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On the matching of solutions for unsteady transonic nozzle flows

T. C. ADAMSON, Jr., A. F. MESSITER, and G. K. RICHEY* (ANN ARBOR)

Many solutions have been presented for two-dimensional transonic nozzle flows. Two of the
more interesting of these solutions are those by ToMoTikA and TaAMADA (1950) and SzZANIAWSKI
{1965). However, it has not been made clear under what conditions either solution is valid.
In this paper the methods of matched asymptotic expansions are used to derive the Szaniawski
power series systematically and to show that this solution should be considered an outer solu-
tion which may not be uniformly valid as the throat is approached. The ianer throat region
is governed by the non-linear transonic equation which admits as one class of solutions, similarity
solutions. The analysis is made using the nonsteady inviscid equations of motion, with steady
flow results being derivable as a spegial case. As an example, a similarity solution for unsteady
transonic flow with an infinitesimally thin shock wave, found by Apamson and Ricrey (1972)
is used as an inner solution; through matching, conditions on the outer solution are obtained,
illustrating the overall kind of problem to which the similarity solutions correspond.

Istnieje wiele rozwigzafi dotyczacych dwuwymiarowych przeplywow w dyszach. Do bardziej
interesujacych nalezq dwa rozwigzania przedstawione przez TOMOTIKA i TAMADA (1950) oraz
przez SZANIAWSKIEGO (1965). Nie jest jednak jasne, w jakich warunkach rozwiazania te sa
sluszne. W niniejszej pracy przedstawiono metody kojarzema rozwinig¢ asymptotycznych,
pozwalajace wyprowadzi¢ w sposob systematyczny szeregi potegowe Szaniawskiego oraz wy-
kaza¢, ze rozwigzanie to nalezy rozpatrywaé jako rozwiazanie zewngtrzne, ktore moze tracic
wazuoéé przy zblizaniu si¢ do gardzieli. Wewnetrzny obszar gardzieli opisany jest przez nie-
liniowe réwnanie okotodZwigkowe, dopuszczajace rozwigzania samopodobne jako Jedna z klas
rozwigzan. Analize wykonano za pomoca nieustalonych réwnat ruchu, z ktérych mozna, jako
przypadek szczegblny, uzyskaé przeplywy ustalone. W przykladzie zastosowano jako rozwig-
zanie wewnetrzne rozwigzanie samopodobne, otrzymane przez ADAMSONA i RICHEY'A (1972)
i dotyczace nieustalonego przeplywu okolodZwickowego z nieskoficzenie cienka fala uderze-
niowa; droga zszywania otrzymano warunki dla rozwigzania zewnetrznego.

CyILECTBYET MHOTO PEILeHHH, KACAIOUIMXCA JBYMEDHbBIX OKOJIO3BYKOBBIX TEYEHHH B COILIAX.
K Gonmee HHTepecHBIM NpHHAIUIOXKAT ABa pelleHHdA, npencraBieHHble Tomorura u Tamama
(1950) m IlapaBckum (1965). OgHaKo He ACHO MPH KAKHX YCIOBHAX 9TH PEINCHHA COpPAaBel-
nuBel. B Hacroaue# paGore mpelcTaB/IeHEl METOLI CPAIMBAHMA ACHMITOTHYECKAX PassioMe-
HHIf, ITO3BOJIAIOIIHE BHIBECTH CHCTeMaTHYeCKHM obpasom cremennble pambl llanAsckoro | mo-
Ka3aTh, YTO 9TO pellleHHe CileyeT PACCMOTPHBATh KAK BHELIHEE pEIICHHE, KOTOPOE MOMET
TEPATs BAYKHOCTH NPH NPAO/IIDKEHHH K ropyioBaHe. BHyTpeHHAA 00/I8CTH MOPIOBHHEI OIMCAHA
HEJIMHEHHLIM OKOJIO3BYKOBEIM PEIIeHHeM, KOTOpOe JIONYCKaeT aBTOMOJEBHOE pelleHHe Kak
OJMH H3 KIACCOB pellieHuit. AHANM3 NPOBEJEH C MOMOLIO HEYCTAHOBMBIUMXCA YpaBHEHMI
IBIYKEHAA, H3 KOTOPBIX, KaK YAaCTHBIN CITydyaif, MOYKHO IONYUHTh YCTAHOBHBIIHECH TEYCHHHA.
B npuMepe NpMMEHEHO, KAK BHYTPEHHEE pEILEHHE, aBTOMOMCIBHOE PEIUECHHE MOJIYYeHHOe
AnamcoHom H Puur (1972) B Kacarouuecs HEYCTAHOBHMBIIHETOCH OKOJIO3BYKOBOIO TEYEHMsA
¢ DeCKOHEYHO TOHKOH YHAAapHOH BOJIHON; MYTEM CLINTHA MOJYYeHbI YCIOBHA [UIA BHEUIHEro
peIlIeHnA.

