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A new method of investigation of a certain class of integral equations
describing the dynamics of physical processes

M. PODOWSKI (WARSZAWA)

THE PAPER investigates the properties of a certain class of systems of integral equations in which
the non-linearities have the forms of series of multi-linear Volterra-type functionals. The analysis
is based on the existence and uniqueness theorems of solutions of a certain operator equation
defined in a Banach space, the systems of equations considered being reducible to that form.
By this theorem, and using certain definite Banach spaces, the conditions are formulated sufficient
for the solutions to possess such properties like continuity and boundedness, or convergence
to zero at infinity.

W pracy rozwazono wilasnosci pewnej klasy ukladéw réwnan calkowych, w ktérych nielinio-
wosci majg postaé szeregdw wieloliniowych funkcjonalow typu Volterry. Analize oparto na
twierdzeniach o istnieniu i jednoznacznoéci rozwigzan pewnego rOwnania operatorowego,
okreélonego w przestrzeni Banacha, do ktérego sprowadzi¢ mozna rozwazane uklady réwnan.
Postugujac si¢ tymi twierdzeniami oraz pewna okreslona przestrzenia Banacha, sformulowano
warunki dostateczne na to, aby otrzymane rozwigzania posiadaly takie wlasnosci jak cigglosé,
ograniczono$¢ lub zbieznoéé do zera w nieskoficzonosci.

B paGore ofcy)/IeHBI CBOMCTBA HEKOTOPOTO KJIACCA CHCTEM MHTErPAaNbHEIX ypaBHeHwuil, B KO-
TOPLIX HEIMHEHHOCTH MMEIOT BHJ PANOB MHOTOMHHEHHBIX ¢yHKIMOHANOB TEma BombTeppa.
ARanHN3 OCHOB2H HAa TeOpeMaX CYLIECTBOBAHMA H €JHHCTBEHHOCTH PelleHHi HeKoTOpOro one-
PATOPHOTO YPaBHEHHA ONpeJieleHHOro B GAHAXOBOM MPOCTPAHCTBE, K KOTOPOMY MOXHO CBECTH
paccMaTpUBaeMble CHCTeMB! ypaBHenmii. Ilocqy)KMBasChb 3THMM TEODEMAMH H HEKOTODBIM
onpefeslcHHbIM GaHAXOBBIM IIPOCTPAHCTBOM C(HOPMYJIMPOBAHBI JIOCTATOYHBIE YCJIOBHA A
TOro, YTOGBI MONYUYeHHBbIE pellleHHA OOJANAM TAKHMM CBONCTBAMH, KaK HENPEpPLIBHOCTB,
OrpPaHHYEHHOCTE WIIH CXOIQMMOCTE K HYJIO B GECKOHEUHOCTH.

1. Introduction

In MOST practical cases, the motion of a system of a finite number of material points may
be described, under prescribed equations of motion and definite constraints, by the follow-
ing set of equations

d
(L.1) —g=ﬂ(t,x1,...,xm). i=1,.., M.

According to the form of F;, it may represent a system of differential or integro-differential
equations. In particular, when F; are simply functions, the following system of ordinary
differential equations is obtained :

(1.2) ig—‘ = fi(ts Xys ooy Xna).

6*
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If we further assume that the functions f; can be expanded into the McLaurin series
withrespectto x,, ..., Xp, and that £j(z, 0, ..., 0) = 0, then the Egs. (1.2) may be rewritten
in the form

(1.3) = Za.,(t)xﬁ- Z 2{ Z g oy (L) Xy oi Ko

p=2 m=1 mp=1

If the functions x,, ..., x) in Egs. (1.3) are considered as elements of a definite Banach
space X (x;eX for i =1, ..., M), and if certain assumptions are made concerning the
functions a;;(¢) and a,,,...m,(t), then the expressions

(1.4) G ooy (Komys +3 Ximg) = By ..oy () Xy oov Xy

may be treated, in turn, as p-linear operators [1] transforming the space considered into
itself; this fact will be denoted in our paper by the symbol Gy, ...m, € (X? = X). Intro-
ducing moreover the vector Banach space W(X) containing vectors x = {x;, ..., X,}
as elements, we may write the following p-linear operator (defined on this space and
with values from the space x):

