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On the matching of solutions for unsteady transonic nozzle flows 

T. C. ADAMSON, Jr., A. F. MESSITER, and G. K. RICHEY* (ANN ARBOR) 

MANY solutions have been presented for two-dimensional transonic nozzle flows. Two of the 
more interesting of these solutions are those by ToMOTIKA and TAMADA (1950) and SzANIAWSKI 
(1965). However, it has not been made clear ·under what conditions either solution is valid. 
In this paper the methods of matched asymptotic expansions are used to derive the Szaniawski 
power series systematically and to show that this solution should be considered an outer solu­
tion which may not be uniformly valid as the throat is approached. The imler throat region 
is governed by the non-linear transonic equation which admits as one class of solutions, similarity 
solutions. The analysis is made using the nonsteady inviscid equations of motion, with steady 
flow results being derivable as a special case. As an example, a similarity solution for unsteady 
transonic flow with an infinitesimally thin shock wave, found by AoAMSON and RICHEY (1972) 
is used as an inner solution; through matching, conditions on the outer solution are obtained, 
illustrating the ov~rall kind of problem to which the similarity solutions correspond. 

Istnieje wiele rozwi!lzan dotyc14cych dwuwymiarowych przeplyw6w w dyszach. Do bardziej 
interesujllcych nalei-4 dwa rozwlllza'nia przedstawione przez ToMOTIKA i TAMADA (1950) oraz 
przez SzANIAWSICIEGO (1965). Nie jest jednak jasne, w jakich warunkach rozwi~zania te ~ 
sluszne. W niniejszej pracy przedstawiono metody kojarzenia rozwini~ asymptotycznych, 
pozwalaj11ce wyprowadzic w spos6b systematyczny szeregi potctg_owe Szaniawskieg9 oraz wy­
kazac, :le rozwiC~zanie to nalezy rozpatrywac jako rozwi~e zewncttrzne, kt6re mo:ie tracic 
wai:n<>SC przy zbliZaniu sict do gardzieli. Wewncttrzny obszar gardzieli opisany jest przez nie­
liniowe r6wnanie okolodiwictkowe, dopuszczaj~ rozwi~zania samopodobne jako jedn~ z klas 
rozwi~n. Analizct wykonano za pomQC!l nieustalonych r6wnan ruchu, z kt6rych mo~,jako 
przypadek szczeg6lny, uzyskac przeplywy ustalone. W przykladzie zastosowano jako rozwi~­
zanie wewncttrzne rozwi~zanie samopodobne, otrzymane przez ADAMSONA i RlcHEY' A (1972) 
i· dotyczctce nieustalonego przeplywu okolodiwictkowego z nieskoilczenie cienk~ falC~ uderze­
niow~; droA zszywania otrzymano warunki dla rozwi11zania zewn~trznego. 

