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A new method of investigation of a certain class of integral equations 
describing the dynamics of physical processes 

M. PODOWSKI (WARSZAWA) 

THE PAPER investigates the properties of a certain class of systems of integral equations in which 
the non-linearities have the forms of series of multi-linear Volterra.-type functionals. The analysis 
is based on the existence and uniqueness theorems of solutions of a certain operator equation 
defined in a Banach space, the systems of equations considered being reducible to that form. 
By this theorem, and using certain definite Banach spaces, the conditions are formulated sufficient 
for the solutions to possess such properties like continuity and boundedness, or convergence 
to zero at infinity. 

W pracy rozwazono wlasnosci pewnej klasy uklad6w r6wnan calkowych, w kt6rych nielinio­
wosci maj'l postac szereg6w wieloliniowych funkcjonal6w typu Volterry. Analiz~ oparto na 
twierdzeniach o istnieniu i jednoznacznosci rozwi'lzan pewnego r6wnania operatorowego, 
okreslonego w przestrzeni Banacha, do kt6rego sprowadzic mo:Zna rozwazane uklady r6wna.D. 
Posluguj'lc si~ tymi twierdzeniami oraz pewntt okre8lon'l przestrzeni'l Banacha, sfonnulowano 
warunki dostateczne na to, aby otrzymane rozwi~a posiadaly takie wlasnosci jak ci~glosc, 
ograniczonosc Iub zbie:Znosc do zera w nieskonczonosci. 

B pa6oTe ~eHhi CBOHCTBa Hei<OTOporo KJiaCC8 CHCTeM HHTerpam.HhiX ypaaHeHHH, B KO­
TOpbiX Hemme:HHOCTH HMeiOT BH,Il; p~OB MHOroJmHeHHbiX <ilym<l.lHOHaJIOB THIIa Bo.rn.Teppa • 
.AHaJIH3 OCHOBaH Ha TeopeMax cyillecTBOBaHIDI H e~CTBeHHOCTH pemeHHH HeKOTOporo ODe­
paTOpHOrO ypaaHeHWI ODpeAeJiemiOro B 6aBaxoBOM DpOCTpaHCTBe, K KOTOpOMY MO>I<HO CBeCTH 
paCCM8TPHBaeMble CHCTeMbl ypaBHeJUrii. lloc.ny>I<HBaH:Cb 3THMH TeopeMaMH H HeKOTOpbiM 
onpeAeJieHHhiM 6aHaxOBbiM npocrpBBCTBOM <$opMyJIHpoaaHbi AOCTaTOtnlbie yCJIOBWI AJUI 
Toro, liTOObi nonyqeHHbie pemeHIUI OO.JII.AaJIH TaKHMH caoHCTBaMH, KaK HenpepbiBHOCTI>, 
orpaHlftleHHoCT& HJIH CXOAHMOCTI> K HYJDO B 6eCKoBeliHOCTH. 

1. Introduction 

IN MOST practical cases, the motion of a system of a finite number of material points may 
be described, under prescribed equations of motion and definite constraints, by the follow­
ing &et of equations 

dx; 
(1.1) dt =F;(t,x1 , ... ,xM), i=l, ... ,M. 

According to the form ofF;, it may represent a system of differential or integro-differential 
equations. In particular, when F; are simply functions, the following system of ordinary 
differential equations is obtained: 

(1.2) 

6* 
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834 M. PooowSKI 

If we further assume that the functions fi can be expanded into the McLaurin series 
with respect to x1 , ••• , xM, and thatf,(t, 0, ... , 0) = 0, then the Eqs. (1.2) may be rewritten 
in the form 

If the functions x1 , .•• , XM in Eqs. (1.3) are considered as elements of a definite Banach 
space X (x1 eX for i = 1, ... , M), and if certain assumptions are made concerning the 
functions aiJ(t) and ap1m 1 . .. m,(t), then the expressions 

(1.4) 

may be treated, in turn, asp-linear operators [1] transforming the space considered into 
itself; this fact will be denoted in our paper by the symbol Gpim

1 
. .. m, e (XP ~X). Intro­

ducing moreover the vector Banach space W(X) containing vectors x = {x1 , ... , x,} 
as elements, we may write the following p-linear operator (defined on this space and 
with values from the space x): 

(1.5) 
M 

G,;(x1 , •.. , x,) = ,1; 
m1=l 

M 

... ,2; Gpimt ··· mP(Xlmt' •.. , Xpmp). 
m11 =1 

Here x1 = {x1m}, I= 1, ... ,p; m= 1, ... ,M. Finally, by defining the operator 

(1.6) G, = {G,;}, i = 1, ... ,M, 

it may easily be demonstrated that G, e ([W(X)]P ~ W(X)). Thus the system ofEqs. (1.3) 
is now written in the form of an operator equation 

