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1. Introduction

There are many materials having different properties and behaviors which are characterized in solid mechanics
by constitutive models. These constitutive models have material parameters, which have to be calibrated to
experiemental data in order to predict the material behavior within the range of application. This calibration is
called material parameter identification or briefly parameter identification, see [2, 4].

Depending on the homogeneity of the deformation, the procedure of material parameter identification varies. If
the deformation is inhomogeneous, the entire boundary-value problem need to be solved, commonly by using
finite element method. The material parameter identification for inelastic materials using finite elements were
discussed in [1, 5, 6]. In order to identify the material parameters, the sensitivities of the parameter needs to be
calculated. The most common method to calculate these sensitivites is by using external numerical differentia-
tion, see, for the terminology, [7]. However, for a constitutive model with inhomogeneous deformation having
large number of parameters, the computational cost is high. In order to circumvent this issue, internal numerical
differentiation is performed which reduces the computational time by a considerable amount.

In this presentation, initially the underlying problem is explained. This is followed by a brief description of the
internal and external differentiation procedures. A couple of examples showing the difference between external
and internal numerical differentiation is also provided to round off the presentation.

2. Problem statement

The most commonly used basis for parameter identification process is the least-square problem. The simulated
results, § € R"™ (n¢ is the number of simulated data), from the finite-element program are compared with
the experimental data, d € R"a (n§ is the number of experimental data from one or more experiments). The
residual vector, F(k) = W, {s(k) — d}, describes the difference between the experimental and the simulated
data. In order to consider the different order of physical values (forces, displacements), weighting matrices,
[W;], are introduced. The so-called objective function, f(k) = %?Ti‘, is then minimized in a least-square sense
using methods outlined in [3]. A trust-region reflective algorithm, provided in Matlab routine 1sgnonlin.m
is used to solve the problem. A necessary condition for a minimum at kK = k* requires the derivative to be zero
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(D F(x") =D"(x") {s(k*) —d} =0,

K*
with D(k) := di(k)/dk = ds(k)/dk, De R™ ™= D(k) represent the sensitivites and are calculated either
by external differentiation or internal differentiation.

3. External Numerical Differentiation

It is more common to apply external differentiation schemes to approximate the sensitivites. Here, the entire
finite element program has to be run (n, + 1)-times, for each iteration of the least-square solver. For each itera-
tion, the material parameters are perturbed in order to obtain the sensitivites using a forward difference scheme.
Therefore, the computational cost to calculate the sensitivities using external numerical differentiation is very
high when the number of parameters to be identified are high. The details will be shown in the presentation.
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4. Internal Numerical Differentiation

In the case of internal numerical differentiation, the entire time integration step is assumed to be dependent
on the parameters k. The sensitivities are calculated based on Multilevel-Newton algorithm and are provided
from the finite element program itself. These calculated sensitivities are then provided to the Matlab routine
lsgnonlin.m to identify the material parameters. Since the sensivities are calculated internally using Ace-
gen, the entire finite element program has to be run only once per iteration of the least-square solver. This
reduces the computational cost considerably. However, there are storage requirements that need to be fulfilled.
More details will be outlined in the presentation.

5. Examples

Examples showing the difference between external and internal differentiation will also be shown in the pre-
sentation. A particular focus lies on the storage requirements and the computational costs, where use is made
of both models of hyperelasticity and models with internal variables.
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