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Soft sphere lattice scattering at oblique incidence

R. G. BARANTSEV (LENINGRAD)

THEe REFLECTION of gas particles from a lattice of spherical atoms is studied. An analytic solu-
tion of the two-dimensional problem is obtained for small parameter v specifying the potential
barrier deviation from a vertical. The asymptotic approach enables us to split the real collective
interaction into a sequence of pairwise collisions. First and second collisions are considered.
Exit velocity, scattering indicatrix, momentum and energy exchange coefficients are found
depending on », mass ratio y, lattice stiffness parameter «, and incidence angle 6,.

Rozwazono zagadnienie odbicia czgsteczek gazu od sieci kulistych atomow. Otrzymano roz-
wiazanie analityczne zagadnienia dwuwymiarowego dla malych wartoéci parametru » okreflaja-
cego odchylenie bariery potencjatlu od pionu. Podejécie asymptotyczne pozwala na rozlozenie
rzeczywistego oddzialywania wzajemnego na szereg par zderzen. Rozpatrzono pierwsze i drugie
zderzenia. Wyznaczono predkosé czasteczek po odbiciu, wskaZnik rozproszenia oraz wspoél-
czynniki wymiany energii i pedu w zaleino$ci od wspélczynnika v, stosunku mas yu, para-
metru sztywnoéci sieci o, oraz kata padania 6.

OGcy»mena mpobiiema OTpa)KeHHA MOJIEKYJ rasa or pemerku chepruecknx aromos. ITomy-
UEHO AHANMTHYECKOE pellieHHe ABYMepHOH mpobuieMBl Ui MANBIX SHaUCHHI mapameTpa onpe-
OeJTONIEro OTKIOHeHHe Gapbepa NOTEHIMANA OT BEPTHKANHM. ACHMOTOTHYECKHA ITOIXOR
MO3BOJIAET HA PA3jIoyKeHME PEabHOrO B3aHMOACHCTBEA B A NAapHEIX CTONKHOBeHHH. Pac-
CMOTpeHBI NepBhle W BTOpPbie CTOMKHOBeHMA. OnpefesieHbI CKOPOCTE MOJIEKYJ Iocie oTpa-~
YKeHusA, koadbuuHenT paccesHAA 1 KoaddHIHenTE! 06MeHEa SHEPIHH H HMITYJIECA B 3aBHCHMO-
CTH OT R%atm:mmem ¥, OTHOLUIGHHS MacC 4, IAPAMETpAa )KECTKOCTH DelIeTKH «, H yria
nageHHuA Uy.

IN PAPERS [la, 2, 3] the problem of gas atom reflection from a soft-sphere lattice was
solved for atom incidence along the surface normal. At oblique incidence, the complicated
picture of shadows and multiple collisions hampers making a sufficiently simple analytic
theory. The qualitative idea of the solution structures needed to work out correct models
can be given by the two-dimentional problem, where the shadow and multiple reflection
effects are of a visible form. For hard atoms, such a problem has been solved in [4].

In this paper, the analytic solution of the two-dimensional problem is obtained to
within O(¥), » being the small parameter specifying the potential barrier deviation from
a vertical. Some estimates of real » by experimental data are given. The expansion in mass
ratio u has not, by contrast with [2, 3], been used. Both first and second collisions are
taken into account. The momentum and energy exchange coefficients are calculated at
incidence angles 6, = 0(15)75° for » = 0; 0.1; # = 0; 0.25; 0.5 and two values of lattice
stiffness parameter a,. Also obtained are asymptotic formulas for small «,.
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1. Effective inclination of potential

The hard sphere model does not provide the proper angular distribution of scattered
particles. Therefore in [1-3] a slightly inclined barrier of a finite range was taken as the
repulsive instead of the vertical potential. Over the short working range r e [ry,,., a,]
the potential was assumed to be representable as

(LD Ur) = U'(a,) (r—a,)+0() (r—a,)?,
the inclination was specified by the small parameter
(L2) v = Ei[(1+p)a, |U' @)™,

E, being the impact energy, x4 — atom mass ratio. The asymptotic approach makes it
possible to solve the soft-sphere lattice scattering problem in an analytic form. The solu-
tion up to terms O(»?) proves to depend on the potential through the parameter » only.

Let us estimate real values of » on the basis of the results in [5-7] for the two most
generally used models of repulsive potential:

(.3 u(r) = kr-*,

(14 U(r) = Aexp(—4r).

