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Analysis of non-linear dynamic systems in the spaces of square
integrable functions

M. PODOWSKI (WARSZAWA)

THE DYNAMIC system described by a set of integrale quations is considered on the basis of an ana-
lysis of the general operator eqnation in a Banach space. Depending on the various forms of
integral operators, the theorems are formulated and proved concerning the conditions under
which the set of equations considered possesses a unique solution within the space of vector
functions square integrable along the segment <0, T, for T < o0.

W oparciu o analiz¢ ogblnego réwnania operatorowego w przestrzeni Banacha rozpatrzono
uklad dynamiczny, opisany ukladem réwnan catkowych. W odniesieniu do réznej postaci ope-
rator6w caltkowych sformulowano i udowodniono twierdzenia okreslajace warunki, przy spel-
nieniu ktorych rozwazany uklad réwnaft ma dokladnie jedno rozwiazanie w przestrzeni wektor-
funkcji catkowalnych z kwadratem na odcinku <0, T> dla T < oo0.

Onupasice Ha aHATH3 OGIICrO ONEPATOPHOTO YPaBHCHWA B GaHAXOBOM IPOCTPAHCTBE PAacCMOT-
PeHa MHAMMYECKAA CHCTEMA, OMHCAHHAA CHCTEMOH MHTErpagbHbIX ypasHemwif. ITo orHome-
HHIO K DPa3HOro BR/a MHTEIDANEHEIM ONEpaTopaM COPMYNMpPOBaHBI M [OKA3aHBI TEOPEMBI,
OTpeeSISTONIHE YCIOBHA, IPH YAOBJIETBOPEHAN KOTOPBIM PacCMaTpHBaeMas CHCTEMa ypaBHe-
HHI MMEET TOYHO OHO PelleHHE B NPOCTPAHCTBE BEKTOP-(QYHKUMIL MHTEIPHPYEMBIX C KBaJpa-
Tom Ha ortpeske {0, T) mma T< o0.

1. Introduction

THE NOTION of stability, which is usually introduced in connection with dynamic systems
described by differential or integro-differential equations [1], is most frequently understood
in the Lapunov sense. It may be shown that a qualitative analysis of a wide class of equa-
tions governing various dynamic processes may be considerably generalized by introducing
the notion of stability in a Banach space. Depending on the choice of space to be consid-
ered, conditions of the ordinary or asymptotic Lapunov stability may be determined with
respect to the sets of ordinary differential equations [2], as also the conditions according
to the generalized definition of Lapunov (integro-differential equations).

One of the most interesting problems which, in addition, yields an accurate and com-
paratively simple solution with respect to a wide class of equations is that of determining
stability conditions in the spaces of square integrable functions. For instance, let us con-
sider the dynamic system described by the equation

(L.1) Fx =z,

z being an element of a certain Banach space X, and F denoting an operation defined on
the elements of X with values from within the same space. Let x = x(¢) = u(t)—u, denote
the deviation of a characteristic value of the system from the position of equilibrium, and
z = z(t) — the perturbation. Now, in order to determine the stability conditions in the
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space of continuous and bounded functions, we must ascertain whether the system dis-
placed from the equilibrium position will oscillate about it or even show a tendency to
return back to that position, lim u(f) = u,. Considering the problem in a space of

=00

square integrable (in the Lebesgue sense) functions in the interval <0, o0) and taking
into account the inequality (true for arbitrary T > 0)

T T T
3 fetrsc frnmurac
Tafu(:)drsTo O —udr+ [ i

T T 2
+2u, L’P af [u(t) —uo)?dt = ‘l/-;:of [u(t) —uo)?dt +uo(

it may ecasily be observed that the condition

[ 1x@)rdt <

0
yields:

. T 12
12) lim ;, f lu(r)l’dt] = s
0

T

This means that the system returns to the equilibrium position asymptotically. Convergence
understood in the sense of the Eq. (1.2) allows, by contrast with the ordinary convergence,
for arbitrary values of the deviations provided their times of duration are sufficiently
small. Determination of such properties of the solutions is of primary importance for
numerous models of dynamics of physical processes.

