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Mathematical theory of defects. Part 11. Dynamics 

E. KOSSECKA (WARSZAWA) 

THE BASIC formulations of the dynamic theory of defects in the infinite, homogeneous, line­
arly - elastic continuum are discussed. The relations between the theory of surface defects 
in the displacement description and the theory of the medium with defects represented by the 
incompatible deformation and velocity fields are demonstrated. The dynamic incompatibility 
problem is examined. 

Om6wione s~ podstawy sformulowania dynamicznej teorii defekt6w w nieskonczonym, jedno­
rodnym kontinuum liniowo spr~zystym. Pokazane jest przej8cie od teorii defekt6w powierz­
chniowych w opisie przemieszczeniowym do teorii osrodka z defektami, opisywanego przez 
niezgodne pola deformacji i pr~dkosci. Pokazane jest rozwi~zanie dynamicznego problemu 
niezgodnosci. 

06cy~eHbl OCHOBHbie <f>opMymlpOBI<H ,z:umaMHlleCKOH TeOpHH ~e<f>eKTOB B 6eCKOHe'IHOM~ 
o~opo~HOM mmeii:Ho ynpyroM KOHTHHYYM. IIoKaaaH nepexo):{ OT TeopHH noBepXHOCTHbiX 
~e<f>eKTOB B OIIHcaHHH B nepeMe~eHWIX ~0 TCOpHH cpe):{LI C ~e<f>eKTaMH ODHcaHHOH HCCOBMe­
CTHMbiMH DOJUIMH ):{e<f>opMai.Um H CKOpOCTH. YKa3aHO peweHHe ,z:umaMlflleCKOH aa.qatiH He­
COBMeCTHOCTH. 

1. Introduction 

IN THE PRESENT paper the dynamic theory of defects in the linearly-elastic, infinite, homo­
geneous medium will be presented. In the same way as in [1], where the static problems 
were considered, the relations between different formulations of the theory will be de­
monstrated. 

The theory of defects in motion is not studied to such an extent as the static theory, 
in particular the dynamic incompatibility problem, and the disclinations dynamics has 
been worked out only recently [7, 14]. In the present paper some results of [1] will be made 
use of. Some questions, which are similar in the dynamic and static case, and were consid­
ered in details in [1], are handled in short here. Special attention will be paid to questions~ 
which are essential in dynamics. In every formulation of the theory, the geometric and 
kinematic constraints equations, together with the solutions for the elastic fields will be 
examined. The problems of forces acting on defects, defects self-energy and energy 
radiation will be omitted. 

In the dynamic case, the state of the medium is represented, in addition to the deforma­
tion field, also by the velocity field. Together with this new physical field, the new con­
straints equations appear in the theory. Dynamic defects are characterised not only by the 
position vector, but also by the velocity vector; thus besides the defects densities, the de­
fects currents appear. 
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80 E.KOSSI!CU 

In the displacement description we consider an ideal medium with the forced, time­
dependent, singular deformations: along certain moving surfaces the discontinuities of 
the displacement field u were produced. Such a discontinuity surface we call a surface 
defect. In the classical linear theory of elasticity, to defects correspond the dynamic elastic 
potentials of a double layer (see[2, 31), characterised by the discontinuity vector U of the 
field u. 

When .the motion of a discontinuity surface S is arbitrary, not only the distortion 
field ui,k but also the velocity field u, possess on S the singularities of the type of a delta­
function. We represent thus, as in the static case, the distortion field u1 ,~c in the form of the 

regular part ~ and singular p, and the velocity field u in the form of the sum of the regular 

part v and singular v. The fields ~ and v we call elastic, ~ and v the plastic (or initial) 
distortion and velocity. 

The strain and velocity fields corresponding to dynamic potentials of a double layer 
satisfy the dynamic equilibrium equation in the form ev1-ciklm e1m,k = 0, which is the basic 
equation for the theory of initial deformations in the linearly-elastic medium. When we 
pass from the ideal medium to the incompatible medium with defects, we assume that the 
elastic fields satisfy this very equation and the constraints equations. 

