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Higher-order solutions for incompressible, three-dimensional
boundary-layer flow at the stagnation point of a general body

H. D. PAPENFUSS (BOCHUM)

FirsT and second-order boundary-layer equations are derived for incompressible, three-dimen-
sional flow near the stagnation point of a general convex body having two orthogonal symmetry
planes. For this purpose, the “method of matched asymptotic expansions” is used. In the first-
order equations, which are identical with the classical boundary-layer equations of Prandtl, the
asymmetry at the stagnation point finds expression only through the parameter c;, where c,
is the ratio of the velocity gradients of the first-order potential flow at the stagnation point and
varies between 0 (plane case) and 1 (axisymmetric case). In the second-order equations, which
include the effects of body curvature and boundary-layer displacement, two further parame-
ters enter into the problem: 1) the parameter » (0 < x < 1) which is the ratio of the principal
curvatures at the stagnation point; and 2) the parameter ¢, which is the ratio of the velocity gra-
dients of the second-order potential flow at the stagnation point. Solutions of the second-order
equations are given for a certain class of relations between these parameters and the parameter
¢; of the first-order theory.

Wyprowadzono rownania pierwszego i drugiego rzedu warstwy przysciennej dla niescisliwego
trojwymiarowego przeplywu w otoczeniu punktu stagnacji ogdlnego ciala wypuklego, posiada-
jacego dwie ortogonalne plaszczyzny symetrii. W tym celu wykorzystano “metode dopasowa-
nych rozwinie¢ asymptotycznych”. W rownaniach pierwszego rzedu, ktore sa identyczne z kla-
sycznymi réwnaniami warstwy przysciennej Prandtla, asymetria punktu stagnacji wyraZzona jest
tylko przez parametr c,, oznaczajacy stosunek gradientéw predkosci przepltywu potencjalnego
pierwszego rodzaju w punkcie stagnacji i zmieniajacy si¢ od 0 (przypadek plaski) do 1 (przypadek
osiowo symetryczny). W réwnaniach drugiego rzedu, w ktérych uwzglednione zostaly efekty
krzywizny ciala i przemieszczenie warstwy przySciennej, wystgpuja dwa dalsze parametry:
1) parametr x (0 < % < 1), bedacy stosunkiem gléwnych krzywizn w punkcie stagnacji, oraz 2)
parametr ¢,, oznaczajacy stosunek gradientow predkosci przeplywu potencjalnego drugiego
rzgdu w punkcie stagnacji. Rozwiazania réwnafn drugiego rzedu podano dla pewnej klasy
zalezno$ci migdzy tymi parametrami a parametrem pierwszego rodzaju c;.

BriBefieHbI YPABHCHMA MEPBOTO ¥ BTOPOTO MOPAMKA MOTPAHHUHOTO CJIOA JJIA HECHKHMAEeMoro
TPEXMEPHOTO TEUECHHA B OKPECTHOCTH KPHTHYECKOH TOUKH 00111ero BEITYKIOrO TeNa, HMEIOLIEero
[BE OPTOroHABHEIE IUIOCKOCTH cummeTpun. C 2Toil Lebio HCMoMB30BaH ,,METOJL CPalllMBaeMbIX
ACHMOTOTHYECKHX PA3yIOMKCHHI™' B YpaBHEHHAX MNEPBOTO TNOPAAKA, KOTOpbIE COBNAJAIOT
€ KJIACCHYECKHMH YPaBHEHMAMM MOTpaHW4HOro cjios IIpaHmrisi, acHMMeTPHSA KPHTHUECKOH
TOYKH BBIDDIKEHA TONBKO Yepes MapameTp ¢, 0003Hauaromuii OTHOLICHME I'PaJHEHTOB CHO-
POCTH NMOTEHIHAIEHOIO re4YeHHsA MepBOro Poja B KPHTHYECKOH TOUKEe H H3MEHAIOUMica oT
Hyns (mockwuit crydai) no 1 (ocecuMMeTpHUHBIH ciTyyaii). B ypaBHeHnaX BTOpOro HOpsKa
B KOTOPBIX yuTeHbI 3(heKThI KPHBH3HEI Tejla U NepPeMEIeHHsA MOrPaHNYHOro CofA, BLICTY-
MaloT OBa JaTkHeHIrnx mapamerpa: 1) mapamerp x (0 < # < 1), Gymyusit oTHOLIEHHEM TIIaB-
HBIX KPHBH3H B KPDHTHYECKOIi TouKe H 2) mapameTp ¢y 0003HauaroNIHii OTHOIICHHSA rPAHEHTOR
CKOPOCTH NMOTEHIMATFHOIO TeUeHHsT BTOPOro MOPAMKA B KpATHYECKO! TouKe. Pelenns ypaBHe-
HUif BTOpPOro MOpPAJKA JAlOTCA [UIA HEKOTOPOrO KJacca 3aBHCHMOCTEH MEXJy ITHMH Inapa-
METpaMH H NapameTpoM NepBOro poja C;.

