sl . O e I

If the stresses and couple stresses expressed now in terms of the functions @* and ¥*
are substituted into the strain compatibility equations (2.23), (2.24) expressed in terms of
stresses, these equations, as one can easily check, are satisfied identically. (One can also
verify that the Eqs. (2.11)-(2.15) are satisfied identically). The third equilibrium equation
(2.2); is also satisfied identically. But the first two equations of the set of the Eqs. (2.2)
impose on the functions @* and ¥* the differential conditions

d d
(5.6) 27V3—1) 5 V¥ = — (PVE- 1),
1 @
(5.7} Z(VZVZ— l) Y’* - "‘(T + Er—) (fzv.%* l)¢*.

From these relations the following separate equations for the functions @* and ¥*
[identical as the Eqs. (4.2)] may be determined

(5.8) VE(PVE—1)@* = 0, V2(2V2—1)P* = 0.

Let us express now the displacement u, and the rotations ¢,, @, in terms of the functions
&* and ¥*, Such representation is obtained by means of integration of the equations re-
lating the strains and the displacement and rotations (2.4), (2.5) and by use at the same
time of the constitutive equations (2.20)-(2.22) and formulae (5.1)—(5.5)

1 0 yo pto 9 .
Pr= 2% or " 4ua _55¢’
1 0 yy, pta 1 0 ™
9 T~ dpa r or ),
He——@'.

The functions @* and ¥* play now a role of the displacement functions. Assuming
the representation (5.9) as a first step to the solution of the problem and substituting
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into the basic homogeneous equations of the field of displacement and rotations (5.10)

(herex = %%(ﬂp,)-!—%%), we satisfy the third equation identically, but the first

two Eqgs. (5.10) impose on the functions @* and ¥* the already known differential
equations (5.6) and (5.7).

The problem of determining of all the interesting us fields in a body was reduced to the
knowledge of the functions @* and y* which are determined from the Egs. (5.6) and
(5.7) at given boundary conditions

9 9
[(y+8)(V’—llrz)—4a]¢r+(ﬂ+y—e)5x—2aEus =0,
(5.10) Hiid) Pl B oy L B L s B
. Pz 14 oz roor e ’

(w+a)(Vi— l;!r’)u,-i_-Zor(% @r— %:p,) =0.

6. Relations between the functions &*, P* and displacement functions determined in [4]

W.NowAackl in [4] elaborated the displacement method for the solution of the “second”
axisymmetric problem by introducing two solving functions @, ¥ (elastic potentials)
which are connected with the displacement uy and rotations ¢,, ¢, by formulae

d 0%
*= o e
2 , &
6.1) @ = E‘I’—(V '_‘a_zj')w:
i 2 10
T Tuta ar

The representation (6.1) substituted into the basic equations expressed in terms of
displacements and rotations (5.10) leads to the simple differential equations for the
functions @ and ¥

(6.2 V2(PVi-1)¥ =0, V2V -1)® =0,
where @ and ¥ are related by the equations

g2 _ PN d 2g2 _
(6.3) Fr=ie = — o Vo,
ad 7 9%
W2)—D = T 2 ____|(]?V:—
6.4 (»?*vi-1) %z D PEE (V p) 2)(n' Vi-1)¥.

Determining in a body of all interesting us fields leads thus to the determination, from
the Egs. (6.2), of the functions @ and ¥ satisfying the relations (6.3), (6.4) and given
. conditions on the boundary of a body.
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The solution (6.1)-(6.4) may be obtained from the Egs. (5.9) if thé following relations
between functions @*, ¥* and functions @, ¥ are assumed:

_dap 9

©3) P = T pta or

Y, Y*=2d.

7. Particular case (¢ = 0)
The “second” axisymmetric problem in the case of « = 0 leads to two problems:

7.1. Hipotetic mediam — which has such properties that only rotations ¢,, ¢, and couple stresses x,,, 14,
Bzzs HBzr # Hrg can exist in it.

The strain field is described by x,,, %, #z2, %z, # %,.. The basic equations are formed
from geometrical relations (2.5), constitutive equations (2.8)—(2.10), strain compatibility
equations (2.11), (2.13) and eqilibrium equations

3 a ﬂrr #sﬂ =
E’#rr az ,a:r'l"_T"'_ - 01
(7.1)

a rI
gﬂu"'gﬁ‘ﬂ‘*'ﬁ‘“ =0.

The compatibility equations (2.11), (2.13) together with constitutive equations (2.8)-(2.10)
and equilibrium equations (7.1) may be presented in a form of five second-order partial
differential equations (similar to Beltrami-Mitchell equations of classical elasticity):

v y,,+k 9 0,

Vit + 2 (=) H 6 = 0,
(1.2) v, —f’;m,,—nmk%;@ -0,
Viu,,—~ -;12—#,,+k%6' =0,
i etk Lm0,
where
k_%ﬁ_(-;%-i-;}?) O = i+ proo + fas

The Egs. (7.2) together with equilibrium equations (7.1) and given boundary conditions
expressed in terms of stresses constitute the basic equations of the stress field in a simply
connected body. From the Eq. (7.2) the following separate equations for the components
Hzzs lez, pher and for the expression (u,,+ pge) may be obtained

(?3) VAgR 2z = 0, V%V% (a“‘rz; )“lr) = 0’ vy? (F’rr"'#sﬂ) =0



26 J. DyszLEwWICZ

and

(7.4) V20 =0, V3(lp—pe) = 0.

Let us consider now the basic equations of the field of rotations. On the basis of the
Eq. (5.10) they have a form

é
G+ (V2 =1/ g, +(B+y—e)5 % = 0,
(1.5)

3
v+ Ve, +(B+y—e) 7% =0.

After separation of the system (7.5) we obtain
(7.6) Vi =0, V*V2?p, =0, ViVip, =0.
The solution of the problem expressed in terms of stresses or rotations with given boundary
conditions may be reduced to the solution of the biharmonic equation for the function
Ao(r, 2)
@a.mn Vivid, =0,
where the function 4, was introduced fully analogically as the Love function in the classical
theory of elasticity (compare W. NowAcki [14], p. 170). Thus the following representation
is obtained

é? d* f+2y
(7.8) P = _Wd"’ P = “'FAO'FF_H,_S
Substituting formulae (7.8) to the equations of the field of rotations or the stresses ex-
pressed in terms of 4, into the stress equations (7.1), (7.2) we notice that these equations
can be satisfied identically if the function 4, satisfies the Eq. (7.7). The representation (7.8)
may also be obtained from three stress functions determined by the formulae (3.9), (3.10).

Vz4,.

7.2. Classical axisymmetric problem — represented by the displacement vector u = (0, 4y, 0) (compare I.
SNeDDON [15], p. 558)

The fields of strains and stresses are represented respectively by the components

Vo6 = Yozs Yo = Yor: Oz = Opzs  Opg = Oy

Geometrical equations, constitutive equations, equations of geometrical compatibility for
strains are obtained from the formulae (2.4), (2.6), (2.7) and (2.16), respectively.

The displacement problem is described by the equation
(7.9) (V2=1/r¥)us = 0.
In a stress formulation, besides the equilibrium equation

0 d 2
Er—()',g'i‘z azg"]";" Oy = 0,

two Beltrami-Mitchell equations of a form

(7.10)

(7.11) Vzo,e—r—lz-o',a =0, Vzo',a—;iz g =0

are obtained from the Egs. (2.6), (2.7), (2.16) and (7.10) (compare A. I. LuriE [16], pp. 39
and 58).
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