(1-5) Gpi(xls s xp) = 2 2‘ Gplml m,(xlmls pﬂtp

my=1 mp=1
Here x; = {Xn}, I =1, ...,p; m = 1, ..., M. Finally, by defining the operator
(16) Gy={Gp), i=1,..M

it may easily be demonstrated that G, € ([W(X))? — W(X)). Thus the system of Egs. (1.3)
is now written in the form of an operator equation

(L7 & o Gxt ) G,

p=2

where G,x* < G,(x, ..., x). Under the initial condition x(0) = Xo, the En. (1.7) is trans-
formed to the form:

(1.8) X=2+4) G,x".

p=2

Here, z = K(t)xo, K(t) = {ki;(t)} is the solution of the linear part of the Eq. (1.7), while
the operator A is defined as:

(1.9) [4x1(1) = [ KOK () x(2)dx.
0

It is easily observed that the expressions (1.4) may be treated as special cases of the
following Volterra-type integral operators:

(110)  Gipmy...my(Emys ovvs Xm)

t 1]
= [ [ty T1a s T X (51) o g ()1 o Ay
U] 0
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In order to obtain the form of the Eq. (1.4), it is sufficient to substitute K, . m,(¢, 7y, .-
ooy Tp) = gy omp(t) * 0(t—74, ..., 1—1,), O denoting the Dirac delta. The Eq. (1.8)
then becomes (in view of the fact that A is also an integral operator) the simplified nota-
tion of a non-linear system of integral equations. If the operators G, [defined by the Egs.
(1.6) and (1.10)] transform the space W(X) into itself and, moreover, z € W(X) and
A € (W(X) - W(X)), then the investigation of properties of the system of integral equa-
tions just formulated reduces to the analysis of the Eq. (1.8) which constitutes an operator
equation in the Banach space W(X). The present paper sets out to analyse the solutions
of the Eq. (1.8) as referred to an arbitrary Banach space, and then to examine properties
of integral operators in several selected types of spaces.

2. Analysis of properties of solutions of the operator equation

Let the Eq. (1.8) be given under the assumptions that z is an element of an arbitrary
Banach space X, 4 — a linear (bounded) operator transforming the space X into itself,
and G, € (X? - X), p = 2,3, .... This equation, depending on the forms of z, 4 and
G,, may possess one or many solutions within the space X, or may have no solutions
at all. The following theorem deals with the condition necessary for the equation con-
sidered to have exactly one solution.

THEOREM 2.1. If the series D) ||G,|y? (y — real number) has a positive radius of con-
p=2

vergence, then there exist positive numbers o« and B such that for each z satisfying the in-
equality |z| < a, the Eq. (1.8) possesses within a sphere K(0,f) = {x:||x||<f} < X
a unique solution x* equal to the limit of successive approximations

@1) Yoty = 244 D) Gypxi.

p=2
Here the term x, may be an arbitrary element of X such that |x,| < y*, where y* is the
minimum non-negative solution of

@2 y=141 D 1G 1y = Izl

p=2
The following estimate holds:
(2.3) Ix*ll < y*.

The proof is based on the following lemma:
LemmA 2.1. In the equation

2.4) y— Z“Pyp -,
p-2
© .
u and a, denote the given real numbers (a, > 0 for p=2,3, ...). If the series > a,y® has
p-z

the radius of convergence R > 0, then there exist positive numbers o and p such that for each
u€0, a) the Eq. (2.4) has within the interval {0, B> exactly one solution y* continuously
dependent on u.
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Proof of the lemma. From the assumptions it follows that the radius of convergence

2]
R’ of the series Z pa,yP~! satisfies the inequality 0 < R’ < R. It follows that there must
p=2

exist a number r € (0, R") such that the function

l\ﬂs

P
apy

(2.5) u=fy) =y-

Lo

o
is differentiable within the interval {—r, r). Its derivative is equal to
(2.6) f'o)=1- Z; payy™t.
=

From the form of Eq. (2.6) it follows that along the segment <0, r), f'(r) is a decreas-
ing function and f'(0) = 1. If thenf’(r) < 0, then there exists j € (0, r) such that f'(¥) = 0
and for each y € {0, #) the inequality is fulfilled: 0 < f'(y) < 1. However, if f'(r) > 0,
then all the more f'(y) > 0 for y € (0, r). Thus if 8 is an arbitrary number from within
the interval (0, min (¥, r)), then for each y <0, f) the inequality 0 < f’(y) < 1 holds
true. It follows that there exists a continuous function y = f ~!(u) inverse to fand defined
in the interval {0, a), where a = f(f). Thus the Eq. (2.4) has exactly one solution
y*(w) € (0, B> within that interval and it is linearly dependent on u.

