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1 . Introduction

Softening of any kind (material, geometrical or thermal) can provoke the occurrence of a localized deformation
mode in the form of a neck or a shear band. When a classical continuum description is employed this can
involve an excessive mesh sensitivity of simulation results, which is caused by strains tending to localize in
the smallest volume admitted by discretization. This pathological effect can be prevented by an upgrade of the
constitutive description called regularization, involving either nonlocal averaging, spatial gradient dependence
or time rate sensitivity.

The localization zones are often stationary and can lead to failure. On the other hand, one can encounter so-
called propagative instabilities [1, 6], i.e. localized patterns which evolve in the loading process. One of such
phenomena are Lueders bands, see for instance [3].

In this paper the thermal influences are neglected and attention is focused on phenomenological modelling. Two
large strain elasto-plasticity models are used: the first one, presented for instance in [5], is extended towards
viscoplasticity, the second one is based on [2] and gradient-dependent. Numerical analysis of a propagative in-
stability of a Lueders type is performed for a two-dimensional configuration in plane strain conditions subjected
to imposed tensile deformation [5].

2 . Model description

The considered model is based on the multiplicative decomposition of the deformation gradient F = FeFp.
The state of the material is described by the Helmholtz free energy, decoupled additively in elastic and plastic
hardening parts ψ(be, γ) = ψe(be

) +ψp(γ), where be is the elastic left Cauchy-Green tensor and γ is a scalar
plastic strain measure.

The plastic process is governed by the yield condition Fp(τ , γ) = f(τ ) −
√

2/3σy(γ) ≤ 0. The equivalent
stress function f(τ ) is a Kirchhoff stress measure (e.g. J2 Huber-von Mises type) and σy(γ) denotes the
yield strength which includes multi-linear strain hardening/softening. To regularize the model either a viscous
term ξγ̇ is included in σy making the model rate-dependent (it is so-called consistency viscoplasticity [6] with
viscosity parameter ξ) or isotropic degradation of plastic properties as in [2] is incorporated together with a
gradient-enhancement.

3 . Implementation and numerical tests

The numerical simulations are performed using symbolic-numerical packages Ace in Wolfram Mathematica
environment [4]. Standard hexahedral elements with linear interpolation of all fields and F-bar modification
are employed. Special attention is focused on the ability of the models to represent the propagative instability.

The adopted material model parameters are: Young’s modulus E = 207 GPa, Poisson’s ratio ν = 0.29, initial
yield strength σy0 = 450 MPa. For the yield strength softening is initially assumed with H1=-0.01 E as the
equivalent plastic strain grows from 0 to γ1=0.15, then the yield strength is constant until γ2=0.3, and hardening
with H2=0.005 E follows.
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The dimensions of the plate are: L=0.1 m, S = 0.05 m, H=0.0025 m. To set the position of the incipient shear
band a 10% reduction of the yield strength is assumed in one element at the lower left-hand corner of the
configuration. The plate extension is specified by factor λ which scales the total imposed elongation of 0.4L.

Figure 1 shows the diagrams of the sum of reactions versus the imposed elongation for the two regularized
models. Figure 2 presents deformed meshes with the distributions of accumulated plastic strain γ. The left plots
exhibit shear bands formed due to softening. The right ones show that they broaden and hardening induces a
propagation of the plastic front while the plastic zone expands. The process is sensitive to the viscosity and
weakly sensitive to the nonlocality present in the gradient model.

Figure 1: Force-extension diagrams for the viscoplastic model (left, different viscosities) and gradient-
dependent model (right, different internal lengths)

Figure 2: Distributions of equivalent plastic strain: first row - viscoplastic model with ξ=0.004 for two extension
values λ = 0.08 (left) and λ = 0.66 (right); second row - gradient-enhanced model with internal length l = 0.1L
for λ = 0.02 (left) and λ = 0.42 (right)
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