1. Introduction

THE sTUDY of two-dimensional transonic nozzle flows has generally been carried out
by searching for similarity solutions which give nozzle-like flows. For example, Tomo-
TIKA and TAMADA [1] introduce particular similarity transformations in the well-known
transonic small-disturbance equation, and then are able to obtain similarity solutions
for nozzle flows as well as for other transonic flow problems. This transformation has
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been employed also by SicHEL [2] in his study of nozzle flows with shock waves, and has
been extended to cover unsteady transonic channel flows both without and with shock
waves by ADAMSON [3] and ADAMSON and RICHEY [4], respectively. FRANKL [5] and Gu-
DERLEY [6] have proposed a different kind of similarity transformation, which has been
compared with that of ToMoTIKA and TAMADA in a particular application by Szaniawski [7].

On the other hand, an entirely different approach has been presented by SZANIAWSKI [8]
in several papers, with the basic ideas being exemplified in the cited reference. For steady
transonic nozzle flows, SZANIAWSKI expands the perturbation velocity potential in an
assumed power series in the transverse coordinate, and this series is substituted into the
general potential equation and boundary conditions. The method has been extended
to flows with shock waves by KopysTyNskI and SzANIAWSKI [9].

The most interesting aspect of the solution given by SzANIAWSKI, when compared
to the similarity solutions, is that arbitrary wall shapes may be considered; that is, this
is a direct method. Clearly, similarity solutions are not general, from the viewpoint that
one does not obtain a general solution from which specific solutions may be constructed
by the application of boundary conditions. Instead one obtains self-similar solutions
which satisfy only very special boundary conditions which may or may not correspond
to any given physical problem. Hence, while similarity solutions are extremely valuable
in providing instructive results with a minimum of computational effort, they do suffer
from this lack of applicability insofar as general nozzle shapes are concerned. The direct
method proposed by Szaniawski therefore would appear to hold a distinct advantage
over the similarity method. However, it has not been made clear under what conditions
or restrictions either solution is valid. It is the purpose of this paper, using the methods
of matched asymptotic expansions, to illustrate how the SZANIAWSKI power series may
be derived in a systematic fashion, and to show that this solution should be considered
as an outer solution which may not be uniformly valid as the nozzle throat is approached.
The inner throat region will be shown to be governed by the non-linear transonic equa-
tions, which admit as one class of solutions those similarity solutions referred to pre-
viously.

The analysis is performed using the general equations of motion for nonsteady inviscid
flow, with the steady-flow results derivable as a special case. As an example of the use
of the analysis, a similarity solution for unsteady transonic flow with a thin shock wave,
found previously [4), is used as an inner solution; through matching, conditions on the
outer solution are obtained, illustrating the general kind of flow problem to which the
similarity solutions correspond.

The flow is assumed to be two-dimensional, compressible, transonic and irrotational
at least up to the orders for which calculations are made; the gas is assumed to follow
the perfect gas law and to have constant specific heats.

