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Two-dimensional, two-phase flow with phase transition in a de Laval 
nozzle 

M. BRATOS AND M. BURNAT (WARSZAWA) 

THE AIM of this paper is to calculate the two-dimensional, non-equilibrium, two-phase tlow in a 
de Laval nozzle and to compare it with the one-dimensional approximation. The following two 
types of a tlow are considered in two nozzles of different shapes: 1) the pure water steam tlow 
with a relative gas expansion rate of an order of magnitude of p ~ 1 05 1/sec. 2) the moist air tlow 
with a relative gas expansion rate of an order of magnitude of p I"''J 103 1/sec. Numerical results 
for the two-dimensional tlow are compared with experimental ones. They point to a fact, that 
a two-dimensional approach changes appreciably the qualitative picture of the diabatic tlow 
compared with one-dimensional one. The two-dimensional results agree better with experimental 
ones. 

Notation 

Celem pracy jest numeryczne znalezienie rozwi~ia dwuwymiarowego, dwufazowego przeplywu 
z nier6wnowagowe& przemiane& fazowe& (kondensacje& albo krystalizacje&) w dyszy de Lavala i po­
r6wnania go z rozwie&Zaniem dla jednowymiarowej aproksymacji. Rozpatrywane se& dwa rodzaje 
przeplyw6w w dyszach o r6:Znych ksztaltach: 1) przeplyw czystej pary wodnej charakteryzuje&CY 
si~ wzgl~e& szybko§cie& ekspansji ~u: jJ,..., 105 1/sec, 2) przeplyw wilgotnego powietrza 
charakteryzuje&CY si~ wzgl~e& szybko§cie& ekspansji r~u jJ ,..., 103 1/sec. Rezultaty numeryczne 
dla dwuwymiarowego przeplywu se& por6wnane z wynikami eksperymentalnymi (dla wilgotne­
go powietrza) oraz z rezultatami numerycznymi dla przeplywu jednowymiarowego. Wskazuje& 
one na fakt silnego wplywu uwzgl~nienia dwuwymiarowo§ci na jako§ciowy obraz diabatycz­
nego przeplywu. Rozwie&Zanie dwuwymiarowego przeplywu daje lepsZC& zgodnosc z doswiad­
czeniem niz rozwi~ie przeplywu jednowymiarowego. 

B pa6oTe CTpOHTCH qlfCJieHHbiM nyTeM roJYMepHoe ~ay$a3Hoe TeqeHRe c HepaaHoaecHhiM 
<Pa3oBbiM nepexo~oM B coiiJie Jiaaam~. Pe3ym.TaThi cpaBHRBBIOTCH c o;:ntoMepHbiM. npH6JIH­
meHReM H C 3KCIIepHMeHTOM. 

(y, s) coordinates system, s-coordinate along streamline, 
V = [u, v] velocity vector of the tlow, 
l!m, (!, p, T density of two-phase mixture, gas density, pressure (air+ water vapour), 

gas temperature, respectively, 
l!c density of condensed (crystallized) phase, 
1-' mass fraction of the new phase (liquid or solid phase), 

p,, Pi the partial pressure of water vapour and air, respectively, 
Tn drop temperature (for "surface-averaged" drop), 
PD (hypothetical) ambient pressure which would be necessary to keep the drop 

in equilibrium, both drop and vapour having temperature Tn. 
p00 (T) fiat-film saturation pressure corresponding to the temperature T, 

9t universal gas constant, 
w0 specific humidity, 
f/Jo relative humidity, 
k Boltzmann's constant, 

"'"' !li molecular weights for water vapour and air, 
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966 M. BRATOS AND M. BURNAT 

f'iv molecular weight (for· gas mixture), 
Yv• Yi ratios of specific heats (water vapour, air), 

9t 
R=Rv=-, 

flv 

m, Vc mass of one water molecule, volume of one water molecule, 
hm specific enthalpy for a two-phase mixture, 

hvc heat of phase transition (specific), 
cPv specific heat of the water vapour, 
cp

0 
specific heat of the gas (air+water vapour- stagnation point), 

c specific heat of condensed (crystallized) phase, 
t5 correction factor, 
r drop radius, 

r* critical drop radius, 
a surface tension (for a drop) 
I nucleation rate (per unit volume, per unit time), 
r "surface-averaged" radius, 

dr 
drop growth rate, 

dt 
L1(d, s) the surface of the cross-section of a stream tube, 

; condensation coefficient, 
cx, cxi thermal accommodation coefficients for water vapour and air, 

D, D1 , D 2 variables introduced to reduce the integro-differential equation of the 
condensation rate to four first-order differential equations, 

A* vertex distance. 

