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Diffraction of a plane harmonic SH wave by semi-cylindrical layers

U. GAMER (WIEN) and Y. H. PAO (ITHACA, N.Y))

THE PLANE problem of the interaction between a half space, several infinite coaxial cylindrical
layers, and an inclusion under the excitation of a plane harmonic SH wave is dealt with by
means of the method of wave functions expansion. For one layer and inclusion displacement
as a function of space and time is derived explicitly. Furthermore, the three special cases half-
space—elastic layer—rigid inclusion, half-space—elastic layer—cavity, and half-space—rigid
layer — elastic inclusion are considered.

‘Rozwazono plaskie zagadnienie wspéldzialania pomigdzy poOlprzestrzenia, szeregiem nieskofi-
czonych, wspdlosiowych warstw walcowych oraz inkluzjg, poddanych dzialaniu p!askiej, har-
momcmej fali SH. W przypadku jednej warstwy oraz inlkuzji wyznaczono przemieszczenie
jako jawna funkcje¢ zmiennych przestrzennych i czasu. Rozwazono nast¢pnie trzy przypadki
szczegblne mastepujacych ukladéw: polprzestrzefi—warstwa sprezysta—sztywna inkluzja,
polprzestrzefi—warstwa sprezysta—pustka oraz polprzestrzen—warstwa sztywna inkluzja
sprezysta.

PaccmoTpeHa IUIOCKAsi 3a/jaua B3aMMOJEHCTBHA MEXAY NOJYNPOCTPAHCTBOM, pAfoM Gecko-
HEUHBIX CJIOEB M BH/IOUEHHMEM MOABEPIHYTHIX AeHCTBHIO IUIOCKON HapMOHMUYECKOH BOJHBI
SH. B ciryyae ofjHOTO CJI0A H BIIOUYECHHA ONpeJiefieHO MepeMellenne, KaK ABHYIO0 (yHKImIO
NPOCTPAHCTBEHHBIX NEPEMEHHBIX M BpeMeHH. 3areM OGCY)WICHBI TPH YACTHEIX CJIydyas clie-
OYIOIIMX CHCTEM: MOJYNPOCTPAaHCTBO — YNPYTHH CJIOH — YKECTHOE BKIIOYEHHE, NOJYIpO-
CTPaHCTBO — YNPYTHH CNOH — NMycToTa H NOJYNPOCTPAaHCTBO — YHECTKHH CJOH — ympyroe
BKJIIOYEHHE.

1. Introduction

THE MOTION excited by an earthquake is influenced strongly by inhomogeneities, e.g. inclu-
sions or layers of different properties, in the soil if the ratio of the wavelength of the inci-
dent seismic wave and a characteristic length of the inclusion is not too large. Inhomo-
geneities may result in amplification of the surface motion due to the combination of ma-
terial properties, frequency and angle of the incident wave, and focusing. Heavy and “hard”
foundations exhibit smaller amplitudes than the surrounding soil. The knowledge of pos-
sible patterns of the surface motion is essential in designing earthquake resistant structures.

To interpret the measured surface motion a mechanical model is needed. The simplest
nonhomogeneous model consists of horizontally stratified layers. It is applicable if the
depth of the layers is approximately constant and their lateral extension large compared
to the depth. In this paper the two-dimensional problem of the interaction of several infi-
nite coaxial semi-cylindrical layers with the half-space under the excitation of a plane har-
monic SH wave is considered. The solution gives analytical expressions for the steady state
displacement as a function of space and time. Therefrom stress is derived easily. As long
as the wavelength of the incident wave is not too small it is not difficult to evaluate the
results numerically. For the simpler problem of the diffraction of plane harmonic SH
waves by a semi-cylindrical inclusion in a half-space, numerical results were given by
TRIFUNAC [1] and by GAMER and Pao [2].
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2. Statement of problem and solution

The coordinate system is chosen so that the z-x plane coincides with the free surface
of the half-space, the z-axis being the axis of the cylindrical layers. The y-axis shows inside
the half-space (Fig. 1). Half-space, layers, and inclusion are considered homogeneous
isotropic elastic materials. The radius a; separates the layer numbered j (*) with density o
and shear modulus x4’ from the layer numbered j+ 1 with density o/*! and shear modulus
u?*1. The superscript 0 identifies the half-space and m+1 the inclusion. A plane harmo-
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nic SH wave incident under the angle of emergence y [3] hits the first layer and is refracted
and reflected at the interface. Refraction and reflection causes vibration of all the layers
and the inclusion.

The equation of motion in anti-plane strain

u=0, =0, w#0

is reduced to the single scalar wave equation

1) Vi = e

where ¢ = J/uu/o means the velocity of shear waves in the material under consideration.
The solution has to comply with the boundary conditions: At “welded” surfaces, displace-
ment and shear stress are continuous. At free surfaces, the shear stress vanishes.