2. Derivation of equations

In the problem considered, small perturbations are superimposed on a steady, sonic,
irrotational, two-dimensional stream flowing in the X direction. The dimensionless in-

dependent variables X, Y, and T are referred to L for the space variables and L/a* for
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the time. Here, L is the throat half-width and @* is the critical sound speed, the bar in-
dicating dimensional quantities (Fig. 1). The velocity potential (X, Y, T) is made dimen-
sionless with respect to La*. Then Bernoulli’s equation and the so-called gas dynamic
equation may be written as follows:

a1 (+1)
Pr+ —— += (Px+ P
T+ y—1 2( x+ Py 201’
(@ —D3) Pyx+ (0> = D) Dyy — Prr — 2Py Py Dy — 2Py Py7 — 2Py Dyr = 0,

where a is the dimensionless speed of sound, referred to @*, and y is the ratio of specific
heats. The constant right-hand side of Eq. (2.1), arises because the undisturbed stream
is at uniform sonic velocity.

MT,,,,M
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Fig. 1. Sketch of nozzle flow coordinate system,

Since one may wish to consider various ranges of the space and time coordinates,
it may in general be appropriate to introduce other non-dimensional variables, say x, y,
and ¢, such that

X = éx, =L.[L, x=0(1),
22 Y=g, &=L,JL, y = 0(1),
T=r1, = ih/(gL;)a t = 0(1).

In Egs. (2.2), L, and L, are fictitious lengths of the order of the physical extent of the
transonic region under consideration, in the X and Y directions, respectively. Hence x
and y, which are coordinate distances made dimenSionless with respect to L, and E, 5
respectively, are of order unity in this region. Similarly, ¢ is the time made dimensionless
with respect to T,,, the characteristic time associated with the disturbance, and is of
order unity.

The velocity potential is written as an asymptotic expansion in terms of a small para-
meter E, which may be chosen as a typical value of the non-dimensional perturbation
velocity. The first term describes a uniform sonic stream, and in the examples to be con-
sidered, the next few terms proceed in integral powers of E:

(2.3) DX,Y,T) = é[x+Ep,(x,y, ) +E*p(x,y, 1)+ ...].
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Then the velocity components in the X and Y directions are, respectively,

2.4) U= @ = 1+Epx+E%¢oe+ ... = 1+ Euy + E2uy + ...

é ]
V = ¢Y = ? [E¢ly+E2¢2r+ ...] = '; [E01'+E2ﬂ2+ ...].

Thus U~1 = O(E).

The three important possibilities for the order of the non-dimensional characteristic
time zare v € 1, 7 = O(1), and v » 1. Each of these cases can be shown to imply a differ-
ent first approximation to the Eq. (2.1),. In this paper, the “slowly varying” time regime
7 » 1 will be considered. In view of the expansion for @, Eq. (2.3), it is not difficult to
show that for 7 > 1 a time derivative appears earliest, i.e., in the equation for ¢,, when
7 = O(E™!). Thus, here we will consider the case where

2.5 T = (kE)™,

where k is a constant of order unity.

The parameter ¢ is taken to be of order unity because of the physical problem con-
sidered. That is, the transonic region covers the whole stream in the Y direction from
wall to wall. Here, then, we set

(2.6) e=1,

It will be seen that the order of magnitude to be chosen for ¢ will depend on the flow
region of interest, and therefore cannot yet be determined. However, since the physical
problems to be considered here are such that the flow region is always contained in a dis-
tance of a few throat diameters upstream or downstream of the throat, d is at most of order
unity.

If Eqgs. (2.2), (2.3) and (2.6) are substituted into Eq. (2.1) and Eq. (2.1), is then sub-
stituted into Eq. (2.1),, one obtains the governing equation for the velocity potential.
Thus,

27 —E*y+1)¢d1xPiaxt6? {E¢'1n +E? [¢2” -@-1¢ 1x¢1”]}

OE
_252E2¢1y¢1n_2"?¢’1m+ e = Or

where only terms to order E? are retained to illustrate the method without adding undue
complexity. It is seen from Egs. (2.7) and (2.5), that once the relationship between & and
E has been given, one can find the governing equations for the potential functions ¢, , ¢, ....