1. Model assumptions 

THE AIM of this paper is to calculate the two-dimensional, steady, non-equilibrium, 
two-phase flow in a de Laval nozzle and to compare it with the one-dimensional approxi­
mation. 

The following assumptions are introduced: 
1. The mass fraction of the condensed, incompressible phase is small. 
2. The gas in the flow is inviscid, non-heat-conducting and may be treated as a perfect 

gas. 
3. In the considered model, the bulk heat of condensation (specific, latent) is the differ­

ence between the specific enthalpies of the liquid and gas phases (he and hv, respectively) 
in spite of the fact, that temperatures of the liquid and gas phases are different. 

4. The liquid (solid) phase appears in the form of spherical drops or spherical pieces 
of ice. The drops do not deform during the flow and they do not interact with each other. 
There is no velocity slip at the surface of the drops. 

5. In the considered case of the moist air flow with supply parameters in the stagnation 
conditions: p 0 = 753.1 mm Hg, T0 = 290.8 °K, q;0 = 0.58, the temperature decreases 
down to about 40 °C below a temperature of the triple point. From earlier experimental 
work of other authors it follows that below- 40 oc there appears a non-crystalline form of 
ice which we regard here as ice spheres [I, 2, 3]. 
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6. A semi-empirical model of nucleation is assumed, which is a modification of the clas~ 
sical Frenkel, Zeldovich_nucleation rate [6]. 

This modification is confined to the introduction of the coefficient of proportionality 
obtained by comparing numerical· and laboratory experiments. In the case of moist air 
flow in the de Laval nozzle, there was the possibility to compare the numerical results 
with experimental data. For the flow of pure water vapour we use the classical Frenkel~ 
Zeldovich nucleation rate. 

7. It is not completely clear whether the appearance of the crystallized phase is con­
nected with the sublimation of ice crystals directly from the vapour (gas) phase, or with 
crystallization of the supercooled water drops which are created during the phase transition. 
The model of sublimation of clusters having the structure of ice with density f!c = 1.15 
g/cm3 is assumed [7]. 

8. The values of the mean molecular free path in the gas are appreciably higher than 
the sizes of water drops or ice clusters, hence the Hertz-Knudsen's model of exchange of 
mass and energy between two phases can be applied. 

9. Hill's model giving a possibility to introduce the idea of the "surface-averaged" 
drop radius is adopted [4, 5]. All drops of different sizes in a certain cross-section of stream 
tube have the same growth rate, which is equal to that of an "average" drop. 

To describe the meaning of a "surface-averaged" droplet radius, let us consider a 
streamline and a stream tube in the neighbourhood of it (Fig. 1). A symbol s denotes 
a coordinate along this streamline. A condensation process starts at s = 0, d denotes 
a cross-section of a stream tube at the point s = 0. All drops, which are convected by a gas 

X 

FIG. 1. 

through the stream tube cross-section at the points were created in the region (shadowed 
in Fig. 1), where 0 ~ s1 ~ s. 

Therefore the following definition of a "surface-averaged" droplet radius can be 
introduced: 

(1.1) 4nr2 = D*(d, s) 
D~(d, s) 
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where D*(d, s) denotes the cross-sections ftux of all drops through the infinitesimal stream 
tube cross-section LJ(d, s) and D!(d, s) is the all drops flux through this cross-section 
A(d, s)· 

10. According to ALTY, MACKAY and HILL [4, 8] the value of condensation coeffi­
cient E is taken equal to E = 0.04 and the value of the thermal condensation coefficient 
equal to 1 for pure water vapour. In the case of moist air flow, both thermal accommoda­
tion and condensation coefficients are taken ex = ex1 = E = I . 