CYll.leCTBYeT MHOrO perueHHH, KacaiO~CR ,~:tByMepHbiX OKOJI03BYKOBbiX Tet.leHHH B COOIDIX. 
K 6onee HHrepeCHbiM npHHa,l:{Jie>KaT ,~:taa peweHHR, npe,~:tCTaBJieHHbie ToMOTHKA H TAMA):{A 
(1950) H I.IIAwmclaiM (1965). O~o He RCHOnpH KaKHX yCJioSWIX 3TH pemeHHR cnpaae,~:t­
JIHBbl. B aacro~eH: pa6ore npe,~:tCTaaJieHbi MeTO):{bi cpamaaaHHR acHMIITOTHtieCKHX pll31Io>Ke­
HHH:, 003BOJIRIOII.{He BbiBeCTH CHCTeMaTHtieCKHM o6pa30M CTeneHHbie pR,l:{bi IllaHRBCKOro ~no­
Ka3aTb, tiTO 3TO peweHHe CJie):{YeT paccMOTPHBan. KaK BHeWHee pemeHHe, Koropoe MOmeT 
repRTL Ba>KHoCTb npH npH6JIH>KeHHH K ropnoaHHe. BHYTPeHHRR o6naCTb ropnoaHHbi onHcaaa 
HeJIHHeHHbiM OKOJI03BYKOBbiM peliieHHeM, KOTOpoe ,~:tOnyCKaeT aBTOMO,~:tem.Hoe pemeHHe KaK 
OroDJ H3 KJiaCCOB pemeHHH . .Amum3 npoae,~:teH C OOMO~IO HeyCTaHOBHBIIIHXCR ypaaHeHHH 
~BH>KeHml, H3 KOTOpbiX, KaK t.laCTHbiH CJIYt.laH, MO>KHO OOJIYt.IH'l'& yC'l"aHOBHBIIIHeCR TetieHHR. 
B npHMepe npuMeaeao, KaK BayTpeHHee pemeHHe, aBTOMO,~:teJibHoe peweHHe nonyqeHHoe 
A):{AMCOHOM H PHtiH (1972) H Kacaro~ecR aeyCTaHoBHBIIIHerocs: oKOJI03BYKOBoro TetieHIDI 
C 6eCKOHetiHO TOHKOH y,~:tapHOH BOJIHOH; nyTeM CIIIHTHR nonyqeHbl yCJIOBWI MJ1 BHeWHero 
peweHHR. 

1. Introduction 

THE STUDY of two-dimensional transonic nozzle flows has generally been carried out 
by searching for similarity solutions which give nozzle-like flows. For example, ToMo­
TIKA and TAMADA [1] introduce particular similarity transformations in the well-known 
transonic small-disturbance equation, and then are able to obtain similarity solutions 
for nozzle flows as well as for other transonic flow problems. This transformation has 
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been employed also by SICHEL [2] in his study of nozzle flows with shock waves, and has 
been extended to cover unsteady transonic channel flows both without and with shock 
waves by ADAMSON [3] and ADAMSON and RICHEY [4], respectively. FRANKL [5) and Gu­
DERLEY [6] have proposed a different kind of similarity transformation, which has been 
compared with that of TOMOTIKA and T AMADA in a particular application by SZANIA WSKI [7]. 

On the other hand, an entirely different approach has been presented by SzANIA WSKI [8] 
in several papers, with the basic ideas being exemplified in the cited reference. For steady 
transonic nozzle flows, SZANIA WSKI expands the perturbation velocity potential in an 
assumed power series in the transverse coordinate, and this series is substituted into the 
general potential equation and boundary conditions. The method has been extended 
to flows with shock waves by KOPYSTYNSKI and SZANIA WSKI [9]. 

The most interesting aspect of the solution given by SZANIA WSKI, when compared 
to the similarity solutions, is that arbitrary wall shapes may be considered; that is, this 
is a direct method. Clearly, similarity solutions are not general, from the viewpoint that 
one does not obtain a general solution from which specific solutions may be constructed 
by the application of boundary conditions. Instead one obtains self-similar solutions 
which . satisfy only very special boundary conditions which may or may not correspond 
to any given physical problem. Hence, while similarity solutions are extremely valuable 
in providing instructive results with a minimum of computational effort, they do suffer 
from this lack of applicability insofar as general nozzle shapes are concerned. The direct 
method proposed by SzANIA WSKI therefore would appear to hold a distinct advantage 
over the similarity method. However, it has not been made clear under what conditions 
or restrictions either solution ·is valid. It is the purpose of this paper, using the methods 
of matched asymptotic expansions, to illustrate how the SZANIA WSKI power series may 
be derived in a systematic fashion, and to show that this solution should be considered 
as an outer solution which may not be uniformly valid as the nozzle throat is approached. 
The inner throat region will be shown to be governed by the non-linear transonic equa­
tions, which admit as one class of solutions those similarity solutions referred to pre­
viously. 