In the theory of dislocations, the medium is to be described by the elastic fields ~ 
and v. The two constraints equations describe the influence of the dislocation density 
tensor IX and the dislocation current J on the fields ~ and v. The medium with disclina­
tions is to be described by four elastic fields: the strain e, the bend-twist x, linear velocity v 
and the rotational velocity w. To them correspond the four constraints equations and the 
four source functions: dislocations and disclinations density tensors ex and e, andcurrent 
tensors J and I. 

In the fourth chapter the general formulation of the so-called dynamic incompatibility 
problem will be presented. In the dynamic case, these are e and v, which have always the 
good physical interpretation. In addition to geometric incompatibilities, represented by 
the incompatibility tensor YJ, we deal with kinematic incompatibilities, represented by the 
incompatibility current F. The solutions fore and v in terms of 1J and Fare found. 

2. The displacement description 

2.1. Geometry and kinematics 

In the dynamic case, we consider defects as the moving surfaces of discontinuity of the 
displacement field u. As is known, dislocations have the comparatively great freedom to 
move in the medium. But also the complex defects as cracks can move through the medium. 
We shall assume, that the surface of a defect can vary in time in an arbitrary way. This 
general model is important when considering point defects (see[61); in the theory of linear 
defects, as dislocations and disclinations, it is sufficient to consider surfaces which vary 
in time only through the motion of their boundaries; the defects surface can have then 
the interpretation of a ·real slip surface (at least from a certain instant of time). However, 
because the physical quantities do not depend on the surface - they depend on the line 
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MATHEMATICAL THEORY OP DEFECI'S. PART II. DYNAMICS 81 

only, moreover the choice of the surface and its motion are arbitrary -it will be conve­
nient to consider arbitrary moving· surfaces. When a defect is a crack, its surface is a real 
one; we consider only the motion of the type of cracking. 

The discontinuity U of the displacement field u at the point ~(t) of the moving surface 
can depend additionally on time: 

(2.1) I [u(~(t) ), t]l = U(~(t), t); ~(t) e S. 

We assume, as in [1], that U can be represented as a function of~. 
In the dynamic case, to the geometric compatibility condition comes the kinematic 

compatibility condition. Namely, the increment of U at the unit of time (represented by 
the total time derivative of U) must be equal to the difference of the increments of u at 
both sides of the moving surface; the latter quantity depends on u and the surface 
motion: 

(2.2) ~ u, = l[u,+C" v"ual. 

Making use of (2.4),[1) we obtain ( ir = :, U): 
(2.3) 

Hence the kinematic compatibility condition: 

(2.4) 

2.2. Theory of elasticity 

In the elastodynamics we have at our disposal the dynamic potentials of a double 
layer, which will serve us to describe defects. By the dynamic potential of a double layer 
we shall mean the expression (see [2, 3]): 

· (2.5) u,(x, t) = J dt' J tt.. U, [ c,., V,+ cl., et. !J G,,(x- ~(t'), 1- t'). 
-ro S(t') 

G is the dynamic retarded Green tensor of the Lame equation: 

(2.6)1 LuG1,(x, t) = d,1 d(t) d3 (x), 

L is the Lame operator. 

., cP 
Lu = due ot2 - Ctklm V k V m; 

For the isotropic medium (see [8, 7]): 

(2.7)1 ( r ) 

G,. = 4!e { ~~ 6 

'~C. + v,v,[(: - :.)o(t-;. )- (: - :Jo{r- ;.)]}. 
(2.7h 

2 A.+2p, 
c1 =-­

(! ' 

where () is the Heaviside function, c1 and c2 are the longitudinal and transversal wave 
velocities. 

6 Arch. Mech. Stos. nr 1!75 
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82 E. KOSSECKA 

The expression (2.5) has the following properties: 

(2.8)1 l[ui]l = uj, 
(2.8h l[t,.,.u,.]l = 0, 

where 
v • a 
t,.,. = ~,.,.en,C, 7fi +nbcnbrs Vs, 

l[f,,.u,.]l = enbCbl [u,.]l +I [nba,.b]l. 