1. Introduction

THE CALCULATION of the flow at a stagnation point is of practical importance since, for
instance, the heat transfer attains a maximum at this point. In Fig. 1 are shown the stream-
line patterns for different types of stagnation point flow. We can distinguish between
three basic types—viz. plane, axisymmetric, and general stagnation point flow.



stagnation point Fl
FiG. 1. Streamline patterns for different types of stagnation point flow.

FiG. 2. Principal curvatures and the coordinate system at stagnation point.
[982)
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The plane and axisymmetric cases have been investigated extensively by several authors
for high Reynolds-number flow. We particularly draw attention to the work of M. VAN DYKE
[1, 2], who went beyond the classical boundary-layer theory and thus included higher-order
effects—viz. body curvature and boundary-layer displacement. It is common knowledge
that these effects are not included in Prandtl’s classical boundary-layer theory. Work at
the second-order level is needed to gain a better insight into the effects of lower Reynolds-
numbers as they are encountered in, for instance, high altitude flight and high Mach-num-
ber wind tunnel tests.

The object of this paper is to bridge the entire range of general incompressible stagna-
tion point flows between the two extrems cases of plane and axisymmetric flows worked
out by VAN Dyke.

The first-order boundary-layer equations for this problem were derived and solved
by L. HOowARTH [3, 4]. Here, the second-order boundary-layer equations for this problem
are derived and solved under the restriction that the body has two orthogonal symmetry
planes and is placed in a stream parallel to its longitudinal axis (see Fig. 2). These equations
are found from the full conservation laws by a perturbation analysis, using the “method of
matched asymptotic expansions” with the inverse of the square root of a Reynolds-number
as perturbation parameter.

2. General theory

2.1. Geometry and coordinate system

We consider a convex body having two orthogonal symmetry planes in a stream parallel
to its longitudinal axis with free-stream velocity Uy,. The properties of the [fluid—density o,
viscosity u, specific heat ¢ and thermal conductivity A—are constant.

If we slice the body at its planes of symmetry (Fig. 2), we obtain two intersection curves
with different cugvatures k., and k;, at the stagnation point. The ratio of the two curva-
tures is denoted by x:

kxo

2.1) ® = £

where k., = k.. Therefore, » = 0 means that the body is plane at the stagnation point;
% = 1 means that the body is axisymmetric at the stagnation point.