00 

(1.7) : = G1 x+.}; G,xP . 
P=2 

where G,x'~ G,(x, .. . , x). Under the initial condition x(O) = x0 , the En. (1.7) is trans­
formed to the form: 

00 

(1.8) x = z+A .1; G,xP. 
P=2 

Here, z = K(t)x0 , K(t) = { kii(t)} is the solution of the linear part of the Eq. (1. 7), while 
the operator A is defined as : 

I 

(1.9) [Ax](t) = .J K(t)K- 1 (r)x( r)dr. 
0 

It is easily observed that the expressions (1.4) may be treated as special cases of the 
following Volterra-type integral operators: 

(1.10) Gplm1 ••• m11 (Xm 1 , ••• , Xm
11

) 

t t 

= J ... J kp1m1 .. . m,(1, T1 , •.. , r,)Xm1 ( 7:1) •• • x,,,(r,)d7:1 ••• dr,. 
0 0 
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In order to obtain the form of the Eq. (1.4), it is sufficient to substitute kp1m 1 ... m/t, T 1 , ... 

... , Tp) = ap1m1 ••. mp(t) · <5(t-T1 , ... , t-Tp), <5 denoting the Dirac delta. The Eq. (1.8) 
then becomes (in view of the fact that A is also an integral operator) the simplified nota­
tion of a non-linear system of integral equations. If the operators GP [defined by the Eqs. 
(1.6) and (1.10)] transform the space W(X) into itself and, moreover, z e W(X) and 
A e (W(X)-+ W(X)), then the investigation of properties of the system of integral equa­
tions just formulated reduces to the analysis of the Eq. (1.8) which constitutes an operator 
equation in the Banach space W(X). The present paper sets out to analyse the solutions 
of the Eq. (1.8) as referred to an arbitrary Banach space, and then to examine properties 
of integral operators in several selected types of spaces. 

2. Analysis of properties of solutions of the operator equation 

Let the Eq. (1.8) be given under the assumptions that z is an element of an arbitrary 
Banach spac~. X, A- a linear (bounded) operator transforming the space X into itself, 
and GP e (XP-+ X), p = 2, 3, .... This equation, depending on the forms of z, A and 
GP, may possess one or many solutions within the space X, or may have no solutions 
at all. The following theorem deals with the condition necessary for the equation con­
sidered to have exactly one solution. 

00 

THEOREM 2.1. If the series 1: llGPllyP (y- real number) has a positive radius of con-
P=2 

vergence, then there exist positive numbers a and p such that for each z satisfying the in-
equality llzll ~a, the Eq. (1.8) possesses within a sphere K(0,{3) = {x: llxll ~ {3} c X 
a unique solution x* equal to the limit of successive approximations 

00 

(2.1) Xn+l = z+A }; Gp~· 
p=2 

Here the term x 0 may be an arbitrary element of X such that llx0 11 ~ y*, where y* is the 
minimum non-negative solution of 

00 

(2.2) y-IIAII };IIGpllyP = llzll. 
P=2 

The following estimate holds: 

(2.3) llx*ll ~ y*. 

The proof is based on the following lemma: 
LEMMA 2.1. In the equation 

(2.4) 
00 

y-}; aPyP = u, 
P=2 

00 

u and aP denote the given real numbers (ap ~ 0 for p = 2, 3, ... ). If the series ~ apyP h~s 
P=2 

the radius of convergence R > 0, then there exist positive numbers a and {3 such that for each 
u e (0, a) the Eq. (2.4) has within the interval (0, {3) exactly one solution y* continuously 
dependent on u. 
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P r o o f of the lemma. From the assumptions it follows that the radius of convergence 
00 

R1 ofthe series .2; pa,y'-1 satisfies the inequality 0 < R1 < R. It follows that there must 
P=2 

exist a number r E (0, R 1
) such that the function 

(2.5) 
00 

u = f(y) = y- .2; a,y' 
p=2 

is differentiable within the interval ( -r, r). Its derivative is equal to 

00 

(2.6) fl(y) = 1- .2; paPyP-1. 
p=2 

From the form of Eq. (2.6) it follows that along the segment (0, r),[ 1(r) is a decreas­
ing function and f 1 (0) = 1. IT then[ 1 (r) ~ 0, then there exists y E (0, r) such that f' (jl) = 0 
and for each yE (0, y) the inequality is fulfilled: 0 ~ [ 1(y) ~ 1. However, if f'(r) > 0, 
then all the more [ 1(y) > 0 for ye (0, r). Thus if {J is an arbitrary number from within 
the interval (0, min (jl, r)), then for each y e(O, {J) the inequality 0 <[ 1(y) ~ 1 holds 
true. It follows that there exists a continuous function y = f- 1(u) inverse tofand defined 
in the interval (0, a.), where a. = f(/J). Thus the Eq. (2.4) has exactly one solution 
y*(u) e {0, {J) within that interval and it is linearly dependent on u. 