2. Formulation of the problem

A particular case of the Eq. (2.1) has the following form:

@1 x—A4 D) G,x? =z,

p=2

A being a linear bounded operator defined on X with values from within the same space,
Ae(X->X), and G (p = 2,3, ...)—analogous multilinear operators, G, € (X? = X).
The symbol G, x? is a simplified notation for G,(x, x, ..., x). General analysis of the Eq.
(2.1) was presented in [4] }where the following existence and uniqueness theorem is given:

=]
THEOREM 1. If the series 3, IG,ly* has a positive radius of convergence then, there exist
p=2

such numbers o and B that for every z satisfying the inequality |z|| < o the Eq. (2.1) has
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in the sphere K(0, f) = X exactly one solution x* € X which continuously depends on z and
constitutes the limit of consecutive approximations:

a0
Xags = 2+A4 ) Gk
p=2
Here the term x, may be an arbitrary element of the space X satisfying | x| < y*, y*,
being the unique non-negative solution of the equation:

o0

y=141 D 1G,ly? = lz1.
p-z
Solution x* satisfies then the estimate
[x* < y* < B.

From the theorem it follows that for each equation of the form of (2.1) there exists
such a continuous function f, defined and non-decreasing along the segment <0, ),
that for each z such that |z]] < o the inequality |x*] < f(liz]) holds true; here f(0) = 0
and f(o) = B.

In this paper we shall discuss and investigate the properties of the Eq. (2.1) in the
case in which X is a space of vector-functions x(t) = {x;(‘)}(l-l,...,l}’ square integrable
in the Lebesgue sense along the segment (0, T); here, 7 may be finite or infinite. The space
will be denoted by the symbol L}(0, T), and in the case of T = co—by the symbol L3,.
The norm of x is given by the formula:

M T i
Il = {3 [ by ™.
=10

With respect to the space thus defined, the following multilinear operators will be
considered:
Gp = {Gpl}(.l'=1,.‘. M) pP= 1.29 see

M M
2.2) Gl = D = Y, Gowin s visv Do)

my=1 mp=1

Operators Gpim,...m, assume one of the following forms:

(23) prml...m,(xlmp a5y xPM.v)

] 1
— f J‘kphll...m, (I, Tiy oeey r')xlml(rl) i xnp(rp)dtl d‘l",
(1] o

p 1
Q) GotmimyCamys s Xpmy) = [ [ [ Xty (=2 g, (7

I=1 0

(25) Gp!ml...m, (xlmp LTy xM')

r t
= f ...fk,;,,.,“_,,.,('r,, ey Tp) X1 (= Ty) .. Xpm, (t—T,)d7, ... d¥,
0 0
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integration in the Eq. (2.4) being understood in the Stieltjes sense. With p = 1 operator G,
becomes linear, and hence the above formulae contain also the form of the operator 4.
It is easily seen that with such definitions of the operators Eq. (2.1) takes the form of a sys-
tem of integral equations. From the Theorem 1 it follows that in order to ensure the
existence and uniqueness of solutions of that system it will be sufficient to formulate the
conditions under which the operators A and G, are multilinear operators mapping the
space L%(0, T) onto itself (under the assumption that the radius of convergence of

N G|l y* is positive).
p=2

3. Analysis of integral operators

From a lemma proved in [4] it follows that the investigation of operators in vector
spaces may be reduced to the investigation of scalar operators, thus the latter ones should
be considered first of all. It corresponds to the case of a space L}(0, T) which will be de-
noted, for the sake of brevity, by the symbol L?(0, T) (if T = co, then the notation will
be L?).

3.1. Operators in the space L(0, T)

Let us consider the operator:
t

G [Gxas s ¥ @) = [ o [, 74, oy 72120 o xp(p) Ty .. d.
o 0

THEOREM 2. If
Tt t

[] o [ kGt 71, e, TPy .. drydt < o,
00 ]

then the operator (3:1) transforms [L*(0, T)F inte L?*(0, T) (forp = 1,2, ...), and

Tt t
(3.2) 1G A <{f [ ... fIktt, 7, ..., TPAT, drydr)
00 o

Proof. Letp =1, If y(¢) = [G,x](t) = jk(r, 1) x(7)dx,

then
T T 1
[ worar= [ |[ ka, Dx(D)dd] dr.