The analysis is performed using the general equations of motion for nonsteady in viscid 
flow, with the steady-flow results derivable as a special case. As an example of the use 
of the analysis, a similarity solution for unsteady transonic flow with a thin shock wave, 
found previously [4], is used as an inner solution; through matching, conditions on the 
outer solution are obtained, illustrating the general kind of flow problem to which the 
si~Iarity solutions correspond. 

The flow is assumed to be two-dimensional, compressible, transonic and irrotational 
at least up to the orders for which calculations are made; the gas is assumed to follow 
the perfect gas law and to have constant specific heats. 

2. Derivation of equations 

In the problem considered, small perturbations are superimposed on a steady, sonic, 
irrotational, two-dimensional stream flowing in the X direction. The dimensionless in-

depende~t variables X, Y, and Tare referred to I for the space variables and L{Q* for 
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the time. Here, I is tht throat half-width and a* is the critical sound speed, the bar in­
dicating dimensional quantities (Fig. 1). The velocity potential <P(X, Y, T) is made dimen-

sionless with respect to La*. Then Bernoulli's equation and the so-called gas dynamic 
equation may be written as follows: 

"" a2 1 (""1 fP1) (y+ 1) 
(2.1) ""T+ y-1 +2 -vx+ r = 2(y-1) ' 

(a2
- <Pi) <Pxx+ (a2 -<Pi)<Prr-<PTT- 2<Pxr<Px <Pr- 2<PxfPxT- 2<Pr<PrT = 0, 

where a is the dimensionless speed of sound, referred to a*, and y is the ratio of specific 
heats. The constant right-hand side of Eq. (2.1)1 arises because the undisturbed stream 
is at uniform sonic velocity. 

y 

----~ .., X 

FIG. 1. Sketch of nozzle flow coordinate system. 

Since one may wish to consider various ranges of the space and time coordinates, 
it may in general be appropriate to introduce other non-dimensional variables, say x, y, 
and t, such that 

X= 6x, 6 = I~/i, X= 0(1), 

(2.2) Y= ey, e = I,/L, y = 0(1), 

T = 1:1, T = r •• f( i. ). t = 0(1). 

In Eqs. (2.2), [~ and [, are fictitious lengths of the order of the physical extent of the 
transonic region under consideration, in the X and Y directions, respectively. Hence x 

and y, which are coordinate distances made dimen~ionless with respect to I~ and I, , 
respectively, are of order unity in this region. Similarly, t is the time made dimensionless 

with respect to Tc~~, the characteristic time associated with the disturbance, and is of 
order unity. 

The velocity potential is written as an asymptotic expansion in terms of a small para­
meter E, which may be chosen as a typical value of the non-dimensional perturbation 
velocity. The first term describes a uniform. sonic stream, and in the examples to be con­
sidered, the next few terms proceed in integral powers of E: 

(2.3) <P(X, Y, 1) = 6[x+&f>1(x, y, t)+E2l/>2(X, y, t)+ ... ]. 
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Then the··velocity components in the X and Y directions are, respectively, 

(2.4) 
U = tPx = 1+E</J1x+E2t/> 2x+ ... = 1+Eu1 +E2u2+ ... 

Thus U -1 = O(E). 
The three important possibilities for the order of the non-dimensional characteristic 

timeT are T ~ 1, T = 0(1), and T ~ 1. Each of these cases can be shown to imply a differ­
ent first apprqximation to the Eq. (2.1h. In this paper, the "slowly varying" time regime 
T ~ 1 will be. considered. In view of the expansion for t/J, Eq. (2.3), it is not difficult to 
show that for T ~ 1 a time derivative appears earliest, i.e., in the equation for t/>2, when 
T = O(E- 1). Thus, here we will consider the case where 

(2.5) T = (kE)- 1
, 

where k is a constant of order unity. 
The parameter 8 is taken to be of order unity because of the physical problem con­

sidered. That is, the transonic region covers the whole stream in the Y direction from 
wall to wall. Here, then, we set 

(2.6) 8 = 1. 