2. EqaatioDS 

From the point of view of the numerical approach the y, s coordinates system is intro­
duced. Therefore the set of continuity, momentum and energy equations for two-dimen­
sional, steady, diabatic flow is as follows: 

(2.1) div(e,. V) = 0, 

(2.2) e,.(VV)V = -Vp, 

(2.3) ( u'+v') h,.+ 2 •• = 0, 

where 

(2.4) e - e ,. --~--· 
-Jt 

On the base of the assumption 3 the energy equation (2.3) is reduced to the equation: 

( 
u2+v2 I) 

Cp
0
T+ 

2 
-ph,c = 0. 

1 •• 
(2.5) 

The set of the Eqs. (2.1), (2.2), (2.5) is not full equations system for the two-phase mix­
tureflow. 

The equation of a state of a perfect gas: 

(2.6) 

where 

(2.7) 

and 

(2.8) 

p = eRT, 

91 
R=­p,, 

I - p 1 - ro0 ro0 -I' --=--+--, 
"''" l't f.t, 

must be added as well as an expression for the relative rate of formation of a new phase 
p,. along the nozzle. Therefore a nucleation rate may be introduced: 

(2.9) 1 = tJ (-.!!!._)2 
T-' ... / 2a { - 4na(r*)

2 
} 

kT r c V nm exp 3kT ' 
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where 

(2.10) r* = 2
a and R = ~ 

ecRTln(p.,fpa,) p., 

as well as the mass and energy conservation equations for the growing drop [4]: 

dr E ( p., PD ) 
(
2

.
11

) dt = ec Jf2nRT - Jf2nRTD ' 

(2.12) dr (~RT -h (T )) = ~p,K,RT + (1-~)p,K,RT 
dt f!c y,-1 D f1c D JfmRT y2nRT 

(1-~)p,K.,R[T+«(TD-T)] ~PDK.,RTD Pl«iK,R,(TD-T) 

where 

(2.13) 

and where 

y2nRT y2nRTD y2nR,T 

K, = 0.5(y1+1) 
,.,,-1 

(2.14) h,c = h,co+(c,,-c)(T-To), 

(2.15) PD = p,.(TD)exp( e.~~Dr ), 

( 
T ) c,~-c [( T0 ) ( c,,- C) h,co ( 1 1 )] 

(2.16) pUJ(T) = pUJ(T0) To exp T -1 R - ~ T- To · 

The rate at which a . new phase forms in the flow is deduced from the analysis of the 
nucleation process in a given fluid volume as well as analysis of all drops, which enter this 
volume. 

Therefore the following set of differential equations describes the relative rate of forma­
tion of liquid (solid) phase during the flow: 

(2.17) ~ p,. = :: {D(s;y)e .. ~ + ~ r~I(s,y)}, 

(2.18) .. ;-2--2 D _ 4nr~J(s,y) D (ar) .,. u +v ,s - + 1 ----:l" , 
(!,. ut 

(2.19) V ~D _ 8nr0 /(s, y) D (!!!__) 
u +v 1 s - + 2 ..z. , 

' (!,. ut 

(2.20) Jl
,-2--2 D _ 8nl(s, y) 
u +v 2 s- , • (!,. 

w.b.ere D, D 1 , D2 are variables introduced to reduce the one integrodifferential equation 
to four simultaneous first-order differential equations. 

D(s, y), D1(s, y), D2 (s, y) are defined as follows: Let us denote by l(s, y) the streamline 
passing the point (s, y) (Fig. 1). The streamline equation is: 

(2.21) y = y(s1). 
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Then 

(2.22) 

(2.23) 

(2.24) 

The initial condition for the mixed problem is formulated in the isentropic part of the 
supersonic flow and: 

(2.25) D0 = D10 = D20 = limD = limD1 = lim D2 = 0. 
S-+0 S-+0 S-+0 

The initial condition for the "surface-averaged" drop r is deduced from its definition (1.1). 
Therefore we have: 

(2.26) limr(s, y) 2 = r(O, y)2 = r5. 
S-+0 

The initial condition for the drop temperature is obtained from the conservation energy 
equation for the growing drop (2.12) taking into account the equality: 

(2.26) r = 'o· 

In the particular case, r0 = r*, and it implicates TD = T. 