From the Buniakovski-Schwarz inequality, it follows that

t

|[ k@, Dx@del? < [ 1k, Dde- [ x(@)Pdr,
0 L]

0
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whence
Tt T a

T t
Wiz = [ y@Prde< [ [ 1k, DPdeds - [ x(@)Pde = [ [ [k, DPdedrx?,
0 00 0 00

Tt
which proves that G, € (L2(0, T) » L(0, T)) and ||G, || < | 6[ [ Ik(t, ©)|*dvdt}". In the
0

case of p > 1, it suffices to assume

y@) = [ [k, 71, o, )x1(20) o xp (2 Ty .. di
0 o

and to apply the Buniakovski-Schwarz inequality p times. This leads to:

i=10

T T 1 t Pt
iz = [ yorde < [{f ... [k, v, 2dn o dr, [ | [ randa
(1] 0 0 0

T

y

p T .
K(t, T4y ooy TPdTy .. drydt- [ | [ xio)1de
0

i=1

o

-

! P
o [ 1kt 7y, oy Ty . dryar [ | 102,
0 i=1

(-}

which proves the theorem.
For the operator

(33) Gy as oy x )1 () = [ ] [xiCt—r iz,

i=1 9

an analogous theorem may be formulated:
THEOREM 3. If H(t) are functions of bounded variation (Var h; < oo for i =1, ..., p),

<0, w)

and if for an arbitrary iy = 1, ..., p is fulfilled the condition
(.4) sup [ |Ki[il0— 3 )] [ kiG] @, < 0, i io,
° _w i i

in which Ki(s) = [ e=*'dh,(t) is the Laplace-Stieltjes transform of the function hi(f), then
0
the operator (3.3) transforms [L*(0, T)J® into L*(0, T, and

3.3) 1G,I < {sgp_f K [ilw— X 0] [ KitGood| d@} ™, i io.

Symbol dw; means that the integrals appearing in the Egs. (3.4), (3.5) are multiple (here
of the order p—1). Such notations will be used throughout this paper in the cases in which
no ambiguity could result.
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Proof. Let us consider the function
P P 4
¥ = [[n0) = [[ [ xit=zdn(z.
=1 i=1 0

If now another function y*(¢) is introduced,

P t

roy=[lno=]] | xt-tdnw),
i=1

i=1 max(0,t—-T)
it may then easily be observed that y*(r) = y(¢) for t €0, T') and
T o,
[ y@prde< [ y*@)par
0 0
If x; € L2(0, T), then

of |x;(0))%dt = % _;[ |Xir(jw)|?deo  (Parseval’s formula)

T
with X;r(jo) = [ x;(¢)e~4*'dt. We obtain the equation
0

© 1 [ X
YrGoy= [ et [ x~w)an(z)dt = | e dh(2): [ xi)eidr
0 max (0, t—T) 0 0

= Ki(jo)Xir(jw).

By the method of induction, we may prove that for arbitrary i, = 1, ..., p the following
relation holds:

Y+ (jo) = f POl = s f velifo- o)) [ [¥#Goraw,
0 —00 i i

- e [ - Sl [Trertilfo- So)) [ xeer

(i# ip).

Using now the Buniakovski-Schwarz inequality we establish the following estimate

fo- Sl [ r

7
x i Xior| jlo— wy h Xir(jo)Pdw;  (i# i),
% 1 ' i

-]

PG < e [ i
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whence

o

/

T 0
[ opae< [ o< sup
0 0 ?

- Sl [ [ s

P ©
1 ; s %
XH%J%W%4mm

which proves the theorem.
In the case of a linear operator (p = 1)—i.e., the operator

r
(3.6) [4x] (6) = [ x(t—7)dh(2)

0
and with T = oo, the inequality (3.4) is transformed (cf. [5]) into the equality
3.7 4]l = sup |K(jw)].

With respect to the last of the operators

B8) G, s 5N () = [ [XiU=7) . X, (4= T )K(xs, ..., Ty ... d,
0 0

[ 4 r
= [ J k=71, oo s =722 ... %y (2 ), ... dy,
0 0

the following theorem may be formulated:
THEOREM 4. If

o0 o0
f f kl(zys .. Tp)ldry ... dr, < 0
o 0

and for arbitrary iy = 1, ..., p, is satisfied the condition

® . m=ig+1,...,p,
sup f |K[jw.,j(m—2w;),jw,.]| dai < o, = i°+l’ revs Py
¢ =e : i# io;
K(sy, ..., ;) being the p-dimensional Laplace transform of k(ty, ..., t,), then the operator
(3.8) transforms [L2(0, T)) into L*(0, T), and

. k=1,..i0-1,
(39) 16l <{sup [ lK[jw;,j(w-—Zmi),jwm]rda‘}m’ i 41 i
~ i# io.