The wall boundary condition for unsteady channel flow has been discussed previously
in [3]. Along a wall which may in general be moving with time,

(2.8) Y, =FX, 1,

Since the flow velocity is nearly sonic everywhere in the region of interest, the function
F(X, T) must be nearly constant, and so Eq. (2.8) can be rewritten, in the coordinates
introduced by Eq. (2.2), as

@9 Y = 1+wf(x, 1),
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where f = 0 at the throat, and w < 1. Along the wall y—y, = 0 and the Eulerian deriv-
ative of y—y,, is also zero. After substituting the changes of variable, the velocity expansions,
and the wall definition, Eq. (2.9), into the Eulerian derivative, one finds that, at the wall,

(2.10) {-ﬂ—[1+5¢1,+52¢3,+ W+ ES[$y,+Epsy+ ...] = 0.

If Eq. (2.5) is now used for 7, it is seen that the term involving f; is smaller by a factor E
than the term involving f. Therefore, to this order the usual steady state result holds.
That is, even though the flow in unsteady and the wall might be moving, the wall is in-
stantaneously a streamline to this order. This result, of course, is true only because we
are considering the case 7 > 1.

3. Solutions
3.1. Szaniawski series solutions (6 = 0(1))

We first consider cases for which 4 = 1. Physically, since ¢ = (L, /L) = 1, this means
that the flow region under consideration has an axial length of the order of the throat
diameter. Then from Eq. (2.7) with Eq. (2.5) for 7,

b1y =0,
¢'2yy_(?+1)¢1x¢1xx_2¢1y¢’1xy_2k¢1m =0.

If we specify that symmetrical channels are to be considered, so that ¥(X,0, T) = 0 to
all orders, then integration of Egs. (3.1) gives

¢l = ¢1(x, t)’

(3.1)

(3.2
2
$2= ((+ D1suust Weia) % +h(x, 1),
where h(x, t) is an arbitrary function of integration.

Next, from Eq. (2.10), for é = 1 and v = (kE)~!, the boundary conditions may be-
derived; since ¢, = 0,

(3.3) w= E2,
(3.9 b2y(x, £1,1) = +fi(x,1),

where the upper and lower signs refer to the upper and lower walls, respectively, and
¢2, has been expanded in Taylor series about y = +1. Then, substituting Egs. (3.2),
and (2.9) into Eq. (3.4), one can show that

2 4k
oy Ui sy

where H(t) is an arbitrary function of time. In steady flow, where ¢,, = 0, H = constant
is seen to be the value of the perturbation velocity at the throat, where f = 0. In this case,

(3.5 = Dies
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the solution for ¢, = u, is given completely by Eq. (3.5). For unsteady flow, it is con-
venient to consider a derivative of Eq. (3.5), written in terms of u, = ¢,,. Thus

2k 1
3.6 e e
(3.6) Ty U+ Uy Uy, GED £
and, it is seen that Eq. (3.6) gives the rate of change of u, along characteristics
dx y+1
{37) ? = % Uy

in terms of the instantaneous wall slope.

The exact equations for one-dimensional, nonsteady, isentropic flow can be integrated
to give, in the present notation, U+ 2a/(y—1) = constant along dX/dT = U+a. Thus,
in a region where U ~ a ~ 1, small disturbances are carried downstream at a speed
U+a ~ 2 and upstream (with respect to the fluid) at a much lower speed U—a. If we
were to assume a simple wave such that U+2a/(y—1) = constant (no disturbances

created upstream), changes AU and 4a would be related by 4da = —-%(y—-l)d U, and

S0 U~a = = (y+1)4U. If we set AU ~ Euy and T = vt = (kEY"'1, the two families

of characteristics become, in the limit as E — 0, t = constant and dx/df = (y+1)u,[(2k).
The latter is identical to Eq. (3.7) and so the present formulation for ¢, appears to retain
only the disturbances moving upstream relative to the fluid, since their absolute speed
of propagation is small compared with the sound speed. The disturbances moving rapidly
downstream are lost because they remain in the region of interest for a time which is very
short in comparison with v = (kE)™'.

