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BRIEF NOTES

On the existence and uniqueness of solutions in linear theory of
Cosserat elasticity. I

V. GHEORGHITA (1AS$1)

The basic equations of motion of linear theory of Cosserat elasticity have been derived in [6, 7].
In the present paper is given a theorem of existence and uniqueness of a generalized solution
(in the sense of VisHIK and LADYZENSKAYA [4]) to these equations. Sec. 1 is devoted to preliminaries
and general notations. In Sec. 2, we define the classical solution of the initial boundary-value
problem for Cosserat elasticity. In Sec. 3, we construct a Hilbert space associated with govern-
ing equations and prove that a unique generalized solution exists in this space.

1. Introduction

Let 2 BE a bounded domain and properly regular in the sense of FICHERA [2] in the
Euclidean space E* with orthogonal coordinates x = (x,, X;, X3). Under this assumption,
£ has the segment property and the cone property, so that integration on the boundary
20 is meaningful and integration by parts over £ is permissible.

Let (0, T) be a time-interval with 0 < T < + o0 and Q the right-hand cylinder Q
= 02x(0, T).

We shall consider spaces C™, L,(2), C™(2), L,(2) of scalar and vector functions,
defined in the usual way. We denote by W7 (£2) and WY({2) the completions of the spaces
C"(2) and C™(®) in the norms induced by the inner products (%)

(L.1) @ Py = D, [ #tiiebi il
k=02
and
3
(12) (“’ v)w;'{g) = 2 (uj: ﬂi)w';.'({)],
j=1
respectively.

(*) Here and further the summation convention is adopted.
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Since £ has the segment property, the Beppo-Levi spaces W3'(£2) coincide with the
Sobolev spaces of functions possesing L, — strong generalized derivatives up to the order
m in 2 [see AGMON [1]].

Let H be a Banach space. We denote by C™([0, T']; H) the space of mappings from
[0, T]to H, which possess on (0, T) time derivatives in H up to the m-th order, continuous
on [0, T]. In an analogous manner we introduce the spaces L,([0, T]; H), L,([0, T]; H),
L,([0, T]; H) (p > 2) [see [5]].

2. Formulation of the ipitial-boundary value problem

The basic equations in the linear theory of nonhomogeneous and anisotropic Cosserat
elastic solids are [7]:

the equations of motion

Tji, +FI = ng

@.1) et &
Wi+ i T+ M = 0Ty @i,

the constitutive law
2.2) Tij = Eijuyut Kijuri,
' Hij = Ky Via+Mijar,
the kinematic relations

(2.3 Vij = Wi~ EixPrs  ¥ij = Pji-

In these equations, 7;;(x, t) and u;;(x, t) represent the stress tensor and the couple-
stress tensor, respectively; u;(x,t) —the displacement vector; ¢;(x, t) —the micro-
rotation vector; F(x, t) —the body force vector; M;(x,t) —the body couple vector;
vij(x, t) —the strain tensor; x;;(x, t) — the micro-strain tensor; o(x) — the mass density;
Jix(x) the micro-inertia coefficients; E;;xi(x), Kiju(x), Miju(x) — the characteristic constants
of the material; ¢;;; — the unit antisymmetric tensor. The tensors Ejjx(x), Mijii(x), Ju(x)
are assumed to meet in £2 the following conditions of symmetry:

(2.4) Eiju(x) = Eqi;(x), Miju(x) = Mui;(x),  Ja(x) = Ju(x).

Now, we give the definition of a classical solution to the initial-boundary value problem
which is to be studied in the present paper. _

Let 2 = E* be a bounded domain and C! — smooth. By 812, we denote the boundary
of Q.

DEFINITION 1. By a classical solution to the initial-boundary value problem of the linear
theory of Cosserat elasticity in the cylinder Q = 2 x (0, T), we mean a pair (u, @) € [CX(Q)n
NCYQ)x [CHQ)NC(Q)] satisfying the system (2.1)-(2.3) for (x,t)€Q, together
with the boundary conditions:

(2.5 u=0, =0 on d2x(0,7),

and initial conditions:
26)  (u(x,0), a(x, 0), @(x, 0), P(x, 0)) = (uo(x), Ho(x), Po(¥), Po(x)),
where u,y(x), Wo(X), @o(x), ¢o(x) are prescribed functions on Q.
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3. The existence and uniqueness of a generalized solution

In the present section, we establish the existence of a unique generalized solution
to the equations of linear Cosserat elasticity.

We make the following assumptions: E;j(x), Kiju(x), Miju(x), o(x), Ji(x) are given
(Lebesgue) measurable functions, essentially bounded on £, and satisfying (2.4) on Q.