It will be seen that the order of magnitude to be chosen for ~ will depend ott the flow 
region of interest, and therefor~ cannot yet be determined. However, since the physical 
problems to be· considered here are such that the flow region is always contained in a dis­
tance of a few throat diameters upstream or downstream of the throat, ~is at most of order 
unity. 

If Eqs. (2.2), (2.3) and (2.6) are substituted into Eq. (2.1) and Eq. (2.1)1 is then sub­
stituted into Eq. (2.1)2 , one obtains the governing equation for the velocity potential. 
Thus, 

(2.7) -E2(y+ 1)</J1xtP1xx + ~2 {Et/>1yy +E2 [</J2yy- (y-1)</J1x</J1yy]} 

-2~2E2</J1ytP1xy-2 ~E </J1xt+ ··· = 0~ 
'l' 

where only terms to order E 2 are retained to illustrate the method without adding undue 
complexity. It is seen from Eqs. (2.7) and (2.5), that once the relationship between~ and 
Ehas been given, one can find the goTerning equations for the potential functions </J1, t/>2 , •••• 

The wall boundary condition for unsteady channel flow has been discussed previously 
in [3]. Along a wall which may in general be moving with time, 

(2.8) Yw = F(X, 1). 

Since the flow velocity is nearly sonic everywhere in the region of interest, the function 
F(X, D must be nearly constant, and so Eq. (2.8) can be rewritten, in the coordinates 
introduced by Eq. (2.2), as 

(2.9) Yw = 1+wf(x,t), 

http://rcin.org.pl



ON THE MATCHING OF SOLUTIONS .FOR UNS1EADY TRANSONIC NOZZLE FLOWS 621 

where f = 0 at the throat, and w ~ 1. Along the wall y-Yw = 0 and the Eulerian deriv­
ati-ve of y-Yw is also zero. After substituting the changes of variable, the velocity expansions~ 
and the wall definition, Eq. (2.9), into the Eulerian derivative, one finds that, at the wall:. 

(2.10) 

If Eq. (2.5) is now used for r, it is seen that the term involving.ft is smaller by a factor E 
than the term involving fx. Therefore, to this order the usual steady state result holds. 
That is, even though the flow in unsteady and the wall might be moving, the wall is in­
stantaneously a streamline to this order. This result, of course, is true only because we 
are considering the case r ~ 1. 

3. Solutions 

3.1. Szaniawski series solutions (~ = 0(1)) 

We first consider cases for which ~ = 1. Physically, since e = (i, /f) = 1, this means 
that the flow region under consideration has an axial length of the order of the throat 
diameter. Then from Eq. (2.7) with Eq. (2.5) for r, 

(3.1) 
cPtyy = 0, 

cP2yy-(y+l)c/JlxcPlxx-2c/JtycPtxy-2kc/Jtxt = 0. 

If we specify that symmetrical channels are to be considered, so that V(X, 0, T) = 0 to­
all orders, then integration of Eqs. (3.1) gives 

(3.2) 

where h(x, t) is an arbitrary function of integration. 
Next, from Eq. (2.10), for ~ = 1 and r = (kE)-t, the boundary conditions may be­

derived; since cjJ 11 = 0, 

(3.3) 

(3.4) cP21(x, ±1, t) = ±fx(x, t), 

where the upper and lower signs refer to the upper and lower walls, respectively, and 
c/J2, has been expanded in Taylor series about y = ± 1. Then, substituting Eqs. (3.2h 
and (2.9) into Eq. (3.4), one can show that 

(3.5) cP~x = (y! 1)J+H(t) 

where H(t) is an arbitrary function of time. In steady flow, where c/Ju = 0, H = constant 
is seen to be the value of the perturbation velocity at the throat, where f = 0. In this case .. 
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the solution for tPtx = Ut is given completely by Eq. (3.5). For unsteady flow, it is con­
venient to consider a derivative of Eq. (3.5), written in terms of Ut = tPtx· Thus 