The half-space is excited by an incident (i) plane harmonic wave

2.2) W@ = Wellko(xcosy—ystny)—or] k“’T il

propagating along the unit vector
n¥ = cosye,—sinye,,

W being the amplitude, k the wave number, and w the circular frequency. In the steady
state the motion of each material point is harmonic in time. The factor e~*** is henceforth
omitted.

(") Superscripts are probably not misinterpreted as powers.
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The incident wave is reflected (r) at the free surface of the half-space y = 0 which is
equivalent to the superposition of a second plane SH wave propagating along

n") = cosye.+sinye,.
It is advantageous to use cylindrical soordinates
re® = x+iy,

since the boundaries are surfaces of constant coordinate in that system. The incident wave
has to be expanded into a Fourier series [4, 5]

(2.3) W = W Y e, i, (k°r)cos (0+7),
n=0

where J,(kr) designates the Bessel function of the first kind of order n» and argument kr.
€, is defined as

1, n=0
"=l n=1,2,3...
The sum of incident and reflected waves which is no longer a plane wave is
oo
(2.4) WO 4w = 2W D e,i"],(k°r)cosny cosnf.
n=0

To find expressions for the scattered wave and the vibration of the layers and the inclu-
sion the equation of motion, for time harmonic displacement w(r, 6) the Helmholtz equa-
tion

2w 1 ow 1 &w

e 0N W
or? +r or +r’ 062 B0

@2.5)

is considered once more. By separation one gets as suitable solutions the wave functions
Jo(kr)cosnf, Y,(kr)cosnf,

which satisfy for integer separation constant n the condition of vanishing shear stress oy,
on the free surface § = 0 and § = =. Y,(kr) is the Bessel function of the second kind.

The wave functions (multiplied by e~***) mean standing waves with nodal lines in radial
and circumferential direction. The displacement in the layers is a combination of such
standing waves which is, generally, not a standing wave. Since bounded the displacement
of the inclusion does not contain the terms Y,(kr)cosnf. A wave travelling outward in
radial direction, e.g., the wave scattered by the first layer, is represented by

H{"(kr)cosnb,
where
H{M(kr) = Jo(kr)+iY,(kr)

is the Hankel function of the first kind(?).

(*) Since the Hankel function of the second kind is not used, the superscript (1) is omitted in the
following.
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The displacement in the half-space, layers, and inclusion is then, respectively,

n=0

wo = ZWZ[S.:"J,.(Hr)cosny+ A, H,(k°r)]cosnf,

n=0

(2.6) w = —2W D [CLI,(kIr)+ DiY,(k'r)]cosnf),

' o0
W = —2W D Cl L, (k™ ir)cosnd
n=0
The factor —2 in w! to w™*! is arbitrary.
The conditions of continuity of displacement and shear stress
= i+l
Q.7 jow oWt b =g
o =8 T

give the 2(m+1)n, n — oo, unknown complex constants 4,, C}, Dj. Equating the coeffi-
cients of cosnb, one finds the following system of equations (3):

H,(K°a) A, + Ju(kla,) CL+ Ya(k'ap) Dy = — &,i"J,(k%a,)cosny,

Hy(ka) Ay + “‘o';:o Tikaq) Ci+-£ X ¥, Kiaq) D} = —eni®Ji(KPac)cosny,
(2.8) J.(kJaJ)CH Y.(k'a;) D}—Ju(k’ “a;)Ci“ —Ya(k’*'a)) Ditt =0,

' , p"“k"‘” , . J+1fi+1 . .
T Cl+ Yika) D~ Gt - E— Y i) Dl =0,
Ju(k"aw) C3 + Y, (k™am) D} — -".(k"'“ﬂm)cf“ =0,

ll‘i‘lk."i'l

Ja(k™ay) Cr+ Yo(k™am) DI — ———Ji(k™*'a,,)C+! = 0.

uk"
Since J,(0) = 0 forn =1, 2, 3 ... the motion of the centre point of the inclusion is inde-
pendent of the angle of emergence.

If there exists only one layer the explicit solution is
AL , AP , 4@ . A9
29 M=o, C=S-, D=, a=T-

with

An = B'(.l)Bj(’z)__B'(':’)Bl(")’
A = BOBO - BOBD,
49 = BB,

49 = ~ BB,
49 = BB,

(®) ‘means derivative with respect to the argument.
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where

11-1
BY = ;‘oko Ho(k%a0) Tk ao) — Hi(k°a0) Jo(k'ao),

B = :k: Y(k'al)J'(k’al)+Y'(k‘an)Ju(k’al),
B — ﬁ]{ k%aq) Yy(k'ag)— Hy(k%ay) Y,(k'ay)

n poko n 0/%n 0 n 0/ En 0/
B =~ plkl b, w(k*ay) Ju(k*ay) + Ja(k*ay) Jy(k?a,),

B® = s,f-cow[ e - 0a(Koa5) Jictao) + (ka0 , (klﬂo)]

ﬂkﬂ "
B{" = ¢,i"cosny[— Hy(k°ao) Jy(k°ac) + Hy(kao) Ju(kao)],
B® = J(k'ay) Ya(k'a)—Ju(k'ay) Yo(K'a,).
The general result implies a rigid layer or inclusion as a limiting case of the elastic ma-
terial for x — oo and, on the other hand, the inclusion is replaced by a cavity for u = 0 [5].
In the following three special cases are dealt with.