Proof of the Theorem 2.1. The substitution a, = |4 ' [|G,ll, u = |z|| is easily
observed to transform the Eq. (2.2) to the form (2.4). For arbitrary z such that |z]| < «
we may consider the operation:

Q@ F(x) =z+4 ) G,x?,

p=2
defined within a closed sphere K, (0, y*(z)) = {x: ||x]| < y*(2)}, where y* is a solution
of the Eq. (2.2). Since

28  IFEGI < Izl +]14l 2 G|l lIx1I” < lizll + 1141 Z 1GI*@)F = y*(2),

p=2 p=2
for each fixed z, the operation F, transforms the sphere K, into itself. Simultaneously,
for arbitrary x,, x, € K, the inequality

29)  IEE)-FE)I < 4] D 16,28 —G,x| < %2 —xi]l 141 Y pIG,I*@P
p=2 p=2
is satisfied.
Lemma 2.1 yields the conclusion that |4 3 p|G,I[y*()P* <1 which, together
p=2

with the Egs. (2.7) and (2.8) proves that F, is a contracting operation within the sphere ;.
From the Banach theorem on contracting operations there immediately follows the first
part of the theorem, the estimate (2.3) being an obvious conclusion from the inequality
(2.8).

The considerations presented yield, moreover, a conclusion concerning the continuous
dependence of x* on z. In particular, for z = 0 (zero element of the space X) also x* = 0.
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It should be noted that for each particular equation of the form of (1.8), the values of a
and f may be evaluated numerically. If G, = 0 for p > 3, then the Eq. (1.6) assumes
the form

(2.10 x—AG,x* = z,

and for each z such that |z| < (4 [A] |G|])~*, it has a unique solution satisfying the
inequality:

(2.11) Ix*l < @141 [G2l)~(1~ Y 1=4[ A 1G] lizD.

Assuming x, = 0, it is possible, in accordance with the Eq. (2.1), to represent the solu-
tion x* in the form:

o
(2.12) x = limx, = z+ Z U,z?,
n—+x p=2
where U, € (X? - X) for p = 2, 3, .... Operators U, may be determined by substituting
the solution (2.12) into the original equation; this yields

o o0 oW
z+ Z Up2P = z+ 4 ZG,[2+ ZUkZ"]D,
=2

=2 p=2
or, in the explicit form,

Us 224+ Us 2+ ... = AG,(z+ U 2%+ . )2+ AG3(z+ Uy 22 + .. )% + ...
= AG,2*+ AG,[z(U,z%) + (U2) 2]+ AG3 2 + ...
Equating the terms containing equal “powers”, we obtain:
U,z% = AG,z?,
Uy2® = AG,[2(U,2%)+ (U, 29 2]+ AG; 22,

etc., every consecutive operator U, depending exclusively on the operators U,
k=2,3,..p-1

3. Integral operators

In the case in which X is a space of functions (real or complex) of a variable ¢, and the
operators A4 and G, have the forms of integrals, the Eq. (1.6) assumes the form of an
integral equation (or set of equations). From the Theorem 2.1 it follows that investiga-
tion of properties of its solutions (including the existence and uniqueness theorems) is
reduced to the determination of conditions under which the operators transform the
space X into itself,

The following Banach spaces will be utilized in this paper:

(1) Euclidean M-dimensional space /i consisting of the sequences x = {&}
k=1, .., M, with the norm

M

el ={ > 161"

k=1
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(2) Space C with elements being continuous and bounded functions in the interval
{0, o0), with the norm | x|c = sup|x(?)[;
=0

(3) Space C, consisting of functions continuous in the interval (—oc0, + 0), equal
to zero for ¢t < 0 and bounded for # > 0. The norm is defined as before: ||x||c, = sup |x(¢)|;
=0

(4) The quotient space K & C|N, N being a subspace of the space C and consisting
of functions converging to zero at infinity. Elements of the space K are classes x of ele-
ments of C differing by the element belonging to N. The norm is defined as
| %]lx = lim sup |x(f)|; x is an arbitrary element of the class x.