{3.6) 

and, it is seen that Eq. (~.6) gives the rate of change of Ut along characteristics 

dx y+l 
{3. 7) dt = ---uc Ut 

in terms of the instantaneous wall slope. 
The exact equations for one-dimensional, nonsteady, isentropic flow can be integrated. 

to give, in the present notation, U±2a/(y-1) =constant along dXfdT = U±a. Thus, 
in a region where U ~ a ~ 1, small disturbances are carried downstream at a speed 
U +a ~ 2 and upstream (with respect to the fluid) at a much lower speed U- a. If we 
were to assume a simple wave such that U +2a/(y-1) = constant (no disturbances 

1 
created upstream), changes L1U and Lta would be related by Lta = - 2 (y-l)L1U, and 

so U-a = ~ (y+1)L1U. If we set L1U- Eut and T = -rt = (kE)-tt, the two families 

of characteristics become, in the limit as E-+ 0, t = constant and dxfdt = (y+ 1)ut/(2k). 
The latter is identical to Eq. (3.7) and so the present formulation for tPt appears to retain 
only the disturbances moving· upstream relative to the fluid, since their absolute speed 
of propagation is small compared with the sound speed. The disturbances moving rapidly 
downstream are lost because they remain in the region of interest for a time which is very 
short in comparison with -r = (kE)-t. 

A solution Ut to Eq. (3.6) can be found for a given wall shape/if an initial condition 
is specified. The potential ckt is obtained by integration over x, and therefore contains 
an arbitrary function oft. This function oft is, however, related to H(t), in the sense 
that the combination H(t)-4kt/Jttf(y+ 1) appearing in Eq. (3.5) is determined by the 
solution for Ut, and thus by the initial conditions. For the very simple steady parabolic 
wall shape, where f = constant · x2 , analytic solutions -may be found; for other more 
complicated wall shapes, it appears that numerical methods must be employed. In either 
event, and even for the case where the walls move with time, the procedure seems to be 
relatively simple. On the other hand, because of the fact that only one family of character­
istics is present, and thus that no upstream or downstream boundary conditions can be 
applied, it may be that the types of flows which can be studied in this time regime are 
limited. More detailed analysis is neeessary to resolve this point. 

If Eq. (3.5) is used to calculate the relevant terms in t/J2 , Eq. (3.2)2 , the second-order 
velocities may be written as follows: 

y2 
u2 = tP2x =.fxx2 +hx, 

(3.8) 
'V2 = tP2y = fxy. 

If the third-order velocity potential function q, 3 is found and boundary conditions involv· 
ing q, 3y at the wall are used, an equation involving h(x, t) results. This equation may be 
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written as follows: 

(3.9) ( y~l) h,+</>1,h, = - </>~, {lz.+(2y-3)<f>~.+ 6~;:~~) <f>uj 

- k:' x- (y~l) f.,+ 2(y~l) [~ (( 3? )<t>~.-f) dxl +A(t). 
X 

Thus, the right-hand side of Eq. (3.9) is known except for the function of time A(t), which 
can be incorporated in h,; h(x, t) is one of the terms in t/J 2 ,"and t/J2 may contain an arbitrary 
function of time. It is seen that Eqs. (3.6) and (3.9) have the same characteristics. Finally, 
it should be noted that it is the derivative, hx, which is required for the solution for U. 

Derivation of the higher-order solutions would present no difficulties; they simply 
become more complex. Further, if the solutions given in Eqs. (3.5), (3.8) and (3.9) are 
written specifically for steady flow, it is seen that they agree precisely with those solutions 
given by SZANIA WSKI [8}, found by use of an assumed power series. The present method 
simply provides a systematic method of derivation, and allows a precise ordering of each 
of the terms relative to each other, as well as to comparable terms in different solutions, 
as will be seen. 

