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Higher-order solutions for incompressible, three-dimensional 
boundary .. layer flow at the stagnation point of a general body 

H. D. PAPENFUSS (BOCHUM) 

FIRST and second-order boundary-layer equations are derived for incompressible, three-dimen· 
sional flow near the stagnation point of a general convex body having two orthogonal symmetry 
planes. For this purpose, the "method of matched asymptotic expansions" is used. In the first­
order equations, which are identical with the classical boundary-layer equations of Prandtl, the 
asymmetry at the stagnation point finds expression only through the parameter c1o where c1 
is the ratio of the velocity gradients of the first-order potential flow at the stagnation point and 
varies between 0 (plane case) and 1 (axisymmetric case). In the second-order equations, which 
include the effects of body curvature and boundary-layer displacement, two further parame· 
ters enter into the problem: 1) the parameter x (0 ~ x ~ 1) which is the tatio of the .principal 
curvatures at the stagnation point; and 2) the parameter c2 which is the ratio of the velocity gra­
dients of the second-order potential flow at the stagnation point. Solutions of the second-order 
eqtliitions are given for a certain class of relations between these parameters and the parameter 
c1 of the first-order theory. 

Wyprowadzono r6wnania pierwszego i drugiego rz~u warstwy przy8ciennej dla nie8cisliwego 
tr6jwymiarowego przeplywu w otoczeniu punktu stagnacji og6lnego ciala wypuklego, posiada­
j(lcego dwie ortogonalne plaszczyzny symetrii. W tym celu wykorzystano "metodct dopasowa­
nych rozwini~ asymptotycznych". W r6wnaniach pierwszego rz~du, kt6re set identyczne z kla­
sycznymi r6wnaniami warstwy przy8ciennej Prandtla, asymetria punktu stagnacji wyramna jest 
tyJko przez parametr c1 , oznaczaj(lcy stosunek gradient6w pr~ko8ci przeplywu potencjalnego 
pierwszego rodzaju w punkcie stagnacji i zmieniaj(lcy sict od 0 (przypadek plaski) do 1 (przypadek 
osiowo symetryczny). W r6wnaniach drugiego rz~du, w kt6rych uwzgl~one zostaly efekty 
krzywizny ciala i przemieszczenie warstwy przySciennej, wyste(pujct dwa dalsze parametry : 
1) parametr x (0 ~ x ~ 1), be(d(lcy stosunkiem g16wnych krzywizn w punkcie stagnacji, oraz 2) 
parametr c2 , oznaczaj(lcy stosunek gradient6w prctdko8ci przeplywu potencjaJnego drugiego 
rz~u w punkcie stagnacji. Rozwictzania r6wnan drugiego rz~u podano dJa pewnej klasy 
zalezno§ci mie(dzy tymi parametrami a parametrem pierwszego rodzaju c1 • 

BbiBe~eHhi ypaBHemui nepBoro H BTOporo nopH,~U<a norpaHHq}{oro CJIOH ,wm Hec.>KHMaeMoro 
TpeXMepHoro Tet~emm B OKpeCTHoCTH KpHTHtleCKoH: TOt~KH o6~ero BbmyKJioro Tena, HMero~ero 
p;Be OpTOrOHa.m.Hbie nJIOCKOCTH CHMMeTpHH. C 3TOH r(e.m.IO HCllOJI1,30BaH ,MeTO,p; cp~HBaeMhiX 
acHMnTOTHtiecKHX pa3JiomeHHH:" B ypaaHemmx nepBoro nopH,~U<a, KoTophie coana,p;aroT 
C KJiaCCHlleCKHMH ypaBHeHIIHMH norpaHHt~Horo CJIOH IJpaH~JIH, aCHMMeTpHH KpHTHtleCKOH 
TOliKH BbipWI<eHa TOJII,KO qepe3 napaMeTp c1, 0003Ha'llarolr(HH OTHOllieHIIe rpa~eiiTOB CKO­
pOCTH noreH[(HaJILHOrO re'tleHHH nepBoro po,p;a B KpHTH'tleCKOH TO'tiKe H H3MeHHIO~CH OT 
HYJIH . (nnocKHH: CJlYllaH) ,p;o 1 (ocecHMMeTpH'lllhm CJlYllaH). B ypaBHemmx BToporo nopngKa 
B KOTOpbiX y-qTeHbl 3<l><l>eKTbl KpHBH3Hbl TeJia H nepeMe~eHIIH norpaHH'tiHOrO CJIOJI, BbiCTY­
naiOT ~a ga.m.HeH:umx napaMeTpa: 1) napaMeTp x (0 ~ x ~ 1), 6y~ oTHomeHIIeM rnaB­
HhiX KpHBH3H B KpHTH'tleCKOH TO'tiKe H 2) napaMeTp C I OOo3Ha'tlaiOI[(HH omomeHWI rpa~eHTOB 
CKOpOCTH noTeH[(Ha.m.HOro TetleHHH BTOporo nOpSIJll<a B Kpll"l"H''eCKOH TO'tiKe. PemeHHH ypaBHe­
HHH BToporo nopH,~U<a garoTcH ,wm HeKoToporo KJiacca 3aBHCHMOCTeH: Me>K,Izy 3THMH napa­
MeTpaMH H napaMeTpoM nepBoro po.o;a c1 • 