We introduce the following spaces of vector fields: C1(2) = {(VeC'(@):V=0o0n
892}, Wi(Q) = the completion of C1(®) in W(Q).

Letu,v, ¢, $eC'(Q) and y = (u, @), z = (v, Y). We set

G  AQ,2) = f {Eijayi;0) v (@) + Kijulyij () %a(2) +715(2) % ()]
a

+ Miju;(y) a(2) } dx.

Obviously, the bilinear form A(y, z) may be extended by continuity onto (ﬁf'}(ﬂ)}"’.
In order to establish the existence of solutions, we make the following additional

assumptions:
1. The mass-density and the micro-inertia coefficients satisfy the conditions:
(3.2) essinfo(x) > 0, Ju(X)&E > AEE  (A>0).
1]

2. The energy of deformation denoted by & is uniform positive definite for x €
and 7 € (0, T)—i.e., there exists a positive constant ¢ such that

(3.3) A (vij, #ij) = %Euu?ij(z)?u(z)“F Kijiayi1(2) % (2)

3

1

> Mijunij(2)%u(2) 2 ¢ 2 (7:2 12+ xfzj(z)) s
ij=1

for every second-order tensor y;;(z) and »x;;(z) with z € é‘(Q) X (f‘(Q).

Using the Schwarz inequality and elementary inequalities, we deduce from (3.1) and
(3.3) that

+

(3.4) Az, z) 2 ¢ j (V1. Vi + i1+ Pip)dx,
a

where € is a positive constant depending only on £.
For z = (v, Y) e C*(2) x C' (), we have the Poincaré inequality

(3.5) kA(z,2) > [ @witpip)dx,
0

where k is a positive constant.
From (3.4) and (3.5) it easily results that:

(3.6 Az,z) > a J.(vivi+1}}i'}’i+ﬂi,jﬂi,j +vi,ii,,)dx,
2

with o > 0—ie., 4(z, 2) is coercive on | zlly1q) wi it Wi(@) x WH(Q).
2 2
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Before proceeding to the definition of a generalized solution, we consider the sets:
€)= CQxCQ), ¢Q) = C@QxC1(Q), £,(Q) = L x L,(Q), F(Q) = C=((0,
T); @‘(Q}) F() = {(v, $) 1 (v, 4»)59'((2) and v(x,0) = Y(x,0) = 0 on 2}. For
y=(m9) eFQ),z= (v, eFQ), f=(F, M)eC=(0, T]; ¢(@))and , € €'(2)
we define:

T
Z(y,2) = ff {(f—T)[Q(ﬁiaﬁ“-fik‘i‘k"ﬁt)*(Tij()’)i’ij(z)+#ij0’)5‘u(z))]
02

+0(l 0+ T i) } dxdt,

T
9(f,2) = of [ =D [-Fioi— Mipildxat,
2

E(o,2) = Tf9[l"oif:’s_ho+Jik9.’m"}’m=o]dx-
2

It is easy to verify the identity

T
1 3 % 5.5
37 P(z,2) = 0} ff lo(@; i + Tupivi) + Eijaavij Y +2KijiaVij i+ Miji i %l dxdt.
02

We denote by 5#*(Q) the Hilbert space obtained as the completion of % (Q) by means
of the norm |- | induced by the inner product

T
@2 =L@, 9), (v,) = f f (w01 + @i+, 005+ @i pa,y+iadi+ ipildxat
04

H#1 (Q) the closed linear subspace of #(Q) obtained as the completion of # (Q) by means
of |+ |. From (3.2), (3.6), (3.7) we deduce that there is a constant ¢; > 0 depending only
on «, A ess. inf., p such that

(3.8) L@,2) >l VzeF(Q).

By #(Q) we denote the Hilbert space obtained as the completion of % (Q) in the
norm induced by the inner product

. 2] = [, @), (v, Y)] =<, @), (v, Y)Y+, §), (¥, ).

Using Schwarz’s inequality and Sobolev’s embedding theorem, it is seen that the
bilinear formsSf’ and 2 can be extended by continuity onto 3#(Q) x #'(Q)and L,([0, TT;
Z,(Q)) x #* (Q)), respectively.

The inequality (3.8) remains valid on 5#(Q), and £(J, z) makes sense for z € #1(Q).

Let us define now a generalized (weak) solution to the linear equations of Cosserat
elastodynamics in the sense of VisHIK and LADYZENSKAYA [4].

DEFINITION 2. The pair y = (u, @) € #*(Q) will be called a generalized solution with
finite energy for the system (2.1)-(2.3) with the boundary conditions (y,, o) €Z,(£2) %