3.2. Existence of inner region 

The question now arises as to whether the solutions presented in the previous section 
are uniformly valid throughout the transonic region. In order to answer this question, 
it is convenient to write the solution found so far for the x-component of the velocity, 
as follows: 

(3.10) 

where Eqs. (3.5) and (3.8) have been used for t/J 1x and t/J2:c. At this point, the throat region 
for a flow which goes through or very near sonic velocity is chosen for study. The throat 
is taken to be at x = 0, and furthermore it is assumed for this example calculation that 
the point of minimum area always remains at x = 0, even though the wall shape may 
vary with time. From. Eq. (2.9), these conditions require 

(3.11) /(0, t) = fx:(O, t) = 0. 

From Eq. (3.10), it is seen that since t/J 1x--+ 0 at or near the throat, andf:cx does not 
in general go to zero in .this region, it is possible that the first perturbation term can de­
crease in magnitude as x --+ 0 until it becomes of the order of the second perturbation 
term. Thus a non-uniformity may exist. In order to investigate this further, an inner region 
is postulated wherein the two terms are of the same order. Furthermore, it is assumed 
that in this inner region, the velocity can be expanded in terms of new variables defined 
in the manner of equations (2.2): 

(3.12) X= <5*x*, Y = y, T = -r*t*, 

U = 1+E*t/J~x•+ ... = 1+E*u~+ .... 
Thus only the x coordinate is stretched, since the inner region is very thin but still extends 
from wall to wall in the y direction. It might be anticipated that -r* and -r will be of the 
same order, but at this point it is not necessary to make this assumption. 

6 Arch. Meeh. Stos. nr 4n4 
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The inner region corresponds to a limit process as E -+ 0 with x* and y fixed. In this 
inner region the quantities Et/>1J" E2t/>2x, and E*t/>~x• are of the same order. That is, since 
u: = 0(1), in the inner region 

(3.13) Et/>tx = O(E*), E2t/>2x = O(E*). 

Using Eq. (3.2)2 , we assume that t/>2x is of the same order as (t/> 1xtPtxx)x. That is, we assume 
that t/>1xr and hx are at most of the same order as t/> 1xt/> 1xx as x-+ 0. Finally, since x = ~*x*, 

one finds that for x* = 0(1) 

(3.14) 

and, using Eq. (3.13), that d*2 = O(E*). These results are obtained by assuming that the 
ratio of E2t/>2x to Et/>1x does not remain small, but without any further assumption concern­
ing the form of ep 1x as x-+ 0. For convenience, here we set 

(3.15) d* 2 = (y+ 1)E*. 

Next, T* is assumed of order E*-": 

(3.16) T* = (y+ 1)-112£*-"k- 1 • 

If one now considers Eq. (2.7) as applied to the inner region (i.e., replace E byE*, x by x*, 
etc.) and employs Eqs. (3.15) and (3.16) for d* and T*, then it is easily shown that the 
first-order potential equation is 

(3.17) tP~x•tP~x•x• -t/>~yy + 2kt/J~x•t• = 0 

ifn = 1/2inEq. (3.16). Thatis,ifn> 1/2, the unsteady term does not appear in Eq. (3.17), 
and we have already tentatively excluded n < 1/2 by our assumptions concerning tP2x· 

Equation (3.17) is the well known non-linear transonic equation, written here for 
unsteady flow; the relative orders of the x and y coordinates in the inner region are, of 
course, precisely the same as that found in any transonic-flow problem in which this 
equation holds. In the present problem, thus, it is clear that the Szaniawski type of solu­
tion should be considered as an outer transoni9 solution, described by linear equations. 
As the velocity gets closer and closer to sonic velocity, there is an inner region in which 
the non-linear equation must be satisfied. It is of interest, at this point, to consider known 
inner solutions and through matching, to ascertain to what kind of outer flow solutions 
they correspond; this is done in the next section. 