1. Introduction 

THE CALCULATION of the flow at a stagnation point is of practical importance since, for 
instance, the heat transfer attains a maximum at this point. In Fig. 1 are shown the stream­
line patterns for different types of stagnation point flow. We can distinguish between 
three basic types-viz. plane, axisymmetric, and general stagnation point flow. 
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FIG. 1. Streamline patterns for different types of stagnation point flow. 
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Fio. 2. Principal curvatures and the coordinate system at stagnation point. 
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HIGHER-ORDER SOLUTIONS FOR INCOMPRESSIBLE, THREE-DIMENSIONAL BOUNDARY-LAYER FLOW 983 

The plane and axisymmetric cases have been investigated extensively by several authors 
for high Reynolds-number :flow. We particularly draw attention to the work of M. VAN DYKE 

[1, 2], who went beyond the classical boundary-layer theory and thus included higher-order 
effects-viz. body curvature and boundary-.layer displacement. It is common knowledge 
that these effects are not included in Prandtl's classical boundary-layer theory. Work at 
the second-order level is needed to gain a better insight into the effects of lower Reynolds­
numbers as they are encountered in, for instance, high altitude flight and high Mach-num­
ber wind tunnel tests. 

The object of this paper is to bridge the entire range of general incompressible stagna­
tion point :flows between the two extreme cases of plane and axisymmetric :flows worked 
out by V AN DYKE. 

The first-order boundary-layer equations for this problem were derived and solved 
by L. HowARTH [3, 4]. Here, the second-order boundary-layer equations for this problem 
are derived and solved under the restriction that the body has two orthogonal symmetry 
planes and is placed in a stream parallel to its longitudinal axis (see Fig. 2). These equations 
are found fro~ the full conservation laws by a perturbation analysis, using the "method of 
matched asymptotic expansions" with the inverse of the square root of a Reynolds-number 
as perturbation parameter. 

2. General theory 

1.1. Geometry and coordinate system 

We consider a convex._, body having two orthogonal symmetry planes in a stream parallel 
to its longitudinal axis with free-stream velocity U r:JJ. The properties of the jfiuid--density (!, 
viscosity fJ, specific heat c and thermal conductivity A.-are constant. 

If we slice the body at its planes of symmetry (Fig. 2), we obtain two intersection curves 
with different curvatures kxo and k~0 at the stagnation point. The ratio of the two curva­
tures is denoted by ": 

(2.I) 

where kxo ~ k~0 • Therefore, " = 0 means that the body is plane at the stagnation point; 
" = I means that the body is axisymmetric at the stagnation point. 