We use the retarded Green tensor having in mind the physical interpretation of the 
field u. (2.5) represents the total field produced by a defect in a period of time t ~ - oo; 
the influence of the initial conditions is neglected. The integration with respect to time re­
presents the summation of all the impacts of the defect history to the present state of the 
medium; the complicated process of propagation of the field due to a defect describes 
the tensor G. 

The condition (2.8h is the condition of dynamic equilibrium of a defect. The expres-

sion e<tn)l[u,.]l represents the momentum influx to the defect surface, l[nb<Tnb]l describes, 
as in the static case, the action of elastic forces on the defect surface. 

The expression (2.5) can formally be written as follows: 

(2.10) u, = G,* [-c •• ,. v.J ds• U, ~3(x' -~-e ~ J dY.t U,~3(x' -~)]. 
s s 

the star denotes now the convolution with respect to· the three spatial variables and the time. 
The expression in bracket has an interpretation of the force distribution producing the 
dynamic defect. 

From the condition (2.8h we can calculate the discontinuity of the normal derivative 
of the u field on the defect surface, for the prescribed discontinuity U. The detailed calcu­
lations for the isotropic case are presented in [3]. For the general anisotropy from (2.4)2 [1], 
(2.4) we obtain: 

(2.11) 0 = e~n){Ui+ <tn)nk Ui,k- ~n)nkl[ui,k]l} +nbcibrs{U,.,.~-nsnk U,.,k+nsnk[l u,.,~c]l}. 
Hence 

(2.12) [nbns cibrs- e~n)2 ~~ .. ][nkl [u,.,k]l- nk U,.,k] = - nb Cibrs u<I',S>- e~'u) ul. 

From the above system of linear equations the vector nk(l [u,.,k]l- U,.,k), which enters into 

the expression for l[ui,1t]l and l[u;]l, can be calculated in terms of Ud,k>and Ui. We are not 

going to analyse in detail the system (2.12), we notice only that when u<l,k> and ui are 
equal to zero at the same time, (2.12) has only the trivial solution equal to zero [we mean 

the solution for arbitrary <en), we do not consider special cases of degenerate system of 
equations]. From (2.4h [1], (2.4) follows thus that the strain u<l,k> and velocity ui fields 
are then continuous through the defect surface. The very conditions are satisfied for the 
case of dislocation and disclination. 

For dislocation: 

(2.13) ui = -bi, ui,k = 0, ui = 0, 

l[ui,~cll = O; l[u;]l = o. 
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The dynamic potential of a double layer with constant discontinuity U = - b can thus 
serve as a model of a dislocation, which is de facto a linear defect; the corresponding to it 
"physical fields" u;,k and u; should not have discontinuities on S. 

A dynamic disclination is represented by the U vector constructed in the same way as 
for the static case [see(2.18), [1]]: 

(2.14) 

U; = 0 for ~ = 0, ~ E S. 

One can have doubts, whether to describe a moving disclination loop as a defect with 
a fixed rotation axis, or ·let the axis to move together with the loop. The analysis of the 

formulae (2.12), (2.4)2 [1], (2.4) indicates, that the assumption ~ ::/: 0 and consequently 

iJ ::/: 0, causes l[u<;,k>]l ::/: 0 and I [u;]l ::/: 0; such a defect in any case will not be a linear 
defect; the fields describing a state of the medium will have discontinuities on S, and so 
the surface S will be visibly marked in space. 

For completeness we present here the formula for the displacement field of a moving 
dislocation expressed by the Green potential K. The dynamic Green potential, which will 
be important when solving the dynamic incompatibility problem (see [71), satisfies the 
Poisson equation to: 

(2.15) LfK;, = -G;,, K;, = -Lf- 1G;r, 

and at the same time the Lame equation: 

(2.16) 
V 1 
LirKir = ~ii ~(t) -

4
-- , r = lxl. 
nr 

For the isotropic medium, K satisfying Eq. (2.15) with the retarded Green tensor at the 
right-hand side is equal to: 

ret 1 { ~ · 1 1 1 [ 1 (2.17) K;k = -- ~-(r-e t)O(r-c2 t)+- V; Vk- - (r-c1 t)3 

4ne c 2 r 2 6 r c 1 

x O(r-c1 t)-:, (r-c2 1)38(r-c2 t)]}. t;, 0. 