B® =g, f”cosn}’[ £k k°ao) Y, (k'ao) + Jy (K%a0) Y, (klao)]

3. Special cases

Case 1. Half-space—elastic layer—rigid inclusion. The displacement of the rigid
inclusion

3.1) w? = —2WC3
is governed by Newton’s second law

(3.2 gzi;?afii?’ =alfa,‘,(al)d9.
o

Unknown are 4,, C!, D!, C3. The conditions of continuity of displacement and stress
at r = a, yield the first two equations (2.8) as before. At r = a, displacement has to be
continuous and independent of 6.

That means for n = 1,2, 3 ... the third equation

(3.3) Ju(k*a,)Cr+ Yo(k'a,) Dy = 0.
The solution is given by (2.9) and

ol 2 (K%a0) B — Hi(k°ao) B,

Y
4, = uko

,,:o Ja(k®ag) B + Ty (k°aq )Bml],

AN = s,,f"cosnyl
AP = B{"Y,(K'a,),

A.‘is) = -———Bp(-an(kial)
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with the abbreviations
B'Y = Ju(k*ao) Ya(k'ay)—Y,(k'ao) Jo(k'a,),
B{'? = J,(k'ao) Ya(k'a,) = Ya(k'ao) Ju(k'a,).
For n = 0 the additional two equations are
Jo(k'a,)Cé+ Yo(k'a,) Do— C§=0;

1

(3.4) o
Ji(k'ay)Ch+ Yi(kia) Db+ ~ ik C3 =0.

2
From the above equations and the first two (2.8) follows
4o = BG"BE” - Bg»B{'?,
A8 = BSBO—~ BEBE,
A = BEVBG,
4 = —BOBY,
A = B{VBP,

where
2
B&g} ] % -g—lklﬂl Yo(klal) + Y(;(klal) ’
2
B§O) = %g—lk‘a,.lo(klﬂx)+16(klal)-

The motion of the inclusion does not depend on the angle of emergence.

Case II. Half-space—elastic laper—cavity. The unknowns 4,, C,, and D, have to
be determined. At r = g, displacement and stress must be continuous. The first two equa-
tions of the general system (2.8) apply. At r = a, the stress o, vanishes which gives

(3.5) Ji(K'a,) CL+ Yi(k'a,) D} = 0,
and therefrom the solution is
A pk! H.(k° (13) ' (1,0 (14)
n = W)‘ n(k%ay) By'? — Hy(k%ao) By ™,

‘ulkl

1Ok° Ju(k®ao) BS' ) + J:;(koao)B.(.“’] >

AN = e,,:"'cosny[ —_

42 = BOY,(K'ay),
A9 = B (K'ay)
with
B = J(k'ao) Ya(k'ay) — Y, (k'ao) Ju(ik'a,),
Bi'% = J.(k'ay) Ya(k'a;,)— Yy(k'ao)Ja(k'a,).
Case III. Half-space—rigid layer—elastic inclusion. The rigid body displacement of
the layer is designated by
(3.6) w! = —2WC}.
It moves according to Newtop’s second law

EL T

3.7 o' 5 @ —aD) it = ao [ 0% (a0)db—a, [ (@) db.
0 0
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Unknown are 4,, C$, and C?. Continuity of displacement at r = @, and r = g, means
that w°(a,) and w?(a,) do not depend on 6.

Therefore
. -n Jn(koao) L. —
A,‘—- — &pl Cﬂsﬂy'm, C,. —0, ﬂ—1,2,3...
The complete system of equations for n = 0 is
Ho(k%ap) Ao+ Cs = —Jo(k%y,),
1 2_ 2 252
(.8) Ha(k**ao)Ao-%%k" S+ ﬁo’; o Jo(ka)CE = ~Ji(K°a),

Co— Jo(k?a,)C3 =0
with the solution
4y = Ho(koao)Bals}—Hé(koﬂo)-fo(kzﬂl)-

AGY = —Jo(k%ao) BY' ¥ +Jo(k°ao) Jo (k*ay),
AS“ = B&T’Jo(kzal),
A® = B
where
urk? a;

BE‘)”J —

1 2 2
b )= 5 25k Sy ).

Neither the motion of the rigid layer nor the motion of the elastic inclusion is influenced
by the angle of emergence. The displacement of the inclusion exhibits the pattern of
a standing wave with nodal cylinders. This fact is of interest to earthquake engineering,

because structures centered at such a nodal line are excited into torsional oscillations [1].
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