Proof of this theorem will be preceded by the following lemma:
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Lemma 1. If 9(ty, ..., t,) is an absolutely integrable function in the region {0, ), ...,
<0, )}, and the function v(t) = v(1, ..., t) is absolutely integrable in the interval {0, ),

then
V(jo) = e f P jonsi (0= D o). jou]da,
-0 i

P
_ 4 o —i X e

V(jor, jop) = [ oo [ Bte, ost)e =ty ...dt,,
0 0

where

o0

V(jo) = [ o(t)e-i*ar.

Proof of the lemma. Since

b J 5 ol
0ty .stp) = (2."}' f f V(jwy, ..., joy)e =1  do, ... dov,,

then

~ it X e
() =9(t, .., 1) = (2::}' f f V(joy, -..,jop)e =1 do, ...dw,.

—o0

On substituting @ = }__,' w;and 0, = 0 — > w;, we obtain:
istlg

o(t) = T:n— f{(z'ﬂ;'_l _f ?[jm*,j(w— Zm;),jw,_] dﬁ;}e’”'dw

-]
which, in view of o(t) = (2n)~! f V(jw)e! dw, proves the lemma.

Proof of Theorem 4. If

1

y@) = f f k(ty, ..., 1) X3 (2= 7)) ... X, (t—Tp)d7, ... dvp,
0 0

and x; € L*(0, T) for i = 1, ..., p, then by introducing the functions

n tp

U(ty, s tp) = f f k(zy, .o T) X1 (t1—T1) .. Xp(tp—Tp)dT,y ... dp,
max(©, t,~T)  max(@, tp—T)

o(t) = 3(t, ..., 1),
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we may observe that:
Do(r)=y(r) for te0,T),

o Q@ —j E' il fy Ip
2) V(jor, orjp) = [ ... [ & 1= | I B AR PR
0 0 max(0, 1} —T) max(0, tp—T)

g o —J Lp‘ T
e Xp(tp—Tp)dTy ... drpdty ... dt, = J. f K(Tis 0 Bp)e =1 gy, .. dr,
0 0

T T P
« [ xtye=iodr ... [ x,(t)e~tortdt = K(joy, ..., jo) [ [ Xix ().
0 i=1

0

Making use of the lemma previously proved, and applying the Buniakovski-Schwarz
inequality p—1 times, we obtain the estimate:

VG = | ] f k[ jori o~ Zw.).jw.]X.,,r [j(w—Zw.)]
<[ [xaGodao < f Klionsfo= o) sou]

aa ] | f Xir G

(1o D]

i

2l

Xi,r

whence
T o0

| opa< [ o= o [ oy
0 0 —o

<sup f|x[jw*, j( —Zwi), jm,,]rda, H {% f !X,f(jw,)lzdmg}.
-0 i 2 — o0

From this inequality, it may be concluded that G, e ([L*(0, T)}? - L*(0, T)), and that
the estimate (3.9) holds true, which concludes the proof.
With p = 1 the operator (3.7) becomes a particular case of the operator (3.6) (it suffices

1
to put A(?) = f k(z)d7) and the remarks following the Theorem 3 hold true once more.
0

3.2. Operators in the space L3,(0,T)

As already indicated, properties of the operators in vector spaces (M > 1) follow from
the properties of their component operators in the space L?(0, T): if all the operators
Gpim,...m, transform [L2(0, T)) into L?(0, T), then the operator G, transforms [L3(0, T))°
into L}(0, T). The corresponding theorems then have the form:
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THEOREM 5. If the operators (2.3) transform [L*(0, T)I into L*(0, T), then the operator
(2.2) transforms [L3; (0, T)J? into L3 (0, T), and

M M 1 t
(.10) G, < {sl’ Z. Z;afaf lJfi Kbl B 2, ity ]

Proof. It will be sufficient to prove the validity of the estimate (3.10). This follows
directly from the inequality

M T {f;‘ M !
“Gp(xls sy xp)llz < Zf {2, 2 f fkpim,...rup(‘: Tis wensy tp)
i=10 m=l mp=10 0