The coordinate system used here is orthogonal and follows the lines of principal 
curvature at the body. In the vicinity of the stagnation point, which is the origin of the 
coordinate system, the coordinate lines are identical with the intersection curves in Fig. 2. 
The third coordinate y is measured along the normals erected on the body. In this coordi­
nate system the line element has the following form: 

(2.2) 

where a" and a~ are the Lame-coefficients of the body surface (y = 0), kx and k" are the 
normal curvatures of the coordinate lines, measured in x and z-direction,. respectively. 
For simplicity we may, without loss of generality, suppose that x and z are so defined in 
magnitude that a" = a~ = I at the stagnation point. 
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984 H. D. PAPENFUSS 

2.2. Bask equations 

The flow and temperature field is determined by the conservation laws for mass, mo­
mentum, and energy: 

(2.3) 

(2.4) 

(2.5) 

divw = 0, 

I! (grad "; +(rotw) x w) = -gradp-prot(rotw), 

ecw grad T- .A. div grad T = p Orad w def w +w grad p. 

Herein w means the velocity vector, p the pressure and T the temperature. The boundary 
conditions are: 

(2.6) 

(2.7) 

2.3. Outer expusioas 

1) at the wall: w = 0, T = Tw; 

2) at infinity: lwl = Uoo, p = Poo, T = Too. 

For the outer expansions which are valid in a domain away from the surface, and for 
the inner expansions which are valid in a domain near to the surface, we use the well known 
perturbation parameter: 

(2.8) 

with 

(2.9) 

After VAN DYKE, the outer expansions for large Reynolds-numbers have the form: 

t2.10) 

p-poo p 
U 2 = p 1 + £ 2 + ... ' o· 

.... 00 

T 
-T = T1 +eT2+ ... , 

oo · 

where u, v, and w are the velocity components in x-, y- , and z-direction, respectively. 
Substituting the expansions into the Eqs. (2.3)-(2.5) and collecting terms of the same order, 
we obtain the first-order equations for the unknowns U1 , V1 , W1 , P 1 , and T1 and the 
second':"order eguations for the unknowns U2 , V 2 , W2 , P2 , and T2 • These equations can 
be found, for instance, in VAN ·DYKE's paper [1]. The solutions of these equations 
have the following properties: 
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1) first and second-order velocities can be calculated from the irrotational condition 
(potential flow); 

2) first and second-order pressures can be calculated from first and second-order 
Bernoulli's equation: 

(2.11) 

(2.12) 

3) first and second-order temperatures are 

(2.13) 

(2.14) 

The boundary conditions at the wall for the outer expansions are obtained by matching with 
the inner expansions. 

For the inner equations we shall need the surface values of the outer velocities. For 
small distances from the stagnation point we expand these quantities in Taylor-series. 
Using the irrotational condition, we obtain: 

(2.15) u(x,O,z) k (U U , 
U = .xO X 11 + B 21 + ., · · • 

00 . 

(2.16) w(x, 0, z) k (W W ) 
U 

00 
= .xo z 11 + e 21 + .. · 

= k.xoZ(cl u11 +eel u21 + ... ) . 

The following abbreviations are used: 

(2.17) cl= 
(aWljaz)o W11 
(aUljax)o 

=--, 
U11 

(2.18) c1 = 
(aW2Jaz)o W21 
(aU2Jax)o = U21 · 

The parameter c1 is the ratio ofthevelocity gradients of the first-order outer flow at the 
stagnation point in the two orthogonal directions. Hence, c1 characterizes the asymmetry 
in the first-order outer flow at the stagnation point. A stagnation point flow is defined to · be 
plane if c 1 = 0; a stagn~tion point flow is defined t~ be axisymmetric if c 1 = 1 . 

The parameter c2 is the ratio of the velocity gradients of the seaond-order outer flow at 
the stagnation point in the two orthogonal directions. Hence, c2 characterizes the asym­
metry in the second-order outer flow at the stagnation point. The parameter c2 can attain 
any value, depending on geometry and flow conditions. 

The quantities U21 and W21 (and hence c2) depend on the growth of the first-order 
inner solution and are obtained by solving the-elliptical differential equation for the second­
order outer flow. For the time being, it is not possible to calculate U21 and W21 when 
the first-order inner solution -leads to separation. We . therefore restrict ourselves to 
body configurations free of separation. 
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986 H. D. PAPENFUSS 

2.4. Inner expansions 

The inner expansions are written in the inner variable: 

(2.19) 

The following expressions are so given that the continuity equation is automati­
cally satisfied. The leading term in the expansions corresponds to Prandtl's classical 
boundary-layer theory. The second terms represent the influence of boundary-layer dis­
placement (index 2d) and body curvature (index 2c). It is possible to split up the second­
order contributions, since the second-order boundary-layer equations are-as we shall 
see-linear differential equations. 