A solution u, to Eq. (3.6) can be found for a given wall shape fif an initial condition
is specified. The potential ¢, is obtained by integration over x, and therefore contains
an arbitrary function of . This function of ¢ is, however, related to H(¢), in the sense
that the combination H(r)—4k¢,./(y+1) appearing in Eq. (3.5) is determined by the
solution for u;, and thus by the initial conditions. For the very simple steady parabolic
wall shape, where f = constant - x?, analytic solutions may be found; for other more
complicated wall shapes, it appears that numerical methods must be employed. In either
event, and even for the case where the walls move with time, the procedure seems to be
relatively simple. On the other hand, because of the fact that only one family of character-
istics is present, and thus that no upstream or downstream boundary conditions can be
applied, it may be that the types of flows which can be studied in this time regime are
limited. More detailed analysis is necessary to resolve this point.

If Eq. (3.5) is used to calculate the relevant terms in ¢,, Eq. (3.2),, the second-order
velocities may be written as follows:

y?.
U = ¢2x =‘.f;rx"2_' +h,,
3.8)
Uy = ¢Zy = fty .
If the third-order velocity potential function ¢, is found and boundary conditions involv-
ing ¢ s, at the wall are used, an equation involving h(x, f) results. This equation may be
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written as follows:

2k ¢1x 6k(? }
09 (Zp)rrbihe = ~ el it p-9gn+ KD g,

KH' 2% k Ny :
B SR 0% ) LA T [S( 2 ) e f)d"]f”("'

Thus, the right-hand side of Eq. (3.9) is known except for the function of time A(f), which
can be incorporated in A, ; h(x, t) is one of the terms in ¢,, and ¢, may contain an arbitrary
function of time. It is seen that Egs. (3.6) and (3.9) have the same characteristics. Finally,
it should be noted that it is the derivative, k., which is required for the solution for U.

Derivation of the higher-order solutions would present no difficulties; they simply
become more complex. Further, if the solutions given in Egs. (3.5), (3.8) and (3.9) are
written specifically for steady flow, it is seen that they agree precisely with those solutions
given by Szaniawsk1 [8], found by use of an assumed power series. The present method
simply provides a systematic method of derivation, and allows a precise ordering of each
of the terms relative to each other, as well as to comparable terms in different solutions,
as will be seen.

3.2. Existence of inner region

The question now arises as to whether the solutions presented in the previous section
are uniformly valid throughout the transonic region. In order to answer this question,
it is convenient to write the solution found so far for the x-component of the velocity,
as follows:

2
(3.10) U= 1+E¢1x+52[g,f2~+h,]+

where Egs. (3.5) and (3.8) have been used for ¢, and ¢,,. At this point, the throat region
for a flow which goes through or very near sonic velocity is chosen for study. The throat
is taken to be at x = 0, and furthermore it is assumed for this example calculation that
the point of minimum area always remains at x = 0, even though the wall shape may
vary with time. From Eq. (2.9), these conditions require

(3.11) fO0,0) =£0,0)=0

From Eq. (3.10), it is seen that since ¢;, — 0 at or near the throat, and f;, does not
in general go to zero in.this region, it is possible that the first perturbation term can de-
crease in magnitude as x — 0 until it becomes of the order of the second perturbation
term. Thus a non-uniformity may exist. In order to investigate this further, an inner region
is postulated wherein the two terms are of the same order. Furthermore, it is assumed
that in this inner region, the velocity can be expanded in terms of new variables defined
in the manner of equations (2.2):
(3.12) X=0%* Y=yp, T=1%*,

U= 1+E*¥.+ ... = 1+ E*ul+

Thus only the x coordinate is stretched, since the inner region is very thin but still extends
from wall to wall in the y direction. It might be anticipated that t* and v will be of the
same order, but at this point it is not necessary to make this assumption.