Parameters s, K or 4, A have been found for finite intervals Ar only. The effective inclina-
tion of potential in the range where U reaches the E, level can be determined by draw-

ing a straight line through the points at which U = E; and U = E,[2 —ie., by the
equations

(1.5 Ulraw) = Ey,  Ul(rawnta,)/2] = E]2.
Then, |U’(a,)| = E;/(@y—Tni), s0 that
(16) Yo = "’(1+au) = l_'rmlnfat‘
The Eqgs. (1.5) result in r,,, and a,. In the case of (1.3):
1 1
.7 v = 2"'7-2)/@" " -1),
in the case of (1.4):
B In(4/E) |
(1.3) VYo = [l'l' W] .
The values of », found by (1.7), (1.8) are given in Table 1.
Table 1.
5 5 6 7 8 9 10 11 12

Yo 0.229 0.197 0.172 0.153 0.138 0.126 0.115 0.106

AlE, 200 400 1000 2000 3000 4000 6000 8000
Yo 0.207 0.188 0.167 0.154 0.148 0.143 0.138 0.134

Figure 1 shows the potential curve (1.4) with typical values of parameters 4 = 4A-1,
A = 4400 eV in the range with upper point E; = 2 eV; ry = 1.924A, a, = 22724,
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vo = 0.153. The dotted line is the curve (1.3) with s = 8 crossing the point (., £,);
for this K = 375.7 eV. When E,[2 < U < E,, the plots coincide. The inclined barrier
approximates these potentials sufficiently well within 0.4 E, < U < E,. Below this interval,
it is an extrapolation providing the finite range of potential.

Hence the parameter » really proves to be sufficiently small to justify the asymptotic
approach. Dealing with specific gases and surfaces, we can find » and a, by means of
(1.5) using the Tables from [6, 7] for the parameters of potential (1.4) in the form

(1.9 U(r) = Fopexp[(R—r)fe], Fo = const,

and the combining rule

(1.10) 2Ry; = Ry+Ryj, 20 = ou+oyj-

2. Solution of two-dimensional problem

Let atom centres of the upper lattice layer be arranged along axis ¢ at points
0, +1, +2, ... Drawing circles of radius a, at these centres for a, > 0.5, we have
a continuous periodic surface on whicl gas atom centres occur at moments of encounter.



790 R. G. BARANTSEV

Let sina, = 1/(2a,), 0 < a* < #/2. Encounter point 7, impinging velocity #,, and
emerging velocity uhave the components

7 = {a,sin«, a,cosa},u; = {—sinb;, —cosb,}, u = {usinf, ucosf}.

The angles are counted from the normal n, positive to the right, negative to the left,
—t, <o 0,00, <nf2, —=[2<0 < n)2.

In the coordinate system rotated through the angle 6,, the problem of individual
collision can be solved as at normal incidence. To within 0(») we obtain:

cos(a—0,) [sino+2vsin(a—6,)cos(Qa—6,)],

usinf = —sinf, + 1-|2-,u
(2.1)

ucosf = —cosf, + -Hz—pcos(a—8,)[cosrx—2vsin(a—81)sin(2a—61)].

The reflection structure connected with shadowing and multiple collisions depends on
the interaction parameters. Taking into account double reflection, we can divide the
plane (6,, «,) into 5 specific parts (Fig. 2 in [4]): I — single reflection only, II — second

p=0
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collisions with the left-hand atom, III — second collisions with the two neighbouring
atoms, IV — shadowing and second collisions with the left-hand atom, V — shadowing
and second collisions with the two neighbouring atoms. The single reflection range
o_ < a < oy in the general case is determined by

o HE a: in I, 1T,
(2.2) o = T~V oy =q0f inlll, V,
1 ¥ atfin IV,

where af are the first-collision boundaries, o is the right-atom shadow boundary. These
values have been studied in [4, 1b).
The scattering function is V' = V;+V,,

1 ¥ =
(2‘3) Vi — KE(B)I(F)-cs[u_uI‘(B)]! 1= 1, 2,
For the single scattering

_ cos(a—0;)
"~ 2sina,cosf,|di/da| ’

(24 V1o 6.<0<0,,
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and u,(0), 6(x) are determined by (2.1), together with 6; = 0(a;) as soon as the single
reflection boundaries (2.2) are known. Calculating the derivative df/dx one obtains

_ cos(a—0;) 1—2pucos2(ax—0,)+u®+2uv[l—cosd(a—6,)]

"~ 4sina,cos; 1+ (2v—p)cos2(a—0,)—2urcos4(a—0,)

2.5) Vie

For the double scattering V,, may be written as in (2.4), anci u,(6), 6(«) have been found
in [1b]. The range of 6 is determined by the intervals —e, < ¢ < a_, &y < « < a.
Where the corresponding 8 intervals overlap, the values of V,, are added.

Integrating ¥; over u, > 0 gives the probability of i fold scattering:

a
Ni= [ Vit = = [ costa—0,)da,
2.6)
' = Zsina, cos, [sin(o+—06;) —sin(e-~0;)], N, =1-N;.

Table 2 contains N, for a, = 30°, 45°; u = 0;0.25;0.5; » = 0,0.1; 6, = 0(15)75°.