The inner expansions have the following form: 

(2.20) 

(2.21) v ~~-{ U21 U«) = -er Uu f!t {'YJ) +et Kt (1J)] +e Uu [f2d(1J) +ctg2(1J)] + 

+ y';
11 

[[2 ,(7])+c1g2c('l)-(l +")7j(f1(7})+c1g1(7]))]}+ ... 

(2.22) 

(2.23) p-p«) 1 1 u2 k2 2{- ( ) U21 - ( ) e - ( ) } "rJ!" = 2-2 11 zoX Pt 1J +eUp24 1J + .. ;-P2c 1J + ... 
f! «) 11 v U11 

T-T .. o U2t e 
= Dt(1J)+e-U D2i1J)+-=D2o(1J)+ ... 

T«J-Two 11 }"U11 

(2.24) 

Dashes indicate differentiation with respect to 1J· The index wo refers to the stagnation 
point. Further, we need expansions of the geometrical quantities in the vicinity of the stag­
nation point: 

(2.25) az == 1 + ... 

(2.26) a~= 1 + ... 

(2.27) kz = k"0 + ... 
(2.28) ks = Hk"0 + ... 

These expressions can be substitUted into the full conservation laws. Then, terms of the 
. same order are again to be collected. Terms of order 0(1) yield the first-order inner 
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equations, terms of order O(e) yield the second-order inner equations. In cases in . which 
the equations are linear, the following linear operators are used: 

(2.29) !l't(F) = F" +Pr{ft +c1g1)F', 

(2.30) !l' 2 (F; G) = pm+ lft +ctgt)F" -2f~F' +(F +c1 G)f~', 

(2.31) !l'3 (F; G)= F"' +{[1 +c1g1)F" -2c1 g~F' +(G+c1 F)g~', 
F and G are functions of 17· The Prandtl-number is defined as 

(2.32) 
JlC 

Pr=T· 
The first-order inner equations are: 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

! '" {I' )'I'" f' 2 -1 +v1+C1K1'Jt- 1 = -p~, 

g~' +{[1 +c1g1)g~' -ctg? = - C1P1, 

p~ = 0, 

p; = 0, 

!l' 1 ( {} t) = 0. 

The boundary conditions for the foregoing equations are: 

(2.38) 17 = 0: /1 =/~ = K1 = g~ = {}1 = 0, 

(2.39) 11--. oo: 1: = g~ = P1 = P1 = {}1 = 1. 

For the pressures we obtain at once the following analytic solution: 

(2.40) P1 = P1 = 1. 

We find that in the first-order equations, derived from Prandtl's classical boundary­
layer theory, the geometric asymmetry at the stagnation point, expressed by~, does not 
appear explicitly. The asymmetric nature of the flow at a general stagnation point finds 
expression only through the parameter c 1 , which reflects the asymmetry in the first-order 
outer flow. 

For the displacement effect, we obtain the following second-order inner equations: 

(2.41) !l' z(fzd; K2J = - P24, 

(2.42) !l' 3(K2d;f2d) = - CtP2dJ 

(2.43) 

(2.44) 

(2.45) 

The boundary conditions are: 

(2.46) 

(2.47) 

4 Arch. Mech. Stos. nr 6n4 

p~d = 0, 

p;d = 0, 

!l' 1 ({}zd) = - Pr(/24 +c1K2d){}i. 

- 2 - 2 c2 P2d = , P2d = · ~ , 
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For the pressures, we obtain at once the analytic solutions: 

(2.48) 

(2.49) 

In the particular case c1 = eh the solutions of the Eqs. (2.41)-(2.45) are 

(2.50) 

(2.51) 

(2.52) 

/2d = ~ (/1 +'f}f~), 

K2d = ~ (gl +'f}gD, 

{}2d = ~ 1]1?~. 