6 Arch. Mech. Stos. nr 4/74
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The inner region corresponds to a limit process as E — 0 with x* and y fixed. In this
inner region the quantities E@,., E%¢,., and E*¢*.. are of the same order. That is, since
uf = O(1), in the inner region
(3.13) Epyx = O(E®), E’¢y. = O(E?).

Using Eq. (3.2),, we assume that ¢,, is of the same order as (¢;x¢;xx). That is, we assume
that ¢, ., and h, are at most of the same order as ¢, ¢, . as x — 0. Finally, Since x = §*x*,
one finds that for x* = O(1)

(3.14) $rx = 0[(%)2]

and, using Eq. (3.13), that §*2 = O(E*). These results are obtained by assuming that the
ratio of E%¢,, to E¢;, does not remain small, but without any further assumption concern-
ing the form of ¢,, as x — 0. For convenience, here we set

(3.15) 8*2 = (y+1)E*.
Next, z* is assumed of order E*~":
(3.16) T = (y+1)"2E-" L,

If one now considers Eq. (2.7) as applied to the inner region (i.c., replace E by E*, x by x*,
etc.) and employs Egs. (3.15) and (3.16) for 6* and t*, then it is easily shown that the
first-order potential equation is
(317) ¢l.x‘¢l.x0.t"' fyy'i'zkd)fx'r- =0
ifn = 1/2in Eq. (3.16). That is, if n > 1/2, the unsteady term does not appear in Eq. (3.17),
and we have already tentatively excluded n < 1/2 by our assumptions concerning ¢,.
Equation (3.17) is the well known non-linear transonic equation, written here for
unsteady flow; the relative orders of the x and y coordinates in the inner region are, of
course, precisely the same as that found in any transonic-flow problem in which this
equation holds. In the present problem, thus, it is clear that the Szaniawski type of solu-
tion should be considered as an outer transonic solution, described by linear equations.
As the velocity gets closer and closer to sonic velocity, there is an inner region in which
the non-linear equation must be satisfied. It is of interest, at this point, to consider known
inner solutions and through matching, to ascertain to what kind of outer flow solutions
they correspond; this is done in the next section.

3.3. Inner solutions (6* = O(E*1/2))

As mentioned previously, there are several known solutions to the transonic nozzle
problem in the regime governed by the non-linear Eq. (3.17). In general, they are similarity
solutions and therefore valid only for specific wall shapes. However, in view of the above
analysis; this is not a serious drawback because the extent of the inner region is very small
compared to the throat diameter. In this section the unsteady similarity solutions given
by ApAmsoN and RicHEY [4] for flows with infinitesimally thin shocks imbedded in them
are used as examples. The basic similarity transformation was introduced by TomOTIKA
and TAMADA [1] and extended for unsteady flow in Refs- [3] and [4]; since the details of
the calculation are given in these references, only a very brief réview of the important
ideas is given here.
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The transformation applied to Eq. (3.17) is,

s* = x*+by?+B(t%),
uf = z(s*)+4b*y* - 2kf',
where B(t*) is an arbitrary function of time, the prime on g indicates differentiation with
respect to t*, and b is an arbitrary constant. From the irrotationality condition, then,
v} may be derived as

3,,2
(3.19) ¥ = y{sz+8b3x*+ _89_.3}’_ +8b2ﬁ_4kzﬁn}

(3.18)

and from Eq. (3.17), one obtains the governing equation for z
(3.20) zz'+(z' —4b)(z'+2b) = 0,
where the prime denotes differentiation with respect to s*. Equation (3.20) has the so-
lution [1]

3
(3.21) (z—4bs*)?(z+2bs*) = :;13 .
where o is a constant of integration which characterizes the inviscid solution curves.
That is, « = constant along a given solution curve. Equation (3.21) is the solution given
by TomoTiKA and TAMADA [1] for steady flow; thus the transformation given by Eq. (3.18),
allows one to study the unsteady counterpart of these nozzle flows.