The coordinate system used here is orthogonal and follows the lines of principal
curvature at the body. In the vicinity of the stagnation point, which is the origin of the
coordinate system, the coordinate lines are identical with the intersection curves in Fig. 2.
The third coordinate y is measured along the normals erected on the body. In this coordi-
nate system the line element has the following form:

22 (d5)* = [ax(1 +kxy)dx]® +(dy)* +a:(1 +k.y)dz]?,

where a, and a, are the Lamé-coefficients of the body surface (y = 0), k, and k, are the
normal curvatures of the coordinate lines, measured in x and z-direction, respectively.
For simplicity we may, without loss of generality, suppose that x and z are so defined in
magnitude that a, = a;, = 1 at the stagnation point.
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2.2. Basic equations

The flow and temperature field is determined by the conservation laws for mass, mo-
mentum, and energy:

(2.3) divw =0,

2
24 ) (grad %— + (rotw) x w) = —gradp— urot(rotw) ,
(2.5 pcw grad T— A div grad T = u Grad w def w+w grad p.

Herein w means the velocity vector, p the pressure and T the temperature. The boundary
conditions are:

(2.6) 1) at the wall: w=0, T=T,;
@7 2) at infinity: W] = U, P=Ppw, T="Ta

2.3. Outer expansions

For the outer expansions which are valid in a domain away from the surface, and for
the inner expansions which are valid in a domain near to the surface, we use the well known
perturbation parameter:

2.8) £="TRe *
with

Us o
2.9 Re = 2=,
( ) kxl‘““

After VAN DYKE, the outer expansions for large Reynolds-numbers have the form:

u

—_—= Ul+£Uz+ b
]
—;— = Vi+Vak s
w
l210) U— = WI. +8W3+ “esy
E'_I’}u; = P1 +8P2+ waey
Ti — T1+5T2+ .

where u, v, and w are the velocity components in x —, y—, and z-direction, respectively.
Substituting the expansions into the Egs. (2.3)—(2.5) and collecting terms of the same order,
we obtain the first-order equations for the unknowns Uy, ¥,, W,, P,, and T, and the
second-order equations for the unknowns U,, V,, W, P,, and T,. These equations can
be found, for instance, in VAN DvYKE’s paper [1]. The solutions of these equations
have the following properties:
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1) first and second-order velocities can be calculated from the irrotational condition

(potential flow); .
2) first and second-order pressures can be calculated from first and second-order

Bernoulli’s equation:

1 1
(2.11) P,+3(U§+V1+W})=—,
(2.12) P2+UIUZ+V1 V2+W1 Wz - 0;
3) first and second-order temperatures are
(2.13) T, =1,
(2.14) T, =0.

The boundary conditions at the wall for the outer expansions are obtained by matching with
the inner expansions.

For the inner equations we shall need the surface values of the outer velocities. For
small distances from the stagnation point we expand these quantities in Taylor-series.
Using the irrotational condition, we obtain:

(2.15) w = kuo x (Uyy +8Usy + ...\,
(2.16) i"&&ﬂ = ko 2(Wy1 +eWar +..)

= kxoz(c1 Uy +ec, Uzg + ).
The following abbreviations are used:

(0W4/0z)0 _ Wiy
(0U,[3x)o Uy’
(0W,]0z)o W2y

(2.18) = "@0,/0x0)0 ~ Uy

(2.17) ¢ =

The parameter c, is the ratio of the velocity gradients of the first-order outer flow at the
stagnation point in the two orthogonal directions. Hence, ¢, characterizes the asymmetry
in the first-order outer flow at the stagnation point. A stagnation point flow is defined to be
plane if ¢; = 0; a stagnation point flow is defined to be axisymmetric if ¢; = 1.

The parameter c, is the ratio of the velocity gradients of the second-order outer flow at
the stagnation point in the two orthogonal directions. Hence, ¢, characterizes the asym-
metry in the second-order outer flow at the stagnation point. The parameter c, can attain
any value, depending on geometry and flow conditions.