Proof of the Theorem 2.1. The substitution ap = IIAII ·IIGPII, u = llzll is easily 
observed to transform the Eq. (2.2) to the forin (2.4). For arbitrary z such that llzll ~ ex 
we may consider the operation: 

00 

(2.7) Fz(x) = z+A .2; G,x', 
p=2 

defined within a closed sphere K:(O, y*(z)) ~ {x: llxll ~ y*(z)}, where y* is a solution 
of the Eq. (2.2). Since 

00 00 

(2.8) IIF:r{x)ll ~ llzll + IIAII _2; 11Gpllllxll11 ~ llzll + IIAII_2; IIG,II [y*(z)]' = y*(z), 
P=2 P=2 

for each fixed z, the operation F: transforms the sphere K: into itself. Simultaneously, 
for arbitrary x1 , x2 e K: the inequality 

00 00 

(2.9) IIF:(x2)-Fz(x1)ll ~ IIAII _2; IIG,~-Gpxfll ~ llx2-xii!IIAII .l;PIIG,II[y*(z)]'-1 

P=2 P=2 

is satisfied. 
00 

Lemma 2.1 yields the conclusion that IIAII 2; p IIG,II [y*(z)]'- 1 < 1 which, together 
p-2 

with the Eqs. (2.7) and (2.8) proves that Fz is a contracting operation within the sphere K:. 
From the Banach theorem on contracting operations there immediately follows the first 
part of the theorem, the. estimate (2.3) being an obvious conclusion from· the inequality 
(2.8). 

The considerations presented yiel~ moreover, a conclusion concerning the continuous 
dependence of x* on z. In particular, for z = 0 (zero element of the space X) also x* = 0. 
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It should be noted that for each particular equation of the form of (1.8), the values of ex 

and f3 may be evaiuated numerically. If GP = 0 for p ~ 3, then the Eq. (1.6) assumes 
the form 

(2.10 

and for each z such that llzll ~ (4 IIAII IIG2 II)-1
, it has a unique solution satisfying the 

inequality: 

(2.11) 

Assuming x0 = 0, it is possible, in accordance with the Eq. (2.1), to represent the solu­
tion x* in the form: 

00 

(2.12) X= limxn = z+ 2 UpzP, 
n-+oo P=2 

where UP e (XP ~ X) for p = 2, 3, .... Operators UP may be determined by substituting 
the solution (2.12) into the original equation; ·this yields 

00 00 00 

z+ 2 UpzP = z+A 2 Gp[z+ 2 Ukz"r, 
P=2 p=2 k=2 

or, in the explicit form, 

U2z2+ U3z3 + ... = AG2(z+U2z2+ ... )2 +AG3(z+ U2 z2+ ... )3 + ... 

= AG2z2+AG2 [z(U2z2)+(U2z2)z]+AG3 z3 + .... 

Equating the terms containing equal "powers", we obtain: 

U2 z2 = AG2 z2
, 

U3 z3 = AG2[z(U2 z2)+(U2 z2)z]+AG3 z3
, 

etc., every consecutive operator UP depending exclusively on the operators Uk, 
k = 2, 3, ... ,p-1. 

3. Integral operators 

In the case in which X is a space of functions (real or complex) of a variable t, and the 
operators A and GP have the forms of integrals, the Eq. (1.6) assumes the form of an 
integral equation (or set of equations). From the Theorem 2.1 it follows that investiga­
tion of properties of its solutions (including the existence and uniqueness theorems) is 
reduced to the determination of conditions under which the operators transform the 
space X into itself. 

The following Banach spaces will be utilized in this paper: 
(1) Euclidean M-dimensional space lie consisting of the sequences x = gk} 

k = 1, ... ,M, with the norm 
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(2) Space C with elements being continuous and bounded functions in the interval 
(0, oo), with the norm llxllc = supJx(t)l; 

t;o.O 

(3) Space C0 consisting of functions continuous in the interval (- oo, + oo ), equal 
to zero for t ~ 0 and bounded for t > 0. The norm is defined as before: llxllc

0 
= sup Jx(t)l; 

t;o.O 

(4) The quotient space K ~ C/N1 N being a subspace of the space C and consisting 
of functions converging to zero at infinity. Elements of the space K are classes .X of ele­
ments of C differing by the element belonging to . N. The norm is defined as 
II.XIIK = lim sup Jx(t)l; x is an arbitrary element of the class x. 