H. D. PAPENPUSS 

For the curvature effect, we obtain the following second-order inner equations: 

{2.53) !i'2if2c' K2c) = -P2c+(1 +")1J[{f1 +CtKt)f~'-f?] 

- (1-") [f~ +(ft +ctgdf~ -1]], 

(2.54) !i' 3(g2c,/2e) = - C1P2c +(1 +")1J[{f1 +ctgl)g~ -Ctg?] 

+(1-")[g~ +(/1 +ctgt)K~ -CtfJ], 

(2.55) P~c = -2/~2, 

{2.56) P~c = -2:Jeg?, 

(2.57) !i't(D2c) = {(1 +")(Pr'f}(/t +ctgl)-1)-Pr{f2c+ctg2o)}D~. 

The boundary conditions are: 

(2.58) 

(2.59) 

1J = 0: 

1}-.oo: f~'o = -(1-"), K'2o= }-- "' l 
P~o = -2, P~c = -2", 

{}2c = 0. 

For the pressures, we obtain the analytic solutions: 

(2.60) 

(2.61) 

'1 

P2o = -/~'-(/1 +ctgt)f~ -1](1-ct)-(1 +ct)f3t +ctYt-Ct J (1-f~gt)d1], 
0 

'1 

P2o = ~(-g~'-{ft+CtKt)K~+1]{1-ct)-(l+ct)f3t+Yt- J (1-f~gDd1J). 
C1 0 

We have used the abbreviations 

00 

(2.62) p, = j {t_f\:c;,g;)drJ = l:c, !'!((']-/1)+c,(?j-g,)) 
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and 
00 

(2.63) Y1 = f O-f~gDd1J. 
0 

The boundary conditions at 1J -+ oo for the first and second-order equations are 
supplied by matching the inner and outer expansions. The procedure of matching can be 
found in, for instance, Van Dyke's paper [1]. 

2.5. Boundary-layer characteristics 

As a consequence of the decrease in veloci!Y in the boundary layer, the external flow 
is displaced outwards. For plane and axisymm.etric flow, the definition of a displacement 
surface is well known. After F. K. MooRE [5] and R. SEDNEY [6], it is possible to defuie 
such a fictitious surface even for three-dimensional flow. The local distance between the 
wall and the displacement surface- i.e., the displacement thickness-is such defined 
that the mass-flow defect due to the effect of friction is compensated. 

We write the displacement thickness D* at the stagnation point as asymptotic expan­
sion in terms of the perturbation parameter e: 

(2.64) D* = k,o;Uu {dt+s(g:: d;4 + kdf,)}+ ... 
We obtain: 

(2.65) 

(2.66) d;. = 1 ~c, ~~'![(11-!2.J+c,(~: 11-K2•H-(l+c2)6fl, 

(2.67) 6!, = 1 L, b~'! [ ( -/2,- ~ (1-")112) +c1 ( -g2 , + ~ (l-")112)] 

+ ~ (1- ")(1-c1) 6f2
,. 

The Eq. (2.65) has already been given by P.A. LmBY[7]. 
The components of the wall shear stress vector, expressed by the dimensionless 

coefficients c1x and c1z, and the wall heat transfer, expressed by the Stanton-number, can 
be written in the following form: 

(2.68) c1, = e-rih. = .uf, k,ox{r:'(O)+•( i;~ {2.(0)+ y ~" {'2,(o)]} + ... , 

(2.69) Tzy U~ k { "(0'' [ U21 " (0) 1 " (0)]\ + Cfz = --cJ2 =eel 11 xoZ K1 ,+e U,K24 + .. ;-K2c f ... , 
(! 00 n J' U11 

(2.70) St = qwo = -eYUu {DaO)+e( U21 024(0)+ 
1 D2c(o)]} ... 

