41st Solid Mechanics Conference (SOLMECH 2018) Warsaw, August 27-31, 2018

A MIXED FINITE ELEMENT FORMULATION FOR FINITE ELASTICITY

WITH STIFF TWO FIBRE REINFORCEMENT

A. Zdunek' and W. Rachowicz?

VHB BerRit, Solhelmsbackarna 73, SE-163 56 Spanga, Sweden
2[nstitute of Computer Science, Cracow University of Technology, Cracow, Poland

e-mail: wrachowicz@pk.edu.pl

1. Introduction

A frequent source of anisotropy of elastic materials is the presence of reinforcing fibres which display strong
stiffening properties accompanying their stretching. This phenomenon appears as near inextensibility and it
is in some way similar to near incompressibility which is observed for the ruber-like materials. Numerical
modeling of a nearly inextensible material by the Finite Element Method (FEM) may cause similar difficulties
as approximation of a nearly incompressible solid body: unstable or oscilatory solutions. The remedy for
incompressible mechanics is the well known splitting of the description of kinematics into the volumetric part
(dilatation) # and the unimodular deformation gradient. The mixed formulation with adequate approximation
in the QP and PP~! finite element spaces for the displacements w and the auxiliary variables § and pressure p,
respectively, allows one for effective modeling of the nearly incompressible solid [1]. In this work we propose
analogous approach to approximation of elastic materials with two fibres reinforcement. One fibre case was
studied in [2].

2. Description of kinematics and stresses

In this section we briefly present the main principles of constructing the mixed formulation for the materials
reinforced with two families of fibres. We assume that the two preferred directions of reinforcement are given
by two distinct fields of unit vectors G4, A = 1,2 in the reference configuration. We augment them with the
third direction G5 := G1 X G2/|G1 % Ga|. We consider G 4 a basis of the curvilinear system of coordinates
corresponding to some parametrization X = X (¢4), A = 1,2,3, i.e. G4 = 0X /0&*. We consider also the
basis G of the adjoint space (of linear functionals) which is dual to G 4: (QA, Gp) = 5]@. We use convective
spatial coordinates, i.e. the spatial basis vectors are generated by the parametrization x = x((%), g, = 0x/0C*
for wich ¢ = £. It is known that the deformation gradient F, its adjoint F™* and their inverses F~! and FF~*
take the form:

2.1 F =649,0G" F'=§'Gaog", F*=0,G"®g, F*=05'g"®Ga,

where g denotes the adjoint basis dual to g,,, i.e. satisfying the condition (g%, g,) = &;. We also introduce the
material and spatial metric tensors:

(2.2) G=GipG"®GP and g=gu4g°®g"

where Gap := G4 - Gp and gqp := g, - g3- The right Cauchy-Green deformation tensor takes the form:
(2.3) C =F'gF, C=040390 G"®G".

We also introduce the structural tensors corresponding to the preferred directions of fibres:

24 Ar =Gr®Gp (nosum), F=1,2.
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The stretches Ar of the directions G and the cosines between their images g can be found as follows:
(2.5) Ar = (C,Ap)'?, apc =gp 9a/(ArAc).

We express the Cauchy-Green deformation tensor in terms of these new variables applying the extra substitution
Ar(C) = Ap, F = 1,2 reflecting the anticipated procedure of separate numerical approximation of stretches
along fibres:

SR - % 0412}\15\2 a13§\1)\3
(26) C = C(C7 )\1, )\2) = ° )\% (X23)\2)\3 QA ® QB.

° ° N3 AB

With these notions in mind we propose the ansatz for the strain energy function ¥ = W (C; Ay, As) in the form
taking into account that C' is expressed by the dependent on deformation tensor C' and separately approximated
stretches A p:

2.7) U(C, A1, \2; Ap, As) = U(C; Ay, Ay).

Selecting separate approximation of stretches Ar suggests assuming the following augmented strain energy
ansatz with the Lagrange multipliers 5" corresponding to the constraints A\ = A\p(C), F=1,2:

(2.8) U =T(C, 1, \p; A1, Ag) — S5 5 [Ar — Ap(C)).

The assumptions above and the Clausius-Plank inequality lead to the following constitutive equations for the
2nd Piola-Kirchhoff stress:

S =35 _ "\ AR+ S,

28—? , with P :=
oC

(2.9) S=pP

ac|’
ac |
5 — 0% )093y,

The mixed formulation for (u, p*, A r) involves the principle of virtual work (expressing equilibrium), the
identification \r = Ar(C) and the constitutive relation for 5, and it takes the form: find (u, ', A\p) €
(V 4+ ug) x Q* such that:

/(DuE(u)[éu],S>dV:/<G5u,B>dV+/ (Géu,P)dA,
Q Q I'n

(2.10) / S {Ar(C) = Ap}dV =0,
9]

/ SAR{OU /ONp — pF}dV =0,
Q

for all du € V,0Ap, 65" € Q,V ={v e H'(Q) :v =0, onp},Q = L*(R). In (2.10) B denotes the
volume forces, P and ug are the Neumann and Dirichlet data on I'y and I'p. In addition E = %(C -1
and D, E(u)[6u] = 3(F*Vu + V*6uF). The FE approximation of (2.10) results in a system of nonlinear
equations which is solved using the Newton-Raphson algorithm applied to linearization of (2.10).

Numerical tests confirm effectivity of the proposed formulation for strongly anisotropic materials.
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