T-+oo t;o.T 

Each element x e ,C belongs to exactly one class x E K and hence the class x may be 
replaced by its arbitrary representative x. In particular, we may write llxiiK = lim sup lx(t)l; 

T-+oo t;o.T 

(5) The quotient space K0 ~ C0 /N0 defined in a manner quite analogous to the pre-
ceding case; 

(6) Space V. Function h(t) is an element of the space V if h(t) = 0 for t ~ 0 and 
Var, h < oo, where 
(0 oo) 

11 

Var h = lim Var h = lim sup sup };lh(t,+I)-h(ti)l, (i = 1, ... , n). 
(O,oo) T-+oo (0, T) T-+oo 11=1,2 ... t1e(O, T) 1=1 

The norm is expressed as llhllv = Varh; 
(0, oo) 

(7) Space C(/ft) ~ CM2
• This is t~e space of M-dimensional sequences x = {x;}, 

i = 1 , ... , M, the elements of which are functions continuous and bounded in the interval 

{ 
M }1/2 

(0, oo), (x, E C), with the norm llxll 2 ,c = sup ~ jx,(t)l 2 
; 

I> 0 l=-1 

(8, 9, 10) Spaces C0 (/f,), K(lf,) and K0 (lf,) defined as in (7). 
The examples presented concern real spaces. They may easily be generalized to spaces 

with complex elements; symbol lxl must then be treated as the modulus of a complex 
number. 

The subject of further investigation wiii be the properties of the integral operators 
defined in pne of the spaces (2)-(5) or (7)-(10); first, for the sake of simplicity, we shall 
prove the lemma yielding the conclusion that investigation of properties of operators 
in vector spaces may be reduced to a similar investigation in scalar spaces. 

LEMMA 3.1. The following operators are given: 

(3.1) ( 
I= 1, ... ,p ) 

Gp(x1 , ... , Xp) (p = 1, 2, ... ), x, = {x,m} ( _ 
1 

M ' 
m- ' ... , 

where 

(3.2) GP= {Gpt} (i = 1, ... , M), 
M M 

(3.3) Gp;(X1, ... , Xp) = 2 ... .I; Gptm 1 ... mp(Xlm1 , ... , Xpmp). 
m1=1 mp=1 

For each p = 1, 2, ... the identity 

(3.4) {Gpe([X(ll,))P-+X(lit))} = {Gp1m1 ... mp E (XP-+X), i, m1, ... , mp = 1, ... , M}, 

X denoting an arbitrary Banach space. 
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Proof. If Gp1m 1 ... mp e (XP ~X) for i, m1 , ••• , mp = 1, ... , M then (as follows 
from the definition) Gp; e ([X(/.lt)]P ~X). Hence, if y; = Gpi(x1, ... , Xp), then y; eX 
whence y = {Ydt=t. .. M = Gp(x1, ... , Xp) eX(Ift), which 111eans that Gp(x1, ... Xp)e 
E ([X(Ift)]P ~ X(lft)). However, if such indices i0 , m10 , ... , mpo exist that Gp1m10 .. . mpo f# 
f#(XP ~X), then also a sequence {x1m10 , ... , Xpmpo} must exist such that G,;i0 m10 ... mpo (Xtm10 • 

... , XpmpJ f# X. It follows that if 

Xlo = {0, ... '0, Xlmto' 0, ... '0}, 

Xpo = {0, ... , 0, Xpmpo' 0, ... , 0}, 

then Yio = Gp;0(X10 ... Xpo) f# X- that is, Y = {y1 , ... , Y;0 , ... , YM} f# X(lft), which con­
cludes the proof. 

In the particular case of p = 1, G1 is a linear matrix operator: 

(3.5) G1 =A= {AiJ}<t,J=t, ... ,Afl, 

where 

(3.6) 

3.1. Operators in scalar spaces 

M 

Ax = {~ A11 x1}<t=J, .. . ,M)' 
J=l 

Let us now analyze the properties of the following integral operators: 

t t 

(3.7) Gp(x1, ... , xp) = J ... J k(t, -rh ... , -rp)x1(-r1) ... Xp(-rp)d-r1 ... d-rp, 
0 0 

p t 

(3.8) Gp(X1, ... , Xp) = n J x,(t--r)dh,(-r), 
i=l 0 

t t 

(3.9) Gp(Xt, ... , Xp) = J ... J X1(t- Td ... Xp(t- Tp)k(-r1, ... , 'l'p)d'l't ... d-rp 
0 0 

with p = 1, 2, ... , the integrals in (3.8) being defined in the sense of Stieltjes. 

3.1.1. Operators in spaces C and C0 • 

Let us formulate and prove the theorems determining the conditions sufficient for the 
operators (3.7)-(3.9) to transform CP into C (or CS into C0) for p = 1, 2, .... 

THEOREM 3.1. If k(t, -rb ... , -rp) is a continuous function of p+l variables within the 
t t 

region {(0, oo); ... (0, oo)} and sup J ... flk(t, -r1 , ... , -rp)ld-r1 ... d-rp < oo, then the 
t~O 0 0 

operator (3.7) transforms CP into C and its norm satisfies the inequality 

t t 

(3.10) IIGpllc ~ sup J ... J lk(t, -r1 , ... , 'l'p)l d-r1 ... d-rp, 
t~O 0 0 
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which for p = 1 is transformed to .an equality (for p ~ 2 the equality holds only for particular 
forms of the kernel k). 