The quantities U,; and W,, (and hence c,) depend on the growth of the first-order
inner solution and are obtained by solving the elliptical differential equation for the second-
order outer flow. For the time being, it is not possible to calculate U,; and W, when
the first-order inner solution leads to separation. We therefore restrict ourselves to
body configurations free of separation.
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2.4, Inner expansions

The inner expansions are written in the inner variable:

(2.19) n =keoy VU Re

The following expressions are so given that the continuity equation is automati-
cally satisfied. The leading term in the expansions corresponds to Prandtl’s classical
boundary-layer theory. The second terms represent the influence of boundary-layer dis-
placement (index 2d) and body curvature (index 2c). It is possible to split up the second-
order contributions, since the second-order boundary-layer equations are—as we shall
see—linear differential equations.

The inner expansions have the following form:

,
(2.20) = Uukxox{fi(’?)‘i'g Tat 1 )+ e ]/_ [fiam)— xnfx(n)}}
@21) o= -V Uu{[fl(mcl O 2L [ () + o2+

o= o) )= () +rg (13))]} +

222) T = sUiskeor 81D +o g k) + oIk =ngil) + .
2Po _ ) ULk b +e ot Baln) + o+ -
(223) QU; 2 2 %0 pl n U Pu n '/U—uph n
—‘%CIU 1k202? |P1(’?)+3U Pza(’})"']/F—Pze(’?)"' }
Q) I = A eI )

Dashes indicate differentiation with respect to . The index wo refers to the stagnation
point. Further, we need expansions of the geometrical quantities in the vicinity of the stag-
nation point:

(2.25) a, =1+ ..
(2.26) a, =1+ ..
(2.27) ke =kyo+ ...
(2.28) ky = xkxo + ...

These expressions can be substituted into the full conservation laws. Then, terms of the
same order are again to be collected. Terms of order O(1) yield the first-order inner
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equations, terms of order 0(g) yield the second-order inner equations. In cases in which
the equations are linear, the following linear operators are used:

(2.29) Z(F) = F'+Pr(fi+c 81 F,
(2.30) Ly(F;G) = F" +(fi+c1g) F'=2f1F' +(F+¢,60f7,
(2.31) Z3(F; G) = F" +(fi+c18)F'—2¢,81 F +(G+c, F)gy,
F and G are functions of . The Prandtl-number is defined as
(2.32) Pr = -"f;w

The first-order inner equations are:
(2.33) U+ (it g)f{=f1* = —ps,
(2.34) gl +(fi+eig)gi —c181* = —eiby,
(2.35) p1=0,
(2.36) p1=0,
(2.37) ZL,(#) =0.

The boundary conditions for the foregoing equations are:
(2.38) =0 fi=fi=gi=g=9%=0,
(2.39) n->o: fl=gi=p=p =0 =1

For the pressures we obtain at once the following analytic solution:
(2.40) P1=p =1

We find that in the first-order equations, derived from Prandtl’s classical boundary-
layer theory, the geometric asymmetry at the stagnation point, expressed by %, does not
appear explicitly. The asymmetric nature of the flow at a general stagnation point finds
expression only through the parameter c¢;, which reflects the asymmetry in the first-order
outer flow.

For the displacement effect, we obtain the following second-order inner equations:

(2.41) Z2(f245 820 = —Paas
(2.42) Z3(8245 f20) = —C€1P245
@43 Pia=0,
(2.44) Pra =0,
(2.45) Z1(820) = —Pr(f2a+¢1824) 1.
The boundary conditions are:
(2.46) N=0: fia=fia=82a=8a=%2a=0,

n->0: fra=1, gq= fi’

€y
@47 P2a = 2, ﬁzc'—“z"z;:*.
B4 = 0.