06—
0-4
02} :
i a0
z el
0 -
(a)
//
—02} g
/
2,=—010
/Riz— d
S / -
/4 7 z=—2bs*
/] e
/ y2a=—04
—06 =/ /
0-6 /) /
1 | [ 1 1
-02 0 0-2 0-4. 0-6
o*

FiG. 2. z vs s* showing inviscid inner solutions for various « (dashed) and solutions for flows with in-
finitesimally thin shocks. Solution (a), shocks in accelerating flow; solution (b), shock in decelerating
flow. (From reference [4]).

6*
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As shown in Ref. [4], it is possible to consider flows with infinitesimally thin shocks
such that the flow is inviscid up to and behind the shock; in the z, s* plane, the shock
solution joins solutions characterized by different values of « = a, upstream and o = a,
downstream of the shock. Typical solutions in the z, s* plane are shown in Fig. 2 (from
reference [4]). The physical meaning of the solutions in this plane is given by noting in
Eq. (3.18), that along the x* axis of a steady flow, u} = z.

In Fig. 2 it is seen that for a« = oy < 0 the inviscid-flow solutions all lie below z = 0
and hence are for subsonic flows that accelerate and then decelerate; for o = o, > 0,
z > 0 and so these solutions are for supersonic flows which decelerate and then accelerate.
For a = 0 there are two special solutions; for z = 4bs*, the flow accelerates from sub-

sonic to supersonic velocities, while for z = —2bs*, the reverse occurs. Two solutions
for flows with imbedded shocks are shown. Curve (a) shows a flow which begins as a simple
accelerating nozzle flow, and then shocks to a decelerating subsonic nozzle flow. Curve
(b) shows a flow which begins as a decelerating nozzle flow, goes through a minimum
and begins to accelerate, and then shocks to a decelerating subsonic nozzle flow. It can
be shown [4] that the shock position is a function of «, and «;. For example, for curve
(a), where o, = 0, the shock position, s, is

(3.22) = -

It is seen in Fig. 2 that both types of solution (curve (a) and curve (b)) become asymptotic
to z = —2bs* as s* becomes large and positive, but that for s* large and negative, the
upstream solution is either z = 4bs* or asymptotic to z = —2bs*. Hence it is necessary,
for later matching purposes, only to find the asymptotic form for the inviscid solutions
which are near —2bs*. This can be shown to be [4]

3

(3.23) - '%“+Wz%s_*f+
where o = a, for.s* large and negative and « = a, for s* large and positive.

With the above relations, one can find the complete solution in the inner region, for
steady or unsteady flow, either with or without shock waves. It should be clearly under-
stood that they are only one class of solutions to Eq. (3.17) for nozzle flows; there are
many others. On the other hand, such similarity solutions are an important class of solu-
tions because they give so much information with relatively little computational effort.
Hence it is worthwhile to investigate those conditions under which such solutions hold.
This can be done by studying the possibility of matching inner and outer solutions.

3.4. Matching inner and outer solutions

In view of the fact that the throat is at x = 0 in the outer variables, matching is per-
formed in the limit as |x| — O for the outer solutions, and as |x*| — oo for the inner solu-
tions. In order to complete the demonstration of consistency between inner and outer
solutions, the possibility of matching should be shown both upstream and downstream
of the throat. Here, in the interests of brevity, the inner solutions will be matched only
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with the downstream outer solutions, this being sufficient to obtain the information desired.
In addition, only the velocity components will be matched because all remaining variables
can be calculated from them.