Table 2. N,
09
oy 7} ] .
0 15 30 45 60 75
. 0 1 0.979 0.942 0913 0.921 0.965
01 | 0744 0.857 0.839 0.835 0.873 0.943
s 1 bas 0.958 0.932 0.890 0.867 0.887 0.947
; 01 | 0.706 0.803 0.769 0.764 0.815 0.913
o | @ 0.841 0.851 0.822 0.809 0.846 0.925
” 01 | 0601 0.609 0.682 0.679 0.746 0.875
0o | 0 0.846 0.853 0.875 0911 0.947 0.976
o1 | 0704 0.719 0.768 0.865 0916 0.961
02 | © 0.756 0.770 0.813 0.876 0.922 0.963
4 1 & 01 | 0612 0.631 0.695 0.814 0.877 0.940
o5 | © 0.636 0.659 0.728 0.833 0.892 0.947
’ 0.1 0.496 0.521 0.602 0.755 0.830 0915

3. Exchange coefficients

Writing tangential momentum 7, normal momentum p, and energy g exchange
coefficients [2] as

(ERY T="74+%, P=pi1tP q=q:+4;

(3.2) u=t+v, p=prtp, @a=4q-q', i=12;
one has

(3.3) 77 = N;sinf,cosf,, pr = N;cos*6;, gqi = Ncosb;

7 = cosb, f Viusinfdu = a, f cos(a—0y)u;(0)sinfda,

un>0
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-

(3.4) pit = cosb, f ViucosBdu = a, f cos(a—0,)u;(8)cosbda,

x>0

gt = cosb, f Vivdu = a,fcos(a-ﬂl)u,’(ﬂ)da.

>0

For i = 1, the integrals (3.4) are taken by means of (2.1) in an analytic form. Combin-
ing the impinging and emerging fluxes, we obtain:

73 = 2a,(1+ 1)~ [(So—2¥Sy)sinb; — (C, — 2+C;)cosh,],
3.5) Py = 2a,(14+ 1) [(Co—2vC,)sinb, + (So —2vS,)cosb,],
9; = 4a, u(1+p)~%(So—2+Sy),
where
o = [sin(oy —6,) —sin(e~0,)]~ 3 sin® oy ~0,) —sin®(a_~0,),
Co = 5 [005* (x4 —0,) —cos* (e~ B,),

(3.6)
S, = %[sin’(a.,.—el)—sina(u_—-ﬂl)]— % [sin® (o —6;) —sin (x_—0,)],

Cy = 31008 (a—0,) ~c0s?(& ~0,)]— = [oos’ (s ~0,) 05" (=0,

For i = 2 the integrals (3.4) are taken over the intervals —a, < @ < o, & < ¢ < «,
using the corresponding functions u,(6), 6(«) from [1b]. Then 7,, p,, g, are calculated
by (3.2), (3.3).

Figs. 2-4 show the dependence of 7, p, ¢ on 6, for

o, = 30°,45°; 4 =0;02505; »=0;01(—=,-).
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4. Asymptotics for small o,

With decreasing «,, the shadowing and multiple collisions effects are reduced. When
a, is sufficiently small, we are in the single reflection range I where, according to (2.2),
o = —o,, o4 = o,. There N; = 1 and (3.5), (3.6) result in:

ol J2 Ly RIS By )
e {38111 Oy 29[(33111 oy — 5 sin‘e,

+cos?0, (l —4sin’a, + -15—65in‘ a,)]l :

P ":% sin?a, + %coszrfs‘1 (B- 28in2a:,,,):]

)

—4v[(-:1,,—sin2a,,. - —z—sin“a:*) +cos?6, (1 - g—lsinza,, + %sin‘a.;)

16
—cos® —4sin? — gin*
@1 cos 81(1 4sin’a, + 5 sin' a,)]},

q= (—lg_%ﬁgcosﬂlg[sinza,+cos’8, (1 = %sin2 a*)]
c 4 L g " 14 ., ik
—4y| (sine, —sin*e,)+cos?d, I—Tsm o, +4sin‘e,
. 16 .,
—cos*0, |1—4sin?e, + —-sin*e, ) |f.

The boundary of range I for ag, - 0 (8, — =/2) has the simple asymptotic form:

- _l-p(m
(4.2) Ogy = '3—+';(—2— 81).
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Since « is included within a small interval near zero, we have from (2.1):

4.3) 1gf = —:—tgﬁ [1 2(a= v51n281)( tg0y + ‘;tiﬁl)+0( 2)]

The emerging velocity and the scattering indicatnx are insignificantly simplified. The
asymptotic expressions of the exchange coefficients in I are simply obtained from (4.1)

2sin26, 7
T = 30+ )( « —3vcos?,),
2
(44) P= —(']%J)—[COSZBI o _3_" (l = 20'05291)‘- %Sinzzei:l:

= ‘t‘? 10;;32‘ [cos’&; + —% (3—4cos?0,)— vsmzi’ﬂl]
Note that decreasing o, for a fixed » enlarges the collective interaction zone and the
arguments (see [la]) leading to the identity ¥, with ¥, become invalid. Therefore the
parameter » in (4.4) must decrease together with «,, and also sufficiently rapidly. Decreas-
ing a, before » requires a further analysis of the collective interaction zone.
Asymptotics by «, makes it possible to ‘obtain also an analytic solution of the three-
dimensional problem.
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