T—w tz=T

Each element x e C belongs to exactly one class X € K and hence the class X may be

replaced by its arbitrary representative x. In particular, we may write | x| x = lim sup|x(?)|;
T—ow t2T

(5) The quotient space Ko & C,/N, defined in a manner quite analogous to the pre-
ceding case;

(6) Space V. Function A(f) is an element of the space ¥ if h(¢) = 0 for # < 0 and
Var, & < o0, where

{0 )
n

Var i = lim Var A = lim sup sup Z [kt )—h@), G=1,...,n).

0,0) T=w0(0.T) T-wr=12. 1e0, T =]
The norm is expressed as ||A||y = Varh;
<0, o)

(7) Space C(I) £ CM2. This is the space of M-dimensional sequences x = {x;},
i=1,..., M, the elements of which are functions continuous and bounded in the interval

M
€0, ), (x; € C), with the norm ||x];,c = sup { > Ix:(t)lz}m;
>0 “i=1

(8, 9, 10) Spaces Co(l%), K(If) and K,(l%) defined as in (7).

The examples presented concern real spaces. They may easily be generalized to spaces
with complex elements; symbol [x| must then be treated as the modulus of a complex
number.

The subject of further investigation will be the properties of the integral operators
defined in one of the spaces (2)-(5) or (7)-(10); first, for the sake of simplicity, we shall
prove the lemma yielding the conclusion that investigation of properties of operators
in vector spaces may be reduced to a similar investigation in scalar spaces.

LeMMA 3.1. The following operators are given:

Il=1,..,p
(3.1) G,(x,,...,xp)(p=l,2,...), X = {xlm}((m=1,“.’M)’
where
(3.2) Gy = (G} (=1,.... M),
M M
(3'3} Gpl(xI’ sy xp) = Z 2 Gp[ml...m,(xlmp rery xpm;)-
my=1 mp=1

For each p = 1,2, ... the identity
G4)  {Ge([XUP - X))} = {Gymy..mp € X7 X),  iymy,.omp=1,..., M},
X denoting an arbitrary Banach space.
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Proof. If Gym,..m€(X?—>X) for i,my,...,m,=1,..., M then (as follows
from the definition) G, e ([X(Z)F — X). Hence, if y; = Gu(x,, ..., x,), then y;eX
whence y = {yihie1..m = Gp(X1, ... , X;) €X(I%), which means that G,(xy, ... X,)€
€ ([XU#)P — X(Iip). However, if such indices ig, My, ..., Mpo exist that Gpim,q...my, ¢
#(X? > X), then also a sequence {Xym,g;...» Xpmpoy Must exist such that G i my...mpo Ximyo-
vivs Xpmyo) ¢ X. It follows that if

X10 = {0! ves 0 x;,..m,ﬁ, ...,0},

then y;, = Gpig(X10 --- Xpo) ¢ X —that is, ¥ = {1, ..., ¥is, ..., Y} ¢ X(Ii), which con-
cludes the proof.
In the particular case of p = 1, G, is a linear matrix operator:

(3-5) G =4= {Au}a,J-i, ey MY s
where
M
(3.6) Ax = {Z:Aux,}“% My
J=

3.1. Operators in scalar spaces

Let us now analyze the properties of the following integral operators:

t 1
BN Glrr, s x) = [ o [ R, 1y s T)X(ED) o Xy (2T .. dy,
0 0

4

(3.8) oy, s %) = [ | [ xt=D)ani(2),
i=1 0

(3.9) Gyay vy ) = [ oo [ 2y(t=70) o Xy (1= Tk (T, oo, 7Ty . dTy
0 0

with p = 1, 2, ..., the integrals in (3.8) being defined in the sense of Stieltjes.
3.1.1. Operators in spaces C and C,.