3. 1be numerical metbod 

The determination of a diabatic, supersonic, two-dimensional flow in the Laval nozzle 
is reduced to ·solving the mixed problem for the set of eight partial differential equations 
(2.1 ), (2.2), (2. 5), (2.17)-(2.20). 

This problem is formulated as follows: 

1. -The initial conditions obtained as a solution of a nonwell-posed Cauchy problem, 
in a certain Laval nozzle cross-section in the supersonic part of the flow are given. 

2. The boundary conditions at the wall of a Laval nozzle of given shape must be kine­
matic and so they give a well-posed mixed problem. 

From the numerical point of view, the solution of a mixed problem is reduced to finding 
the solution of a difference mixed problem by using the modified Lax scheme (9, 10, 11]. 
The y, s coordinates are introduced in the case of a solving the mixed problem. 
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The modified Lax scheme introduces the following difference ratios instead of the deriv­
atives (Fig. 2). 

(3.1) 

(3.2) 

where 

(3.3) 

(3.4) 

In this case 

(3.5) 

f(p)- w1{(Q1)+w2f(Q2) 
w1 +w2 

a1 f(Q2)-f(Ql) 
ax* ~ x.(Q2)-x*(Q1) ' 

y* = s, x. = y, 

If w1 = w2 = 1 the modified Lax scheme is reduced to Lax scheme. 

p 

Qz. 

Fio. 2. A modified Lax scheme. 

The initial conditions for the mixed problem are found numerically by a solving the 
transonic, isentropic flow in a plane Laval nozzle. The Cauchy problem for the transonic 
flow is solved by using the explicit Lax scheme. 

The initial conditions for the Cauchy problem are formulated along the symmetry 
axis of the nozzle as a solution of the one-dimensional isentropic flow in the Laval nozzle 
with the known geometry. 

4. Results 

The following two types of flow are considered in two nozzles of different shapes (Fig. 
3a, b): 

1. The pure water steam flow with a relative gas expansion rate of an order of magnitude 
of p - 105 1/sec(l). 

2. The moist air flow with a relative gas expansion rate of an order of p - 103 1/sec. 

1 dp yu2 +tJ2 dp 
(1) p = --- = ----

p dt p ds 

3 Arch. Mech. Stos. nr 6n4 
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a 

b y 

25.~ y= 93 vx- +93-

m--(6o-(25/93)bri+932J/240 

c-=(25/93)1502+932' 

FIG. 3. a) The geometry of the nozzle with water vapour. b) The shape of the nozzle constructed by 
M. JAESCHKE at the Gottingen Max Planck Institute (moist air). 

P [dynes/cm2] 

1.0 2.0 8.0 40 x/A* 

0 02 0.4 0.6 0.8 1.0 12 1.4 1.6 x[cmJ 

FIG. 4. Static pressure distributions for one- and two-dimensional ftows with condensation (axis of the 
nozzle): 

1 - e ~ two-dimensional flow with condensation, 2 ---O --- one-dimensional flow with condensation. 

[972) 
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In the case of water steam flow, as a result of a high relative gas expansion rate 
for both isentropic and diabatic flows, difference appears between solutions of two- and 
one dimensional flows. 

The illustration of this fact can be the pressure (density) distribution of a two-dimen­
sional flow at the axis of symmetry and at the nozzle wall (Fig. 4), where we observe appre­
ciable deviations from the one-dimensional approximation. This deviation is larger than 
the pressure rise effect connected with phase change, so the influence of a two-dimensional 

P [dynes/cml] 

axis 

15·'Kf' 

1(}114 

1.0 
5~~--r---~--~~~--r---~~~ 

o fJ.2 a-t IJ.6 o.a 10 1.2 x[cm] 

FIG. 5. Static pressure distributions at the nozzle axis and wall for the flows with condensation and without 
condensation (two-dimensional flow): 

1 - e - the flow with c:cadensation (axis), 2 -- • --- the flow without condensation (axis), 4 --0-- the 
flow without condensation (wall), 3-0- the flow with condensation (wall). 

approach screens the condensation phenomenon, (Fig. 5); it also changes the qualitative 
picture ·of phase change. 

This is also shown in Fig. 6 which presents the temperature distributions along the 
symmetry axis and the nozzle wall. 