By the appropriate transformations, for U = - b, we can bring (2.5) to the form (see [9]): 

00 

(2.18) u, = b, J dt' f ac,e,,, [ c,,, v,+ eC. %, ~"' ]v.K,, 
- oo L(t') 

b; f 1 + 4n . dsa V a • r , r = lx- ~I. 
s 

The above expression reminds the static one very much [see (2.24) [1]], however 
in the dynamic case the term depending on the dislocation line L has the much more com­
plicated structure than in the static case. Nevertheless, it is significant that the second term 
in (2.18), being responsible for the discontinuity of the u field, has also a simple form of 

6* 
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the harmonic potential of a double layer. It depends on the dislocation position at the 
instant t only the part of the field corresponding to it is thus so to say '~dragged" by the 
moving dislocation. It is essential also that only the velocity of the dislocation line ap­
pears in (2.18), the surface velocity being absent at the same time. The assumptions about 
the surface motion are thus of no importance for the case of a dislocation. 

3. Velocities and currents 

3.1. Geometry and kinematics 

To the u field, having the discontinuity U on the moving surface S, ccJrresponds, be­

sides the singularity ~ of the spatial · derivative, also the singularity v of the time derivative, 
having the character of a delta function. We can cross the surface not only making a step 
in the space, but also when the moving surface passes by our point of observation. We re­
present the derivatives of the u field in the form: 

(3.1)1 

(3.1h 

where (J and v are equal (see[101): 

(3.2)t /Jik = J dskUi~3(x-~), 
s 

(3.2h vi=- J dsbtbul~3(x-~), ~ eS. 
s 

Notice, that the quantity v depends only on the normal velocity of ·the surface S, for 

(C · n) = 0 it is equal to zero. In the same way as~ and~' the fields v and v are called appro­
priately the elastic and plastic (or initial) velocity. For a point defect, v is concentrated 
at the point (see[6]): 

(3.3) vi = -pC1~3(x-~), 
where p is the intensity and ~ the position vector of a point defect. 

For linear defects, the plastic velocity v, like the plastic distortion~ is not the uniquely 
defined quantity, determined by the position and the motion of a defect. It follows from the 
free choice of the surfaceS. 

For a dislocation: 

(3.4) vi = b1 j dsbCb~3(x-~), ~e S. 
s 

The field v of an arbitrary surface defect can be understood as due to a superposition of 
infinitesimal dislocations loops with Burgers vectors - U<">: 

(3.5) v = - _2 Uf">(~n)<">~(LIS<">). 
n 
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In the dynamic case . we represent the state of the medium with the help of the fields 
representing a deformation (distortions, strains), to which correspond stresses, and the 
velocity field. When we are to describe the incompatible medium with defects, v is iden­
tified with the real velocity of material points. In addition to the constraints equations 
of the static theory, having the geometrical character, the new kinematical constraints 
equations appear, being the relations between deformations and velocities. Into these 
kinematical constraints enter the currents, being the new source functions, depending 
on defects velocities. 

Let us consider dislocations, for which the distortion field has a good physical inter­
pretation. The constraints equation (3,7), [1] and the definition (3.8)[1] of the dislocation 
density tensor ex are also valid in the dynamic case. We obtain the additional constraints 
equation differentiating with respect to time the Eq. (3.1)1 : 

(3.6) u;,~: = /Ji1, + P1" 
and subtracting the Eq. (3.1)2 differentiated with respect to x": 

(3.7) 

We obtain the following relation between ~' ~' v, v: 
(3.8) 

We introduce the dislocation current tensor J: 

(3.9) 

From the definitions (3.8) [1], (3.9) results the following compatibility equation for the 
functions ex and J: 

(3.10) 

For a single dislocation line: 