The outer solutions are written using Egs. (2.4), (3.2); and (3.8) and expanding them
about x = 0. We consider the important case for which ¢, and ¢, possess at least a few
derivatives with respect to x, as x — 0. Thus,

(3.24) U=14+E{¢1x 0,0)+x¢,x ©,0)+ ...}
+E‘{fn(0,r)-%2— +h(0, z)+x[ Fig 0, t)zz-z—+h,,(0,t)]+ }+

V = E>{f(0, )+ x/x(0, 1)+ ...} + ...

The expansions for U and ¥ for x* > 1 (and thus by Eq. (3.18),, for s* > 1) are
found by substituting Eq. (3.23) into Eq. (3.18), and (3.19). They then may be written
in outer variables by using x* = x/d* and 6*? = (y+1)E*. The resulting equations
are

2bx
y+1

U=1-E*? +E*{2b3y’—2b(ﬂ+%ﬁ')}+

(3.25)
V = E*¥4b%xy+ ...,

where only the first term of Eq. (3.23) has been used in the above. Comparing Egs. (3.24)
and (3.25) term by term, it is seen that

2b

Vry+1’

fex(0,8) = 462, h(0,1) = —2b(ﬁ+-§-ﬁ’), f:(0,1) =0.

E¥2 = E,  ¢,,0,0)=0, ¢:x0,0)=—
(3.26)

First of all it should be noted that, since @, is not found in any term, the shock posi-
tion is not given to this order of approximation. In fact, from Eq. (3.23), the first term
in U which would involve « is of order E*x*~2 = O(E*?) = O(E*), where x* = O(E*~'/?).
Therefore, information from downstream which sets the shock position arises from fourth-
order outer terms.

From Egs. (3.26),, (3.16), and (2.5) one can show that v* = O(z) if n = 1/2, and this
is chosen to be the case here. Therefore it is consistent with the present solutions to include
the unsteady term in Eq. (3.17).

Equations (3.26), and (3.26); indicate that the outer velocity in the vicinity of the
sonic line is linear in x. Equations (3.26), and (3.26) indicate that the outer wall is there-
fore parabolic in the vicinity of the throat. Finally, Eq. (3.26)s shows that the function
of time, B, is prescribed by h,, and thus by the initial conditions imposed on the outer,
downstream solutions.
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4. Discussion

It is clear from the above, that if one were to match the inner solution with the upstream
outer solutions, results essentially the same as those shown in Eq. (3.26) would result.
That is, since the inner function z either is asymptotic to —2bs* or equals 4bs*, the only
differences would be in the constants. On the other hand, Eq. (3.26)s which involves §
requires very careful attention because there is only one function f, with two matching
conditions, involving possibly two different initial conditions, one upstream and one
downstream of the throat. This interaction between upstream and downstream conditions
could be very complex; studies with very simple initial conditions are being made.

The essential result of the above matching is that the only restriction imposed on the
outer solution by matching with the given inner similarity solution is that the outer wall
shape must become parabolic as the throat is approached. Otherwise, there is no restric-
tion on wall shape. It also seems apparent, from Eq. (3.26), that one could formulate
a problem involving stationary walls, with nonsteady flow. However, it is not all clear
whether arbitrary oscillations could be imposed on the flow. This point also deserves
further study. In this regard, it is worth noting that wall shapes which vary with time
do affect B, since f;, is found in the equation for 4, Eq. (3.9), and (0, t) is the forcing
function for the equation for g, Eq. (3.26)s.

Although attention here has been focused on the throat region as a region of possibly
nonuniform validity of the outer solutions, it is worth mentioning that an inner region
is also necessary when a shock exists in the outer region. That problem is presently being
studied.

It is believed that systematic derivation of the Szaniawski type of solutions presented
here places them in the proper perspective and indicates that they are of fundamental
importance in the study of both steady and unsteady transonic flows.

This work was partially supported by the Office of Naval Research, Project Squid,
under Contract N00014-67-0226-0005. This support is gratefully acknowledged.
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