P r o o f. If x1 eX for i = 1, ... , p and 

t I 

y(t) = J ... J k(t, £1, ... , l'p)Xt(Tt) ... Xp(t'p)d£1 ... d£p, 
0 0 

then y is a continuous function for each value of t. In addition, the inequality 

p t t 

suply(t)l ~ n fsupjx,(t)l]sup f ... f lk(t, l'!J ... , t'p)ld£1 ... d£p, 
t;a.O l=-1 t;;JoO t;a.O 0 0 

holds: from which it follows that y e C and 

t t p 

IIYIIc ~sup f ... f lk(t, Tt, ... , Tp)ld£1 ... d£p fl llxdlc, 
t;a.O 0 0 i=l 

which confirms the inequality (3.10). In order to prove the equality for p = 1, it is sufficient 
to 

to observe that for each number e > 0 t0 can ·be found such that sup J lk(t, £)1 d£ 
t~O 0 

to 

- J lk(t0 , £)Id£ < e/2 and a function x0 e C(llxollc = 1) can be established such that 
0 

to 

J lx0 (£)-sgnk(t0 , -r)ld-r< ef2suplk(to, -r)l. 
o O=~itl'Eito 

The possibility of determination of such x0 results from the fact that the set of continuous 
functions is dense within the space L(O, t0). The following estimates may then be made: 

t ~ t ~ 

sup J lk(t, £)Id£- J k(t0 , £)X0 (t')d-r =sup J lk(t, T)jd£- J lk(to, T)ld£ 
t~O 0 0 1~0 0 0 

to to t to 

+ J lk(t0 , -r)ld-r- J k(t0 , -r)x0 (-r)d£ ~ sup J lk(t, -r)ld£- J lk(to, £)Id£ 
0 0 t;a.O 0 0 

I 

which yield IIGtllc =sup J lk(t, -r)ld-r. 
t>O 0 

THEOREM 3.2. JfVarh1 < oo (i= 1, ... ,p), then the operator (3.8) transforms Cg into 
<O.co) 

C and its norm is equal to 

p 

(3.11) IIGpllco = fl Varh,. 
t ... l <O,co) 

The corresponding proof in the case of p = 1 may be found in [2]. Its validity for all 
remaining values of pis obtained by means of a direct generalization. 
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<X) <X) 

THEOREM 3.3. If J ... J lk(r1 , ••. , r,)ldr1 ••• dr, < oo (the integral being defined in the 
0 0 

sense of Lebesgue), then the operator (3.9) transforms cg into C0 , and 
<X) <X) 

(3.12) IIG,IIc0 ~ J ... J lk(rt, ... , r,)ldrl ... dr,. 
0 0 

p 

With k( i 1' ... ' ip) = n ki( Tj), the inequality is transformed to equality. 
1=1 

Proof. If x e C0 for i = 1, ... , p, and 

I I 

y(t) = J ... J x 1(t-r1) • •. Xp(t-rp)k(r1 , ... , rp)dr1 • • • dr,, 
0 0 

then obviously y(t) = 0 for each t ~ 0. If, in addition, t1 > t2, the following estimate 
holds true 

t1 11 

ly(tt)-y(t2)1 = I J ... J X1 (t 1- r1) ... Xp(tt- rp)k(r1 , ••• , r,)dr1 ... dr, 
0 0 

12 11 

- J ... J x1(t2-r1) ••• x,(t2-r,)k(-r1 , ••• , r,)drt ... dr,l 
0 0 

= 1/ ... j' (Xt(ft-Tt) .. . Xp(tl-Tp)-Xl(t2-Tt) ... Xp(12-Tp)]k(Tt,···,Tp)dT1 ••• dTpj 
0 0 

11 ft p 

= I J ... J LE [x,(tl- r)-xi(t2- it)l} n Xj(t2- Tj) n x,(tl- ir) X 

0 0 l=l )>I l>i 

x k('rh ... , i,)dr1 ••• d-rpl ~ sup sup lx1(t1 - r)-xi(t2- r)l· p x 
l-1, ... ,p 0<-r<lt 

11 11 

x {sup sup lx,(t1 -i)I}P-t J ... J lk(-r1 , ... , rp)ldrt .. . di, 
i=t, .. . ,pO~-r~tt 0 0 

~ M(T) ·sup sup lx,(t1 .-. r)-x,(t2- r)l 
1=1, .. . ,p 0~-r"T 

for each T > t1 , which implies the function y(t) to be continuous in the interval 
(- oo, + oo ). If it is additionally observed that 