Let us formulate and prove the theorems determining the conditions sufficient for the
operators (3.7)-(3.9) to transform CP into C (or C§ into C,) for p = 1,2, ....
THEOREM 3.1. If k(2, 7y, ..., Tp) is a continuous function of p+1 variables within the

t 13
region {{0, ©0); ...<0, )} and sup [ ... [|k(t, 74, ..., T)|d7y ... dT, < 0O, then the
1=0 0 0

operator (3.7) transforms CP into C and its norm satisfies the inequality

t t
(3.10) IGplle < sup [ [ Ik, 70y ey )y .. dy,
=0 g 0
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which for p = 1 is transformed to an equality (for p > 2 the equality holds only for particular
forms of the kernel k).
Proof Ifx;eXfori=1,...,pand

t

y(f) = f fk(ts Ty eees Tp)xl(rl) xﬂ(rp)dtl drﬂ’
0

]

then y is a continuous function for each value of ¢. In addition, the inequality

P 1 i
sup|y(?)] < up |x(O)llsup | ... | |k(t, T, ..., THldTy ... dTy,
sup (1) ﬂ fsuplx(0)l1sup of 6[ k(t, Te, ..., T, .. d1,

holds: from which it follows that y € C and

1] t ]
Ile < sup [ ... [Ik(t, 7, .., Tdry . d, [ [ Iile,
20 0 i=1
which confirms the inequality (3.10). In order to prove the equality for p = 1, it is sufficient

1]
to observe that for each number & > 0 #, can be found such that sup f |k(t, 7)|dT
t=0 o

fo
— [ |k(to, 7)ld7 < &/2 and a function x, € C(|X,llc = 1) can be established such that
0

fo

f |%o(7) —sgnk(ty, 7)ldv < ef2suplk(to, 7)|.
0 [ 3 24

The possibility of determination of such x, results from the fact that the set of continuous
functions is dense within the space L(0, ¢,). The following estimates may then be made:

sup j lk(t, ©)|dv— f K(ta, ¥)%o(x)dz = sup f k(t, ©)|dv— j lk(to, ¥)ldv
¥ f Ik(to, 7)|dz — j k(to, ?)%o(x)dr < sup f lk(t, 7)|dv— f Ik(to, 7)|dz
0 0 =09 0

+ sup [k(to, 7)] [xo(7) —sgnki(to, 7)ld7 < 5 ot =,

O<r<ty

t
which yield |Gylc = sup [ ke, ldr.
i» 0
THeoreM 3.2, If Varh; < o (i = 1, ..., p), then the operator (3.8) transforms C§ into

<0.00)

C and its norm is equal to

@3.11) 1Gylc, = H Var k.

<0,)

The corresponding proof in the case of p = 1 may be found in [2]. Its validity for all
remaining values of p is obtained by means of a direct generalization.



A NEW METHOD OF INVESTIGATION OF A CERTAIN CLASS OF INTEGRAL EQUATIONS 841

THEOREM 3.3. l_'ff f [k(Ty, ..., T)ldTy ... dTr, < o0 (the integral being defined in the
b 0

sense of Lebesgue), then the operator (3.9) transforms C§ into C,, and

(3.12) Golley < [ o [ k(rys .. I diy ... dy.
0 0

P
With k(zy, ..., T,) = [ ki(z), the inequality is transformed to equality.
i=1
Proof. fx eCyfori=1,...,p, and

f

y(r)=f...J.xl(r—'rl)...x,(r—r,)k(-zl,...,r,.)drl ... d,,

]

then obviously y(¢) = 0 for each ¢ < 0. If, in addition, ¢, > f,, the following estimate
holds true

[y(t) —y(t2)] = |f f xy(ty—171) . Xp(ty = T)K(7y, -5 TPy ... dT,
0 0

2 Iz

- f f X, (t2— 1)) ... Xp(t2— 1)k (74, ..., Tp)dT, ... dTy|

= [ o [ Bal=70) e 2yl = T = X1 (G2 = 70) oo Xyta= Tz .o, T}, .. diTy
0 o

= lf f {Z ety — ’)“-"i(‘z"ft)]} ”x»‘(tz (7)) ”x;(l‘, —T)x

I>i

xk(Ty, ..., Tp)dTy ... dTy| < sup sup |x;(r,—-1:) xi(t,—7)| * px

WP 01

x{ sup sup |x;(t; — o)} f f [k(zy, ..., Tp)ldTy ... d7,

ap 0Ty

M(T) sup sup % (¢, — ) —x,(t, — 7)|

=1,...p 0<v<T

for each T > t;, which implies the function y(f) to be continuous in the interval
(—o0, +00). If it is additionally observed that

sup |y(®)| esf f [k(Ty, ...n THldT, .. dr,”suplx.(t)l,
£E0 0 0 i=1 12
then the inequality (3.12) immediately follows, and concludes the proof.
P
In the case in which k(7y, ..., 7,) = [] ki(z), operator (3.9) is a particular case of
I=1