In the case of two-dimensional flow we observe a. characteristic minimum of the temper­
ature distribution in the region of maximum supercooling and a maximum in the region 
where equilibrium begins. 

These two points define the structure of the condensation "jump". Such a structure is 
not marked in the case of one-dimensional flow. 

In the case of moist air, for the nozzle with a low expansion rate, a small difference 
between numerical solution of one- and two-dimensional problems would be expected. 

Nevertheless, it was shown that even in the case where the .one-dimensional solution 
approximates well the two-dimensional results of the isentropic flow, the two-dimensional 
treatment introduces a qualitative change in the picture of the flow with a condensation 
(Fig. 7). This is substantiated bythe pressure distribu!ion at the· wall and at the axis of 
symmetry (Figs. 8, 9, 10). 

3• 
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320 

300 

280 

4.0 x/A* 
260~--~~~~--~~-4----~---+----r-~~--~ 

o 02 U4 a6 0.8 1.0 'f2 1.4 1.6 x[cm] 

FIG. 6. Temperature distributions for one- and two-dimensional flows with condensation and without 
condensation (steam, axis of the nozzle): 

1 - e - two-dimoosional ftow with condousatioa, 2 --0 --two-dimensional ftow without condensation, 3 -A- one-­
dimensional ftow with condensation. 4 - - 6 --one-dimensional ftow without condensation. 

F1o. 7. Gas density distributions (moist air) for one- and two-dimensional isentropic flows: 
1 --O-- the axis of the nozzle (two-dimensional ftow), 2-- x -- the wall of the nozzle (two-dimensional flow) 

3 - e -ono-dimensional ftow. 

[974] 
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....... 
""-..... ........ 

............... 2 
.......... 

as 

6=96.0dynes/an 

Pc=t15g/cmJ 
d-mut-1.0 

......... .......... ....... 

1.0 

60 

........... _ -.... 
1.5 

80 x[cm] 

FIG. 8. Static pressure distributions at the nozzle wall for the isentropic flow and for the flow with phase 
change: 

-Q-diabatic flow, 2-- e --isentropic flow, a= 96dynes/cm, (le= 1.1Sg/cm3, ~ ... 1.0. 

"1.0 

3.0 

............. 
......... 

.......... 2 
.................... 

6-96.0 dyne.s/cm 
Pc -1.15 g/cm3 
o-rrwl-1.0 

.......... 'e....... .... 
........... 

as t(J. .............. 

"1.0 6.0 aox[cm] 

FIG. 9. Static pressure distributions at the nozzle axis for the isentropic flow and for the flow with phase 
change: 

1-0- diabatic flow, 2 -- e -- isentropic flow, a ... 96dynes/cm, (le - 1.1Sg/cm3, ~ - 1.0. 

3.0 

2.0 

as 

6=fJ6 dyne.s/cm­
Pc""1.15g/cm3 
d=inul=tO 

............ 2 
............ ...... .......... --.......__ .... -....... __ ___ 

to 1.5 

6.0 8.0 

FIG. 10. Static ·pressure distributions for one-dimensional, diabatic and isentropic flows: 
1-0 -diabatic flow, 2-- e --isentropic flow, a= 96 dynes/cm, Q0 - 1.15 g/cm', d- 1.0. 

[91S 
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For the nozzle wall as well as for the axis of symmetry, the phase change zone appears 
in two-dimensional flow at a higher pressure and at a lower Mach number than in the one­
dimensional case. The pressure rise in diabatic flow in relation to the isentropic one is 
larger than in the one-dimensional case. Particularly (Fig. 9) for the pressure distri­
bution at the symmetry axis there appears a characteristic condensation "jump" structure 
from the point of maximum supercooling to the point of reaching the thermodynamic 
equilibrium. The structure of the condensation zone has a two-dimensional character, 
even for a nozzle with a low gas expansion rate. 