<X) <X) p 

SUpjy(t)l ~ f ... J lk(Tu ... , r,)jdit ... dip n SUpiXt(t)l, 
t~O 0 0 i=l t~O 

then the inequality (3.12) immediately follows, and concludes the proof. 
p 

In the case in which k( r 1 , .•• , r ,) = fl ki( r1), operator (3.9) is a particular case of 
l=-1 

(3.8), which makes it possible to replace the inequality (3.12) with an equality. If, however, 
k( -r 1 , ..• , -r ,) is a continuous function of all its variables for Tj ~ 0, i = 1, ... , p, then 
the operator (3.9) becomes a special case of (3. 7), thus transforming CP into C. 
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3.1.2. Operators in spaces K and K0 

The theorems exposed in the preceding section also hold (under certain additional 
conditions) with respect to the space K or K0 • 

THEOREM 3.4. If the assumptions of Theorem 3.1. are fulfilled and if for each .fixed t0 > 0 
the condition 

to to 

(3.13) limf ... J lk(t, ih ... , ip)ldi1 ... dip= 0 
1-+00 0 0 

is satisfied, then the operator (3.7) transforms KP into K (p = 1, 2, ... ) and 

I I 

(3.14) IIGpiiK ~sup J ... J lk(t, it, ... , ip)ldi1 ... dip. 
t~O 0 0 

P r o o f. From the assumption it follows that for each t0 > 0 and e > 0 we can 
select such T0 that for each t > T0 and for arbitrary X; E C (x;(t) ;t=. 0 for i = 1, ... , p) 
there occurs the inequality: 

t I 

j ... J lk(t, it, ... , ip)ldit ... dip< P 
8 

0 0 2 n sup lx;(t)l 
i=l t~O 

Hence, if Iimx;(t) = 0, there exist such numbers T; (i = 1, ... , p) that 
1-+00 

t t 

If now y(t) =f ... J k(t, i 1 , ... , ip)x1(i1) ... Xp(ip )di1 ... dip, then for each t > T = 
0 0 

= T0 + ~ T1 we can estimate: 
I 

TT 

ly(t)l = IJ J k(t, it, ... , rP)x1(rt) ... xp{ip)di1 ... dip 
0 0 

pT Tll I . 

+~f ... f f f ... f k(t, it, ... , ip)Xt(it) ... Xp(ip)dit ... dip! 
1=1 0 0 T 0 0 

p T T 

~ n [sup lx;(t)IJ f ... f lk(t, it, ... , ip)ldit ... dip 
i=l t~O 0 0 

p p I I 

+ ~ {supiX;(t)l n [supiXi(t)IJsup J ... f lk(t, it, ... , ip)ldit ... dTp} 
i=1 I~T j=i 1~0 t~O 0 0 

which means that limy(t) = 0. 
1-+00 
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Let xi= xiO+ui (i = 1, ... ,p), where Xio e C, u1 eN. Then 

Gp(X1 , ... , Xp) = Gp(x01 +u1, ... , Xop +up)= Gp(X0 1, ... , X0 p) 

p 

+ L; Gp(Xo 1 , ... , Xo(i-1), Uj, Xo(i+l)+ut+l' ... , Xop +Up)= Gp(X01 , ... , X0 p) +w. 
l=l 

Here we N. It follows that GP e (KP--+ K). If it is additionally assumed that !Ixodic = 1, 

IIGpiiK = sup IIGp(xl, ... , Xp)IIK = sup IIGp(Xol, ... , Xop)IIK 
llxtiiK=l Jlxotllc=l 

~ sup I!Gp(Xob ... , Xop)llc = I!Gpllc, 
llxotllc=l 

whence, by means of the Theorem 3.1, Eq. (3.14) is derived. 
THEOREM 3.5. If the assumptions of Theorem 3.2 are satisfied, the operator (3.8) is found 

to transform Kg into K0 and its norm is equal to 

p 

(3.15) IIGpiiKo = n Var hi. 
1=-l (O,oo) 

The corresponding proof for p = 1 may be found in [2]. Using the Theorem 3.2 it may 
easily be generalized to the remaining values of p. 

THEOREM 3.6. If the assumptions of Theorem 3.3 are satiSfied, the operator (3.9) trans­
forms KC into K0 and 

(3.16) 

p 

00 00 

IIGpiiKo ~ J ... J lk('l'l, ... , 'l'p)ld-rl ... d-rp. 
0 0 

(If k(-r1 , ... , Tp) = fl k,(-r,), inequality is changed to equality). 
1=-l 

The proof is analogous to that of Theorem 3.4. 