4 Arch. Mech. Stos. nr 6/74
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For the pressures, we obtain at once the analytic solutions:

(2.48) P2a = 2,
(2.49) Pag= 2%,
51

(2.50) foa =5 Fitnfd),
@31) 820 = 5 (&1 +78D),
(2.52) Brq = %ma;.
For the curvature effect, we obtain the following second-order inner equations:
(2.53) ZL2(f261 820) = —P2e+ (L +2)1[(fy +¢18:)f1 —f17]
(-9 [fY +(fi +c18)f1—7],
(2.54) Z3(8205 f20) = —C1P2e+ (1 +2)[(f1 +¢181)81 —¢181%)
+(1—x)[gy +(f1 +c181)g1— ),
(2.55) P2, = —2f1?
(2.56) P2o = —2xg%,
(2.57) Z1(820) = {(1+%) (Pry(fy +c181) = 1) =Pr(f2. +¢1820)} 1.
The boundary conditions are:
@2.58) N=0  fro="Jio=820= 8= D2, =0,
(2.59) N> filo=—(1-%), gi=1-x,
Pio=—2, Pi.=—2x,
?,, = 0.

For the pressures, we obtain the analytic solutions:

]
(2.60) P2 = —fi—(fitcigdfi—n(l—c)—(+ec)fi+c1y1—¢ of (1—figi)dy,

7
(2.61) f"ze='2‘(“8'1’—(f1+318'1)gi+7}(1'c1)‘—(1+C1)ﬁ1+?1'— f (1- {gi)dﬂ)-
0

We have used the abbreviations

P ”lil:((ﬂ_fl)'i'cl(q-gn)

.62) b= (1Jr ilic:gi)d,, -
0 1
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and
2.63) g f (1—figh)dn.

The boundary conditions at 5 — co for the first and second-order equations are
supplied by matching the inner and outer expansions. The procedure of matching can be
found in, for instance, Yan Dyke’s paper [1].

2.5. Boundary-layer characteristics

As a consequence of the decrease in velocity in the boundary layer, the external flow
is displaced outwards. For plane and axisymmetric flow, the definition of a displacement
surface is well known. After F. K. Moore [5] and R. SEDNEY [6], it is possible to define
such a fictitious surface even for three-dimensional flow. The local distance between the
wall and the displacement surface —i.e., the displacement thickness—is such defined
that the mass-flow defect due to the effect of friction is compensated.

We write the displacement thickness D* at the stagnation point as asymptotic expan-
sion in terms of the perturbation parameter &:

(2.64) D* = ;__i ,*+e(U“ 88, +— a;;)}+

kxo ]/Uu Una VUi
We obtain:
(269 = o Im(@—f)+eitn-22) = Bu,
(2.66) 0%s = 1'+1'(-'1 ’:Ln; [(?? —fad+e1 (Z—:’I_gu)] —(1+4c,) afl s
2 1 2
(2.67) 0% = 1+ P iﬂl( ~f2e— (1~%)73 )+-‘-‘1(—gu+§(l—’¢)?} )]

o A=A —coa?] :

The Eq. (2.65) has already been given by P.A. LmBY[7].

The components of the wall shear stress vector, expressed by the dimensionless
coefficients ¢y, and ¢r;, and the wall heat transfer, expressed by the Stanton-number, can
be written in the following form:

UZI

3
(2.68)  cpp =2 = U7, k,ox{f;'(0)+g

o T = wol}+

|
©+ ]/_gz.,w)] +.

3

(2.69) Crz = Tz? = 3"1011 xoz{gl (0)+3[Un 2

U, 7 &24

(2.70) St = —‘M—_ = - ‘/gr“ {01(0)+8[g:i 6;¢(0)+%u195c(0)“

4*
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3. Results and discassion

The first and second-order boundary-layer equations presented for incompressible,
three-dimensional stagnation point flow have been integrated numerically using the
method of Runge-Kutta. The parameter ¢, which reflects the asymmetry of the first-order
outer flow at the stagnation point, was varied between 0 (plane case) and 1 (axisymmetric
case). Figures 3-5 show the results of the first-order theory. All these results are from
Prandtl’s theory: displacement thickness, wall shear stresses, and wall heat transfer. We
note that the variation of ¢, has little influence on the x-component of the shear stress if

14
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Fic. 3. First-order displacement thickness. FiG. 4. First-order wall shear stresses.

we assume that the quantity U,, in the Eq. (2.68) is constant (U,; = 1 for parabola and
axisymmetric paraboloid). Further, we see that the first-order heat transfer increases
almost linearly with ¢;. If we compare two parabolic bodies, plane and axisymmetric,
with the same nose radius in a stream under identical conditions, we find that the heat
transfer at the stagnation point of the axisymmetric body lies about 30 per cent higher
than the heat transfer at the plane body.