(3.11) lr~c = b1 f dC .. ekbt~Cb~3(x-~), ~EL. 
L 

The dislocation current J is concentrated on the dislocation line L. It depends in a linear 
way on the Burgers vector, the tangent vector and the velocity ofa dislocation. It is thus, 

FIG. 1. 

beside ex, the good source function of the dynamic theory of dislocations. The functions ~ 
and v have to be constructed in such a way, that (3.9) be satisfied. The tensor J can be gen-

eralised to the case of the continuous flow of dislocations. The expression ~ x ~ under 
the integral sign in (3.1t) has an interpretation of the vector element of the surface, 
outlined in the unit time by the dislocation line L; see Fig. 1. 

http://rcin.org.pl



86 E. KOSSECKA 

In the considerations carried out till now we have assumed that the dislocation mo­
tion can be arbitrary. However, the essential restrictions are imposed by the condition 
of the mass balance (see [12, 13]). 

In the ideal medium, described by the displacement u, the mass balance is automatically 
satisfied. In the case of existence of moving defects in the medium, that is formally, when 
the deformation and velocity fields describing the medium do not satisfy compatibility 
conditions, the mass balance is not always satisfied. 

Le_t us denote by m the mass of a unit volume of the deformed medium; the density 
of the medium is denoted by !!· The equation of balance for the quantity m: 

(3.12) 
dm . 
-d +mvk k = -]k k· t ' . 

In the above equation v is the velocity of the points of the medium, j represents the mass 
flow. In the linear theory of elasticity v = u, while 

(3.13) 

and the balance equation in the linearised form is automatically satisfied: 

dm 
(3.14) dt +evk,k = 0. 

In the medium with defects the real strain is represented by the elastic field e, the mass of 
a unit volume is thus equal to: 

(3.15) 

the field v we shall identify with the field of elastic velocity. Taking into account the con­
straints equation (3.8) and the definition of the current (3.9), we obtain the balance 
equation in the form: 

(3.16) 

The trace of the dislocation current tensor J determines thus the divergence of the mass 
flow j. The dislocation motion proceeds thus without the mass flow if Jkk = 0, that is 

(j_('t' x b), what means that the line moves along the so-called slip plane, determined by the 
Burgers vector band the tangent vector 't'. The condition Jkk = 0 is significant only for a dis­
location being not of the screw type; 't' x b :I= 0. The mass flow in a crystal can be realised 
by the vacancies absorption or creation. The dislocations motions with Jkk :I= 0, the so­
called climbing motions of edge dislocations, can be realised thus with~ the help of vacan­
cies influx (positive or negative) to the dislocation line; it makes the significant restriction 
for the motion of this kind. A dislocation motion along the slip plane is called conservative. 
The corresponding to it plastic deformation is a "pure plastic" deformation, without the 
change of the volume. Notice that Jkk determines only the divergence of the mass flow j; 
the mass flow which permits a dislocation to climb can be realised in many ways. 

In the case of disclination, to the discontinuity of the displacement u, also corresponds 
the singularity of the time derivative o ; the role of the Burgers vector plays now the vec-

tor Dx ~-~).The representation (3.1)1 2 also takes place in this case. However, in addi­
tion to v, there appears the singular plastic rotational velocity, corresponding to the 
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discontinuity of the rotation field w. The time derivative of the distortion field is equal 
[see (3.12)1 [1]): 

(3.17) 

The time derivative of the discontinuous rotation field ro we represent as a sum of the reg­

ular part w and singular part ~: 

(3.18) 

By the plastic rotational velocity we shall mean the quantity: 

(3.19) 

Hence 

(3.20) 

For a single disclination: 

(3.21)1 

(3.21h 

v, = f dsbtbeippp(Cq-Cq)t)3(x-~), 
s 

"i = J dsi,Cb.Qit)J(x-~), ~ e S. 
s 

The comparison of the formulae {3.7), (3.20) leads us to the following constraints equa­
tion for the fields e, wand v: 

(3.22) 

We define the dislocation density current J (1): 

(3.23) lu, = - [~tk-elkaWa-Vt,A:] 

= - L8ik- vi,k- eika1/Jal. 