3.2. Operators in vector spaces 

Using the results obtained for operators defined in scalar spaces let us now pass to 
the operators defined in vector spaces (described by the Eqs. (3.1)-{3.4)) and obtain the 
corresponding norm estimates. · 

3.2.1. Linear operators 

THEOREM 3.7. The operator 

I 

(3.17) [Ax](t) = J k(t, T)X( T)dT, 
0 

is given with k(t, T) = {k11 (t, T) }(I,J=l, ... ,M)· If each of the operators A 11 (here [A 11 x1](t) = 
I 

= J kiJ(t, T)x1( T)dT) transforms the space C (or K) into itself, then the operator (3.17) 
0 
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transforms the space CM2 (or J(M2
) into itself, and 

t 

(3.18) IIAib.K ~ IIAII2.c ~sup J llk(t, -r)ll2d-r. 
t;;r;O o 

Proof. Lemma 3.1 being taken into account, it proves sufficient to establish the 
validity of estimates of the norm of A. From the expression 

t t 

IIAxll2,c = sup 11 J k(t, -r)x(-r)d-rll2 ~sup J llk(t, t')ll211x(-r)lbd-r 
t;i!;O o t;i!;Oo 

t t 

~ supllx(t)112sup J llk(t, -r)l!2d-r =sup J llk(t, -r)ll2d-r· llxll2,c 
t;i!;O t;i!;O 0 t>O 0 

t 

it immediately follows that IIAib,c ~ sup J llk(t, -r)lbd-r. With A e (KM2 
-+ KM2

), and 
t;i!;O 0 

proceeding as in the Theorem 3.4, we obtain the left-hand side inequality from Eq. (3.18), 
which concludes the proof. 

The next theorem concerns the following operator 
M 

(3.19) 

t 

Ax = {~ AimXmLM=I, ... ,M)' 
I= I 

Here, [AimXm](t) = J Xm(t- -r)dhim( -r), Var htm ~ oo. 
0 (~oo) 

THEOREM 3.8. Operator (3.19) transforms C~2 (as also Kf,12) into itself, and 

(3.20) IIAII2,K0 ~ 11Aib,c0 ~ 11 {Varhim}(l,m=I, ... ,M)Ib· 
(O,oo) 

P r o o f. The first part of that theorem follows directly from the Lemma 3.1. Norm 
estimates in Ct/2 result froin the .inequalities: 

M M t M M 

IIAxii2,Co =sup{~ r ~ f Xm(t--r)dh,m(-r)Yr'
2 ~ {~ [~ supiXm(t)IVar hlmrr'

2
' 

t;;.O l=-1 ·m-1 0 1==1 m-1 t;i!;O (O,oo) 

M M 

IIAII2,Co = sup IIAxlkco ~ sup {~ [~ suplxm(t)l Var himrr'
2 

llxii2·Co=l M 1-1 m= I '*'0 (O,oo) 
I [supjxm(t)j]2=1 

m= I t*'O 

= 11 {Var htm}(i,m=I, ... ,M)II2· 
(O,oo) 

Estimates in the space Kt/2 may be obtained in the same manner as before. 
t 

In particular, if h1m(t) = J k1m( -r)d-r for i, m = 1, ... , M, then a stronger estimate 
0 

may be obtained: 
00 

IIAII2,K0 ~ JIAII2,C0 ~ J llk{-r)ll2dT, 
0 

Here, k(-r) = {kim(-r)}(l,m-l, ... ,M,)· 
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3.1.2. Maltillnear operators 

Let us present the properties of the multi-Jinear operator (3.1) under the assumption 
that operators G ptm 1 ... ,,, assume one of the following forms : 

t t 

= f ··· f kplmt···•l'{t, 'rt, ... , 'rp)Xtm1('rt) ··· Xpm,('t'p)d't't ... d-rp, 
0 0 

p t 

(3.22) Gpimt····,(Xtm,, ... , Xpm,) = n f x,,.,(t--r)dhpiml(-r), 
1-1 0 

t t 

= f ··· f kptm 1 ... m,('rt, ···, Tp)Xtm1(t- Tt) ... Xpm,(t- 'rp)d'rt ... dTp• 
0 0 

THEoREM 3.9. If the operators (3.21) transform C11 into C (or KP into K), then the operator 
G11 transforms (CM2)P into CM2 (or (KM2)" into KM2), and 

M M M t t 

(3.24) I!Gplb,x ~ I!Gplb,c ~ L2,, }; ... }; [sup J ... J !kptm~ ... m,(t, 't'tJ ... , T,)l x 
i=l ml"••l m,=1 t;~>O 0 0 

P r o o f. Since 
M M t t 

IIGp,(Xh ... , Xp)llc =sup I}; ... }; J ... f kplmt····.P(t, Tt, .. ,, Tp)x 
t;;.O ,.,1-1 m,-1 0 0 

M M p 

x Xtm.{'r1) ... x,.,,(-rp)dT1 ... d-rp j ~ ~ ... }; {fl [sup lx,m1(t)l] x 
mt•1 m,-1 1-1 t;;.O 

t t 

X SUp f ... f lkptm1 ••• m,Ct, 'rh ... , 'r p)ld-rl .~. dTp 
t;;.O 0 0 

M M p t t 

= }; ••• }; n !IXlmtliC SUp f ... f lkptm 1 •.. mp(t, 'r!J ... , Tp)ld'rt ••• d'l'p, 
mt-1 m,-11-1 t;;..O 0 0 

we obtain: 

M 

IIGp(Xh ... , Xp)ll~.c = }; IIGp,(Xt, ... , Xp)ll~ 
1-1 
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Now taking into account Lemma 3.1 and Theorem 3.4, the theorem is proved. 