(3.8), which makes it possible to replace the inequality (3.12) with an equality. If, however,
k(zy, ..., T,) is a continuous function of all its variables for 7; > 0, i = 1, ..., p, then
the operator (3.9) becomes a special case of (3.7), thus transforming C? into C.
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3.1.2. Operators in spaces K and K,

The theorems exposed in the preceding section also hold (under certain additional
conditions) with respect to the space K or K.
THEOREM 3.4. If the assumptions of Theorem 3.1. are fulfilled and if for each fixed t, > 0

the condition
fo fo

(3.13) lim | .. f k(t, Ty, ..., T)ldTy .. dr, =0

1=+

is satisfied, then the operator (3.7) transforms K? into K (p = 1,2, ...) and

t t
(3.14) 1Gole < sup [ . [1kt, 71, ..., 7)ld, ... d,.
=20 ¢ 0

Proof. From the assumption it follows that for each 7, > 0 and ¢ > 0 we can
select such T, that for each ¢ > T, and for arbitrary x; € C (x;(t) £ O fori=1,...,p)
there occurs the inequality:

1

f f ke, %1, ..cs T ... Ty < ———
0 2[] sup |x;(1)]
i=1120
Hence, if limx;(¢) = 0, there exist such numbers T; (i = 1, ..., p) that
=00
£
sup|x;(2)] < 7
12T

2p [] sup|x;)| sup [ ... [ k@2, 74, ..., Tp)ldT, ... dT,
Jl t=0 1200 0

f 3
If now y(t) = of !k(t, Tyy eeey T Xy (Ty) oo. Xp(Tp )d7, ... d7p, then for eacht > T =

= To+ ) T; we can estimate:
i
TT
O = [ [k, 7y ey T2 .. 22Ty .. diry
00

sz

i=1

-
-

s J.k(f, Tyseens ‘rp)xl.(rl.) xp(f‘,)dfl d‘!pl
0

T T

fsup (0] f f k(t, 74, ..., Tldry .. dr,

:,, =

I

P
t t o | JBCEs Tysanns dry...dt
+ 2 {supba(o) ﬂ [sup x(¢)sup uf of (e, T2, s Ty -y}
< -4 + £ _
7Py ="
which means that limy(z) = 0.

]
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Let x; = x;0+u; (i = 1, ..., p), where x;, € C, u; € N. Then

Gp(X1, vy Xp) = Gp(Xoy+uy, ..., Xop +Up) = Gp(Xo1, +.vs Xop)

P
E

+ } A Gp(Xo1s +ers Xogi-1)s Uis Xo(it1)FUit1s -y Xop + Up) = Gp(Xoy1, ..vs Xop) +W.
i=1

Here w e N. It follows that G, € (K? - K). If it is additionally assumed that [xy]c = 1,

IG,llx = sup [|Gp(x1s ..., Xk = sup [|Gp(Xo1s .. Xop)lk
||%e] | K=1 ||x0t]lc=1

< sup [Gp(xo1, -5 Xop)lc = [1G,lle,
[|%atl|c=1
whence, by means of the Theorem 3.1, Eq. (3.14) is derived.
THEOREM 3.5. If the assumptions of Theorem 3.2 are satisfied, the operator (3.8) is found
to transform Kj into K, and its norm is equal to

P
(3.15) 1G,lix, = [ ] Var k.

I=1 €0,2)

The corresponding proof for p = 1 may be found in [2]. Using the Theorem 3.2 it may
easily be generalized to the remaining values of p.

THEOREM 3.6. If the assumptions of Theorem 3.3 are satisfied, the operator (3.9) trans-
forms K§ into K, and

L1} o0
(3.16) 1Glko < [ oo [ K2y, oy Tld1y .. dy.
0 ]

P
(If k(zq, ..., 7p) = [] ki(%)), inequality is changed to equality).
=1
The proof is analogous to that of Theorem 3.4.
3.2. Operators in vector spaces

Using the results obtained for operators defined in scalar spaces let us now pass to
the operators defined in vector spaces (described by the Egs. (3.1)-(3.4)) and obtain the
corresponding norm estimates.