In Figs. 6-8, the effect due to boundary-layer displacement is shown. In addition to
the parameter ¢;, we now have in the displacement problem the parameter ¢,, which
reflects the asymmetry of the second-order outer flow at the stagnation point. For the two
extreme cases of plane and axisymmetric flow, we obtain ¢, = ¢,. We restricted ourselves
to configurations where always ¢, = ¢;.

Furthermore, we have to reflect upon the quantity U,,, which is the velocity gradient
of the second-order outer flow in the x-direction, and which appears in the equations for
the boundary-layer characteristics. Calculating U,, is extremely difficult, since an elliptical
differential equation has to be solved. For the cases we known — the plane and axisymmetric
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semi-infinite body — U, turns out to be negative. So far we do not have sufficiently gen-
eral information about the behaviour of this quantity U,,. We may therefore presume
for the time being that U,, is also negative in the general case.

We note from the figures that the second-order quantities, corresponding to the wall
shear stresses and the wall heat transfer, are positive for all values of ¢,. Since these
quantities have to be multiplied by the presumably negative quantity U,,, we may con-
clude that the shear stresses and the heat transfer at a general stagnation point are in

20
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N N\b. [
a% K
A
wf\ Sd? 16 \ N
age \ '0&\\
v Calc. after KGersten, “ <
13
- J.F Grass [9] |
w (alc. affer 12e C
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Fic. 9. Second-order displacement thickness due Fic. 10. Second-order wall shear stresses due to
to body curvature. body curvature.

principle reduced due to boundary-layer displacement. The displacement thickness, on the
contrary, shows the opposite behaviour.

In Figs. 9-12 is shown the effect due to body curvature. In addition to the parameter c,,
we now have in the curvature problem the parameter x, which reflects the geometric asym-
metry at the stagnation point, as against the parameter ¢, which enters the displacement
problem. We have restricted ourselves to body configurations characterized by the coupling

% =cl,
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and studied the cases n = 0.5; 1; 2. For instance, in the case of an elliptical paraboloid
we have n = 1.

For ¢; = O—that is the plane case—only the effect due to longitudinal curvature
is present. From the signs of the second-order quantities, we find that in this case the
displacement thickness is increased, but the shear stresses and the heat transfer at the
stagnation point are reduced due to surface curvature. For ¢; = 1—that is, the axisym-
metric case—the effects of both the longitudinal and transverse curvature are present.

V2(0) Vz(0)
L) 1 1 <= “ l
e Lalc. affer MVan Dyke [2] v Calc. affer K.Gersten et al.[8]

03 i = a3 7
0z 7 // az '@ //7
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-02! -az
o oz o4 as as 10 0 02 o4 a6 a8 » 10
Cq

NS
ANNR

=01

F1G. 11. Second-order wall heat transfer due to Fig. 12. Second-order wall heat transfer due to
body curvature. body curvature.

From the signs, we find that in this case the displacement thickness and the heat transfer
are increased, whereas the shear stress is reduced as against classical boundary-layer theory.

There is a change in sign for the second-order heat transfer due to surface curvature,
where the effects of longitudinal and transverse curvature cancel each other. For sufficiently
large values of c,, the effect of transverse curvature predominates.

Summarizing we can say: As against classical boundary-layer theory, the curvature
effect can either reduce or augment the shear stresses and the heat transfer at a stagnation
point, depending on the geometry, whereas the displacement effect always reduces these
quantities. The difficulty that remains is to calculate the second-order outer flow, and
hence U,, and W,,, for a given set of flow conditions.
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