For p = 2 (bilinear operator) a more accurate estimate is found: namely, if k 2 i ~ 

= {kzim1m2 hm.,m2=1, ... ,M), then 
t t M M 

I[Gzi(Xt,Xz)](t)l ~ f Jl}; 2 k2im1m2 (t, Tt, Tz)Xtm1(Tt)Xzm2 (Tz),dTtdTz 
0 0 m1 =1 m2 =1 

t t M M M 

~ f f {}; ll, k2im1m2(t, TlJ T2)X2m2 (T2)1
2
r

12
{}; Xtm 1(Tt)l2r12

dTtdT2 
0 0 m1=1 m:t-1 m1=1 

t t 

= f f llk2i(t, Tt, T2)X2(T2)1l211Xt(Tt)ll2dT1dT2 
0 0 

t t 

~ f f llk21(t, T1, T2)11211Xt(Tt)II211Xz(T2)112dTtdT2, 
0 0 

which means that 
M t t 

IIG2(Xt, x2)1ltc ~ {}; [sup J J llk2;(t, Tt, T2)112dT1dT2r}llxtll~.cllxzlltc, 
1=1 t;;!>O 0 0 

or, finally, 

M «> oo 

IIG21l2.c ~ {2 [J J [1lk2;(T1, T2)1l2dT1dT2rr'
2

. 
i-1 0 0 

THEOREM 3.10. If the operators (3.22) transform CS into C0 (and KC into K0), then 
the operator (3.1) transforms [C~12]' into cr2, as also [K~2]' into Kr2

, and 

M M 

IIG,Il2,Ko ~ IIG,Il2,co ~ {}; [}; (Var hptm)2 Jr'2• 
l=l m-1 (O,oo) 

(3.25) 

The proof is analogous to the previous one. 
The theorems concerning the operators (3.23) are quite similar and it is not necessary 

to formulate them independently. It should be noted, however, that in that case the follow­
ing norm estimates hold true: 

M M M oo «> 

IIG,llz.Ko ~ IIG,llz.co ~ {}; 2 ... }; [f ... f lkptm 1 ••. m,(Tt, ... , T,)ldTt ... dT,Yr'
2

• 

l-1 m1""l m, ... l 0 0 

In the case of bilinear operators, they may be replaced with stronger estimates 

M eo «> 

ua211z.xo ~ na2n2,Co ~ {2 [f J llk2;<T~, T2)llzdT1dT2rr'
2

• 
i=l 0 0 
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4. Conclusions 

In the cases in which the operators discussed above constitute elements of the Eq. (1.8), 
the latter becomes a simplified notation of a system of integral equations (or, as was 
shown at the beginning, a system of integro-differential or differential equations). The 
theorems derived here make it possible to determine the sufficient conditions for uniqueness 
and existence of solutions of that system within the framework of one of the Banach 
spaces discussed. According to the space assumed, we may investigate such properties 
of the solutions as their continuity, boundedness and convergence to zero at infinity. 

As already indicated, for each system of that type it is possible to deterniine numeric­
ally the range of existence and uniqueness of solutions, as also to estimate their norms. 

Note also that the method of ruccessive approximations discussed in Sec. 2 enables 
us to write the solution in the form of a series representing a generalization of the Volterra 
functional series applied to non-linear scalar equations. 

Particular attention should be paid to the possibilities of application of the analysis 
presented in this paper to mechanical systems described by the differential equations 
of the (1.3) type. It is easily observed that if, for an arbitrary initial point t0 and a certain 
set of initial values llx(t0)ll 2 ~ a, there exists exactly one solution continuous and bounded 
in the interval t0 , oo, then the zero solution must be stable (equilibrium point of the 
system) in the Lapunov sense. If, in addition, each solution converges, under arbitrary 
initial conditions, to zero, then the stability is globally asymptotic. Since from the previous 
considerations (Theorem 2.1) it follows that the set of admissible initial conditions can 
always be effectively determined, we may state that the amount of information on the 
solutions so obtained is greater than that resulting from ,the application of other methods 
(Lapunov methods in particular). 

Similar conclusions may also be drawn with respect to the systems described by in­
tegro-differential equations or by differential equations with shifted arguments. 

The problem of nuclear reactors [3] may be quoted as an example of practical, tech­
nical application of the method; it makes it possible to investigate more complex (as 
compared with the Lapunov methods used so far) models, and to derive more general 
stability criteria much more effectively. 
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