We find the second constraints equation by equating to each other the gradient of the 
expression (3.20) with the time derivative of (3.15)1 [1]: 

(3.24) 

and on the other side: 

(3.25) 

Hence 

(3.26) 

We define the disclination current 1(2): 

(3.27) 

(1• 2
) The transposes of J and I are used in [14]. 
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Notice that disclinations being absent ( cp = 0, "' = 0), the expression (3.23) for the dis­
location current is identical with (3.9); moreover, the disclination current is equal to zero. 
From the definitions (3.20)1,2 [1] and (3.23), (3.27) result the following compatibility 
equations for the tensors ex, 8, J and I: 

(3.28)1 

(3.28)2 

For a single disclination: 

(3.29)1 

(3.29)2 

In the same way as densities ex and 8, the currents J and I are concentrated on the dis­
clination line only. J in the same way as ex is equal to zero when the disclination line coin-

FIG. 2. FIG. 3. 

cides with the rotation axis; A x ~-~) = 0. The motion of a disclination with respect 
to the rotation axis is equivalent to the dislocations current with the Burgers vector 

Ax~-Q. 
For a disclination, the condition for the motion to be conservative, that is to proceed 

without the vacancies creation or absorption, imposes also restrictions on the disclination 

line velocity ~- The condition Ju = 0 takes the form: 

(3.30) 0 = C,.e""'A: TaEkpq!}p(Cq- Cq) = Tq(Cq-C11)C,IJP- T,/JaC11(C,- Cq), 

what means that the conservative motion of a line element occurs in the plane de­

termined by the vector -r x [A x ~-~)]. We can speak of the glide surface of a disclina­
tion. This problem is examined in details in [15]. The two conservative motions of a dis­
clination loop of the twist type ( -r j_ A) and the wedge type (A is contained in the plane 
of the loop) are demonstrated by Figs. 2, 3. 
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3.2. Theory ·of elasticity 

If we compare tbe Eqs. (2.10) and (3.2)12 , it becomes evident that the dynamic elastic 
potential of a double layer can formally be represented as follows: 

(3.31) u, = -G,,.[c .. ,.v.P •• -e :
1 

v,J = -G,,.[c.,,.v,e.,-e:, v.J. 
the convolution in (3.31) being with respect to four variables. 

The gradient of u can be represented as follows: 

(3.32) 

u,,, = - G,, • [c.,,. v, v,tf,,-e :, v,v,J ± G,, • [c .. ,. V, v,p,,-e ::2 p,, J 
= - G,,. {c.,,. v.r.B ••.• - tf,,,,] + e :

1 
r,b,, -V,,.:J} + p,., 

or with the help of e: 

(3.33) u,,, = - G,, • {c.,,. v ,[e,,,,-e ••.• J-e :
1 

I~ •• - v,,,J} + e,.. 
The time derivative of u: 

( ) . { V a 0 o2 0 V V 0 l G V [; 0 ] 0 3.34 ui = - G;, * Cnbrs •fii e,.b -e ot2 v, ± Cnbrs b ,v,. = - irCnbrs s e,.b -v,.,b +v;. 

To be in agreement with (3.1)1,2, (3.2)1,2 we identify: 

(3.35)1 

(3.35)2 

(3.35)3 

... = - G,, • {c.,,. v,[e ••.• -e ••.• ]+ e :, £~ •• -ii,,.:JL,: 
V; = -Gir * Cnbr.sVs[l,,.b-en,b]· 

From (3.35)1,3 we immediately obtain the expressions for the elastic distortion and ve­
locity fields of a dislocation in terms of dislocation density ex and current J: 

(3.36)1 p,. = G,, • [c,,,. V,•"•"••+ e :I J,,]. 

Notice moreover, that the u field given by the Eq. (3.31) is a solution of the following 
equation: 

(3.37) 

From the above follows that the fields e and v satisfy the following equation: 

(3.38) 
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what we write in the form: 

(3.39) 
iJ e atv,-O'tk,k = 0. 