Xx“"l(tl) xl“'p(r?)drl dTpIZ dt

¥ 3.

i=1 m=1 mp

|k pimy ...mp (t, Tiyeees Tp)xlm,(rl) xpm,(Tp)dtl dtpizdt

b<
cg___“q

I

1

g

T t
f f ...flk,;-,,,.___,,,(t, Tyy ey TR2ATy o drpdt
00 o0

N

[ 5]

M: .“__h
Ma

)
k.
I
E ]
I

L

T <
< [ Ximy @12 .. [ 1Xpm, (1)t
0 0

M

-

b=

M T
< oo XL o] Veptmy gty T o TP . dryde
00 0

" M T M T
« O [ xam (OPdt . D) [ 1Xgm ().

mym1 0 mp=110

THEOREM 6. If the operators (2.4) transform [L*(0, T))? into L*(0, T), then the opera-
tor (2.2) transforms [L} (0, T)J into L3 (0, T), and

M ©
j x 1/2
: mg,: S::P _;[ ’Kmo [J'(w - %‘wm)] Im? Km(]wm.)fzdam} ,
my 5= my

THEOREM 7. If the operators (2.5) transform [L*(0, T)) into L*(0, T'), then the operator
(2.2) transforms [Lf; (0 T)P into Ly (0, T), and

WIQZ szmmwm@zwmwmi

i=1 m=1 mp=1

-
-
-

my=

M M
@ IGI<{} 3.

i=1 m=1

= l, cevy m‘)—l;ﬂ = mo+1, ey Py # my.

Proofs of both these theorems are similar to those in the case of Theorem 5. If
p = 2, then a stronger estimate of the norms may be established:

rozls{S‘[sup f IKaljoos, (@ —w)lladoy]2]

i=1
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Here

Kyi(jo,, jws) = {Kziml(jwl)Kzim;(ij)}(ml.mzzl.,...M} for operator (2.4),
and

Kzi(joy, jos) = {Kzimm, (jooy, j©32)}mm,y=1,..,m for operator (2.5),

the symbol || ||, denoting the Euclidean norm.
In the linear case (p = 1), operator (2.5) becomes a particular case of operator (2.4).
The following norm estimate may then be given [5]:

4] = G\l < sup [K(jw)]l..

Here K(jw) = {Kim(j®)}d,m=1,..,my, and with T = co the inequality is transformed into
an equality.

4. Final conclusions

The set of theorems presented in Sec. 3 determines the conditions under which the
operators considered transform the spaces of square integrable functions into themselves.
From Theorem 1 it follows that if the assumptions of any of these theorems are satisfied,

o

and the radius of convergence of ) |G,|y” is positive, then the Eq. (3)—which assumes
p=2
the form of an integral equation or a set of integral equations—has at a sufficiently

“small” z—i.e., at

M T
i=1

[ mpra)” < o
0

—the unique solution x* € L4(0, T), M = 1, with a norm satisfying the estimate

“4.1) llx*ll < £z,

f being a non-negative continuous function, defined and increasing in the interval {0, o)
and such that f(0) = 0. The value of o depends on the norms of operators 4 and G,, and
so—according to the proof of theorem 1 [4]—the better the estimates of those norms
the greater will be the permissible values of a. In practical applications both the x and
the estimate (4.1) may be evaluated numerically for each particular equation.

Note that the form of the Eq. (2:1) contains a wids class of integral, differential
and integro-differential equations. In particular, the following equation, frequently encoun-
tered in practice may be reduced to such a form:

t

42 x()- [ k(t=D)x(@)dr = y(0)+
0

8

f r ko (=T g eusy =T N(%7)

0

(=]

r=

o X(Tp)dry L dTy.
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This is a non-linear Volterra equation, the linear part of which possesses exactly one so-
lution if, and only if, 4 is a regular value [6] (in that case—with respect to the space
L?*(0, 7)) of the linear operator 4,

t
[4,x](1) = [ky(t—x(z)dr.
o
The solution may be represented in the form

(1) = [y)(1) = of k(t—7)y(z)dr.

Here A = (AI—A4,)~", and I is the identity operator. A similar procedure applied to the
Eq. (4.2) with the substitution z = Ay yields the Eq. (2.1). The same results may also be
obtained in a more general case—i.e., for a system of equations and for different forms
of the integral operators.
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