(!CUoo(Two- Too) Pr Uu yU11 

4* 
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990 H. D. PAPENFUSS 

3. Results and discussion 

The first and second-order boundary-layer equations presented for incompressible, 
three-dimensional stagnation point flow have been integrated numerically using the 
method of Runge-Kutta. The parameter c1 , which reflects the asymmetry of the first-order 
outer flow at the stagnation point, was varied between 0 (plane case) and 1 (axisymm.etric 
case). Figures 3-5 show the results of the first~order theory. All these results are from 
Prandtl's theory: displacement thickness, wall shear stresses, and wall heat transfer. We 
note that the variation of c1 has little influence on the x-component of the shear stress if 
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FIG. 3. First-order displacement thickness. 
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FIG. 4. First-order wall shear stresses. 

we assume that the quantity U11 in the Eq. (2.68) is constant (U11 = 1 for parabola and 
axisymmetric paraboloid). Further, we see that the first-order heat transfer increases 
almost linearly with c1 • If we compare two parabolic bodies, plane and axisymmetric, 
with the same nose radius in a stream under identical conditions, we find that the heat 
transfer at the stagnation point of the axisymmetric body lies about 30 per cent higher 
than the heat transfer at the plane body. 

In Figs. 6-8, the effect due to boundary-layer displacement is shown. In addition to 
the parameter c!J we now have in the displacement problem the parameter c2 , which 
reflects the asymmetry of the second-order outer flow at the stagnation point. For the two 
extreme cases of plane and axisymmetric flow, we obtain c2 = c1 • We restricted ourselves 
to configurations where always c2 = c 1 • 

Furthermore, we have to reflect upon the quantity U21 , which is the velocity gradient 
of the second-order outer flow in the x-direction, and which appears in the equations for 
the boundary-layer characteristics. Calculating U21 is extremely difficult, since an elliptical 
differential equation has to be solved. For the cases we known - the plane and axisymmetric 
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semi-infinite body- U21 turns out to be negative. So far we do not have sufficiently gen­
eral information about the behaviour of this quantity U21 • We may therefore presume 
for the time being that u21 is also negative in the general case. 

We note from the figures that the second-order quantities, corresponding to the wall 
shear stresses and the wall heat transfer, are positive for all values of c1 • Since these 
quantities have to be multiplied by the presumably negative quantity U21 , we may con­
clude that the shear stresses and the heat transfer at a general stagnation point are in 
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FIG. 9. Second-order displacement thickness due 
to body curvature. 
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FIG. 10. Second-order wall shear stresses due to 
body curvature. 

principle reduced due to boundary-layer displacement. The displacement thickness, on the 
contrary, shows the opposite behaviour. 

In Figs. 9-12 is shown the effect due to body curvature. In addition to the parameter c1 , 

we now have in the curvature problem the parameter u, which reflects the geometric asym­
metry at the stagnation point, as against the parameter c2 which enters the displacement 
problem. We have restricted ourselves to body configurations characterized by the coupling 

"= c'L 
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and studied the cases n = 0.5; 1; 2. For instance, in the case of ~n elliptical paraboloid 
we haven= 1. 

For c1 = 0-that is the plane case-only the effect due to longitudinal curvature 
is present. From the signs of the second-order quantities, we find that in this case the 
displacement thickness is increased, but the shear stresses and the heat transfer at the 
stagnation point are reduced due to surface curvature. For c1 = 1-that is, the axisym­
metric case-the effects of both the longitudinal and transverse curvature are present. 
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FIG. 11. Second-order wall heat transfer due to 

body curvature. 
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• Cafe. after K. Gersten et al. [8] 
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Fio. 12. Second-order wall heat transfer due to 
body curvature. 

From the signs, we find that in this case the displacement thickness and the heat transfer 
are increased, whereas the shear stress is reduced as against classical boundary-layer theory. 

There is a change in sign for the second-order heat transfer due to surface curvature, 
where the effects of longitudinal and transverse curvature cancel each other. For sufficiently 
large values of c 1 , the effect of transverse curvature predominates. 

Summarizing we can say: As against classical boundary-layer theory, the curvature 
effect can either reduce or augment the shear stresses and the heat transfer at a stagnation 
point, depending on the geometry, whereas the displacement effect always reduces these 
quantities. The difficulty that remains is to calculate the second-order outer ftow, and 
hence U21 and W2 1J for a given set of ftow conditions. 
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