3.2.1. Linear operators
THEOREM 3.7. The operator
1
(3.17) [4x](1) = [ k(t, Dx(2)dr,
0

is given with k(t, ©) = {ki;(t, ©)}q,j=1,....m). If each of the operators A;; (here [A;x;)(t) =

t
= Jk,j(r, 7)x;(7)d7) transforms the space C (or K) into itself, then the operator (3.17)
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transforms the space C¥? (or K™?) into itself, and

(3.18) l4lzx < [4l2.c < Supfllk(f 7). dz.

Proof. Lemma 3.1 being taken into account, it proves sufficient to establish the
validity of estimates of the norm of 4. From the expression

l4xllz,c = sup|| f k(t, ) x(v)dz|, < sup f Ik, Dz [1x(2)).dz
120 g 1209

3 I
< sup[x(0)lsup f Ik(t, D)2 = sup f ke, lade x5,

it immediately follows that [|A4],c < sup f lk(t, 7)|,dz. With A e (KM? - K¥?), and

proceeding as in the Theorem 3.4, we obtam the left-hand side inequality from Eq. (3.18),
which concludes the proof.
The next theorem concerns the following operator

M
(3.19) Ax = {Z A,,,,x...} (M=1,..., M)’
i=1

[ §
Here, [AimXa)(t) = [ Xm(t—1)dhin(7), Var by < 0.
0 {0,)

THEOREM 3.8. Operator (3.19) transforms CM? (as also K}?) into itself, and
(3.20) 402k, < [4ll2,¢, < |l {Xﬂr)h.-m}a.m_l,.,..M)Hz'
400

Proof. The first part of that theorem follows directly from the Lemma 3.1. Norm
estimates in C)? result from the inequalities:

M M
I4xl.c, = sup{ 2[ z f xnt=Ddha@] ] < {3 [ 3 suplra(IVar hinf e,
i=1 m=10 i=1 m=1120
M M
[lsc,= sup 4xle<  —swp | 2] suplen(t] Var hia) )
x||2.c0= i=1 m=1120

2 [suplxm(n|P=1
m=1t20
= | {Vﬂl' h;..}(:.mm...,.mllz-
{0,x)

Estimates in the space K}* may be obtained in the same manner as before.
!
In particular, if Ai(t) = [ kin(7)dr for i,m =1, ..., M, then a stronger estimate
0
may be obtained:
1412k, < JAl2,c0 < [ 1D d,
0

Here, k(7) = {kin(?)}t,me1, ... M-
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3.2.2. Mulitilinear operators

Let us present the properties of the multi-linear operator (3.1) under the assumption
that operators G, ,...m, assume one of the following forms :

(3.21) Gp[mi...nl'(xlllll’ sany xpﬂﬂ)
t
= oj

Pt
3.22) Goimy.e s imps s Xpmp) = | | [ Xim(t =) hiim(2),
=1 0

Kotmy..mp(ts Tas s Tp) X1m (T1) - Xpmp(Tp)d7Ty ... d7p,

e T

(3-23) Gpim, ...m,(xlml, ceay xpm,)
4

13
= [ [ Ky m(Tas ooy T Xim (= T1) .. Ky (= T,y .. AT
0 0

THEOREM 3.9. If the operators (3.21) transform C” into C (or K? into K), then the operator
G, transforms (CM2)? into CM* (or (KM?)? into KM?), and

f f

(324)  1Gplax < ||Gp“2cx{22 Z[sup [ oo [ Veptmmpts 715 v 7] %

i=1 my=1 mp=1 (209 0
1/2
xdry .. dr, P} .

Proof. Since

L3

M 1
]!Gjli(xlr weey xp)ﬂc — SUPI Z‘ f fkplm1...m'(t! Ty ooty T,)X
p=10

M;-l 0

X Xym(T1) - Xy (E)T ... ity | < z Z,‘ {H [s0p Fim (]

mywl mpe=1 =1

t
x supf f[k,m,_,,...,(t, Ty ons TlATy ... dTp
120 [ 0

r t

M M p
=t Z] il 2 ” “xh!;"c ?Eg J. e f [kmml...nq(r’ Tiy eeey Tp)ld’l'; d‘rp:
my -

mp=11I=1 0 o

we obtain:

M
1Gp@ss ooy Xlc = D, NG (s, .. %113

i=1

< ” [ 2 |lxmﬂc]5: 5,‘ ZM‘ [supof fk,,m gty Ty ooes TRl Ty a’t,] .