The stress a is understood here as due to the elastic strain e. The elastic parts e and v of the 
strain and velocity corresponding to the potential of a double layer, being the model of 
a defect, thus satisfy the equilibrium equation (3.38). In the linear model of the medium 
with defects, we identify e and v with the real strain and velocity fields. Further on, when 
formulating the theory in terms of elastic fields, we can assume the Eq. (3.38) together 
with the constraints equations as the basic set of equations of the theory. 

4. Dynamic incompatibility problem 

4.1. Kinematics 

In the dynamic case the state of the elastic body is represented by the two physical 
fields: the elastic strain e and velocity v. The general formulation of the incompatibility 
problem has to take into account also the kinematical incompatibilities. 

The time derivative of the total strain has the form: 

(4.1) 

On the other side: 

(4.2) 

Subtracting (4.2)'from (4.1) we obtain the following constraints equation for the fields e 
and v: 

(4.3) 

The quantity on the left-hand side of (4.3) we call the incompatibility current F: 

(4.4) 

hence the constraints equation takes the form: 

(4.5) 

From (3.9), (3.23) is evident, that F coincides with the symmetric part of the dislocation 
current: 

(4.6) 

The disclination current I does not contribute to F. 
The trace ofF describes the mass flow in the medium with incompatibilities [see (3.16)]. 
Let us recall the definition of the incompatibility tensor 'I: 

(4.7) 
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to which corresponds the following representation of e [see (4.13)[1]: 

(4.8)2 

Differentiating twice and contracting with the product Eau Ebmk the Eq. (4.4), we obtain 
the following compatibility condition for .. the tensors 'l and F: 

(4.9) 

Notice that for v = 0, the incompatibility current is equal to minus time derivative of 
the plastic strain. 

As is evident from (4.8), ~depends on cP and iJ; we could accept as the incompatibility 

current the quantity d>-v, independent ofi); for v = 0-just~. For the reasons of phys­
ical interpretation, it is more convenient to deal with the quantity F, being close to the 
dislocation current J. 

4.2. Elastic strain and velocity fields 

The dynamic incompatibility problem for the elastic medium is thus formulated as 
follows. The medium with incompatibilities satisfies the following set of equations: 

(4.10)1 

(4.10)2 

(4.10) 

a 
n -V;-(Jt• · = 0 
~ at JJ ' 

-ErklEjmneln,km = 'Y/1)1 

etk -v<i,k> = Ftk. 

Equation (4.10)1 is the dynamic equilibrium equation, (4.10}z,3 are the constraints equa­
tions. As we mentioned in [1], the method of solution of the above set of equations was 
presented in [7]. Here, like in the static theory, we demonstrate how to calculate e and v 
fields in terms of 'l and F from the expressions of the chapter 3. The elastic strain equals 
[see (3.35)2]: 

(4.11) e,s = -Gil * {cJklm Vk[e,m,s-els,m1+e + [JJs-VJ,s1} .. 
( (IS> 

We make use of (4.20)[1]: 

(4.12) 

From the above follows: 

(4.13)1 

(4.13)2 

l/J[s,m]ll = e,s,ml- ezm,sl' 

fl't. [0 0 1 
·'V[s m] = ema sa- esa ma] * -4 . ' · ' nr 

The specific dynamic term, occuring in (4.11), we transform as follows: 

(4.14) 
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The expression in bracket can afterwards be represented in terms of the incompatibility 
current F: 

(4.15) [~J.s,a+~ja,s-Jsa,j-Vj,sa] = ~js,a+ ~ja,s- ~sa,j-V<},s>G-V<J,a>s 
+v<s,a>J = FJs,a+FJa,s-Fsa,J• 

Because 

(4.16) G.}. Lj t/J[ ] = t/J[. ] = 0 , m m,s <i,S> l,s d,s> ' 

. we obtain the following expression for the field · e, written in terms of the dynamic Green 
potential K: 

(4.17) 

The expression for v we obtain immediately from (3.35)3 : 

(4.18) 

From (4.17) we can obtain the strain field of a dynamic disclination given in terms of the 
source functions <1, 8, J, I; it will be published in [14]. 
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