The distribution of the gas density as a function of y points to a large deviation from the 
one-dimensional treatment, particularly at the condensation "jump" and directly behind 

5.tJ. 

a=96 dynes/cm 
l=mul-1.0 
r-t15g/cm3 

[x]=[y]=cm 

---1 
-+- 2 

1.0 y/A11 

~~~--~----~----L-~----~--------~-.. 
0 2.0 4.0 

FIG. 11. Gas density as a function of y for various 
cross-sections of the nozle: 

1 --0--isentriopc flow, 2- e - diabaric flow, 
a= 96 dynes/cm, 1} 0 =- 1.1Sg/cm3 , d = 1.0. 

10·U3 

0 20 

f5=g6 dynes/cm 
cf~mul-10 

rc-115 g/cm3 

[x]-cm 

Q5 

4.0 y[cm] 

FIG. 12. Solid phase mass fraction as a 
function of y for various cross-sections of 

the noZ7le: 
a= 96 dynes/cm, flo =- 1.1Sg/cm3, d = 1.0. 

it (Fig. 11). Such a deviation between one- and two-dimensional approach is also observed 
in the case of the distribution of a solid phase mass fraction as a function of y (Fig. 12). 

Numerical results for the two-dimensional flow are compared with the experimental 
ones obtained by M. JAESCHKE at the Gottingen Max Planck Institute [12]. 

The results of the two-dimensional problem agree better with experiment both at the 
wall and at the symmetry axis than in the case of one-dimensional flow for various surface 
tension and correction factors of nucleation rate (Fig. 13). 
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The one-dimensional treatment changes the qualitative picture of the flow with a phase 
change at the wall and particularly along axis of symmetry of the nozzle. 

The density distribution obtained experimentally differs more from the one-dimensional 
numerical approximation than from numerical results of the two-dimensional flow. 
The density distribution (two-dimensional flow) along the nozzle axis has "jump" 

PIPo 

Q7 

Q6 

Q5 

Q4 

0.5 1.0 15 x/A* 
0.3~---.----.-~-.----.----r----.---~~-,~~ 

0 2.0 4.0 6.0 8.0 
x[cm] 

FIG. 13. The comparison of a gas density for two- and one-dimensional flows with experiment (axis or 
the nozzle): 

1 --.A. --experimental results obtained by a pressure measurement, 2- e -experimental results from the Mach-Zehnder 
interferometer, 3-Q-two-dimensionalftow, 4-·- x -·-one-dimensional flow, fJc = 1.15g/cm3 , u = 96dynes/cm,d = 1.0. 

structure, in which we observe the density rise from the point of maximum supercooling 
to the point of reaching the thermodynamic equilibrium. This has been confirmed by exper­
iment. 

The numerical values of the gas density (Fig. 13) are situated between the experimental 
results obtained: (1) by the pressure measurement along the nozzle axis (curve 1), (2) from 
interferograms of the Mach-Zehnder interferometer (curve 2). 

The pressure distribution for a two-dimensional approach points to a very good agree­
ment with experimental data (Fig. 14). 
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P/Po 

06 

05 

04 

FIG. 14. The comparison of a gas pressure for two- and one-dimensional flows with experiment (axis of 
the nozzle): 

1 - e -experimental results obtained by the pressure measurement, 2-O- numerical results (two-dimensional flow), 
3 -·- x -·-numerical results (one-dimensional flow). 

In the one-dimensional treatment, the region of the intensive phase change appears 
more downstream and the slope of a curve of a pressure distribution is different from the 
experimental result (along the axis). 

5. Conclusions 

The following conclusions can be formulated: 
1. A two-dimensional approach changes appreciably the qualitative picture of the 

diabatic flow. It takes place even in the case of de Laval nozzle with small expansion rate. 
In spite of the fact that in this case the one--dimensional flow approximates well the real 
two--dimensional isentropic flow, the two-dimensional geometry changes the qualitative 
picture of the diabatic flow. 

2. The above conclusion implies that nozzle geometry influences strongly the charac­
ter of the flow with the phase change. 

3. In the case of the two•dimensional flow, maximum supercooling and the appearance 
of a condensation zone takes place at a higher pressure and at a lower Mach number. 

4. The zone of phase change from the point of maximum supercooling to the point 
of reaching the thermodynamic equilibrium is narrower in the two-dimensional flow than 
in the one-dimensional one. Experimental results confirm this point. 

5. If a solid phase is formed, the nucleation rate obtained by a semi-empirical approach 
is the same as for a classical Frenkel, Zeldovich model. 
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