=1 my=1 mp=1
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Now taking into account Lemma 3.1 and Theorem 3.4, the theorem is proved.
For p = 2 (bilinear operator) a more accurate estimate is found: namely, if ki &
= {Kzimgmy Jmymz=1,... 3> then

t M M
1[G, 21O < [ of | 3 D Eatmm(ts 71, 72)Xum,(72) Xamy(2) |y i
0

my=1rn=1
rt M M
< l-!(']r{ 2 IZ‘ kﬁ"‘l"‘z(‘ T1s Tz)xzm;(fz)‘ 2 xml(ﬁ)l } dr,dr,
my=1 mi=1 mi=1

= [ [ Mkaitt, 71, w)x2(r)alxs (2247, ds
00

k2t 71, T2 1% (T)2 %2 (22) |2 d7y d7s

.

¢
<f
0
which means that

M [
1G2Ges, x2)Me <{ D) [sup [ [ Wkt 72, w)lady do| His el lbe,
00 0

=1
or, finally,

M F A
[1G2ll3,c < {2 [Sglgff"kzt(h 7y, T2)l2d7y d"-'z]zlm
i=1 *>09 o

In particular, if k,(t, 7,, 72) = ka(t— 14, t—17,), then we obtain:

M W
16 <{ D[S [ Weaitrs, ladmdn]}"
i=1 0 0

THeoREM 3.10. If the operators (3.22) transform C§ into C, (and K§ into K,), then
the operator (3.1) transforms [CM¥*P into C¥?, as also [KX?P into K¥?, and

M M
629) 155120 < WGl <{ X[ ) ar e}

The proof is analogous to the previous one.

The theorems concerning the operators (3.23) are quite similar and it is not necessary
to formulate them independently. It should be noted, however, that in that case the follow-
ing norm estimates hold true:

M M M o w 212
1Gplzx, < 1Gplac <] Y ) - 2[ | I R CRRE P A i
p=1 0 ]

l=] my=1

In the case of bilinear operators, they may be replaced with stronger estimates

M w o
12k, < 1Gahaco < { X [ [ [ Weas(rs, wdlladmdns] |
i=1 0 0

Here k;j — {kzim,mz}(ml.m:-l..‘..u)-
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4. Conclusions

In the cases in which the operators discussed above constitute elements of the Eq. (1.8),
the latter becomes a simplified notation of a system of integral equations (or, as was
shown at the beginning, a system of integro-differential or differential equations). The
theorems derived here make it possible to determine the sufficient conditions for uniqueness
and existence of solutions of that system within the framework of one of the Banach
spaces discussed. According to the space assumed, we may investigate such properties
of the solutions as their continuity, boundedness and convergence to zero at infinity.

As already indicated, for each system of that type it is possible to determine numeric-
ally the range of existence and uniqueness of solutions, as also to estimate their norms,

Note also that the method of ruccessive approximations discussed in Sec. 2 enables
us to write the solution in the form of a series representing a generalization of the Volterra
functional series applied to non-linear scalar equations.

Particular attention should be paid to the possibilities of application of the analysis
presented in this paper to mechanical systems described by the differential equations
of the (1.3) type. It is easily observed that if, for an arbitrary initial point 7, and a certain
set of initial values [|x(f,)]l, < a, there exists exactly one solution continuous and bounded
in the interval ¢4, o0, then the zero solution must be stable (equilibrium point of the
system) in the Lapunov sense. If, in addition, each solution converges, under arbitrary
initial conditions, to zero, then the stability is globally asymptotic. Since from the previous
considerations (Theorem 2.1) it follows that the set of admissible initial conditions can
always be effectively determined, we may state that the amount of information on the
solutions so obtained is greater than that resulting from the application of other methods
(Lapunov methods in particular).

Similar conclusions may also be drawn with respect to the systems described by in-
tegro-differential equations or by differential equations with shifted arguments.

The problem of nuclear reactors [3] may be quoted as an example of practical, tech-
nical application of the method; it makes it possible to investigate more complex (as
compared with the Lapunov methods used so far) models, and to derive more general
stability criteria much more effectively.
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