3.3. Inner solatioas (<5• = 0(£*1/2)) 

As mentioned previously, there are several known solutions to the transonic nozzle 
problem in the regime governed by the non-linear Eq. (3.17). In general, they are similarity 
solutions and therefore valid only for specific wall shapes. However, in view of the above 
analysis~ this is not a serious drawback because the extent of the inner region is very small 
compared to the throat diameter. In this section the unsteady similarity solutions given 
by ADAMSON and RICHEY [4] for fl()WS with infinitesimally thin shocks imbedded in them 
are used as examples. The basic similarity transformation was introduced by TOMOTIKA 
and TAMADA [1] and extended for unsteady flow in Refs· [3] and [4]; since the details of 
the calculation are given in these references, only a very brief review of the important 
ideas is given here. 
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The transformation applied to Eq. (3.17) is, 

(3.18) 
s* = x*+by2 +{3(t*), 

where {J(t*) is an arbitrary function of time, the prime on f3 indicates differentiation with 
respect to t*, and b is an arbitrary constant. From the irrotationality condition, then, 
vt may be derived as 

(3.19) 

and from Eq. (3.17), one obtains the governing equation for z 

(3.20) zz'+(z'-4b)(z'+2b) = 0, 

where the prime denotes differentiation with respect to s*. Equation (3.20) has the so· 
lution [1] 

(3.21) 

where r:x is a constant of integration which characterizes the inviscid solution curves. 
That is, r:x = constant along a given solution curve. Equation (3.21) is the solution given 
by TOMOTIKA and TAMADA [1] for steady flow; thus the transformation given by Eq. (3.18)1 

allows one to study the unsteady counterpart of these nozzle flows. 

-0·2 0 0·2 0·4 . 0·6 

s* 
FIG. 2. z vs s* showing inviscid inner solutions for various ex (dashed) and solutions for flows with in­
finitesimally thin sh.ocks. Solution (a), shocks in accelerating flow; solution (b), shock in decelerating 

flow. (From reference [4D. 

6* 
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As shown in Ref. [4], it is possible to consider flows with infinitesimally thin shocks 
such that the flow is in viscid up to and behind the shock; in the z, s* plane, the shock 
solution joins solutions characterizod by different values of ~ = ~, upstream and ~ = ~d 

downstream of the shock. Typical solutions in the z, s* plane are shown in Fig. 2 (from 
reference [4]). The physical meaning of the solutions in this plane is given by noting in 
Eq. (3.18)2 that along the x* axis of a steady flow, u~ = z. 

In Fig. 2 it is seen that for ~ = C%d < 0 the inviscid-flow solutions all lie below z = 0 
and hence are for subsonic flows that accelerate and then decelerate; for ~ = IX, > 0, 
z > 0 and so these solutions are for supersonic flows which decelerate and then accelerate. 
For ~ = 0 there are two special solutions; for z = 4bs*, the flow accelerates from sub-

sonic to su~rsonic velocities, while for z = - 2bs*, the reverse occurs. Two solutions 
for flows with imbedded shocks are shown. Curve (a) shows a flow which begins as a simple 
accelerating nozzle flow, and th~ shocks to a decelerating subsonic nozzle flow. Curve 
(b) shows a flow which begins as a decelerating nozzle flow, goes through a minimum 
and begins to accelerate, and then shocks to a decelerating subsonic nozzle flow. It can 
be shown [4] that the shock position is a function of ~, and ~d. For example, for curve 
(a), where ~ .. = 0, the shock position, s:, is 

(3.22) 

It is seen in Fig. 2 that both types of solution (curve (a) and curve (b)) become asymptotic 
to z = - 2bs* as s* becomes large and positive, but that for s* large and negative, the 
upstream solution is either z = 4bs* or asymptotic to z = - 2bs*. Hence it is necessary, 
for later matching purposes, only to find the asymptotic form for the inviscid solutions 
which are near - 2bs*. This can be shown to be [4] 

(3.23) 
~3 

z = -2bs* + 144bss•2 + ... ' 

where ~ = ~, for . s* large and negative and ~ = ~d for s* large and positive. 
With the above relations, one can find the complete solution in the inner region, for 

steady or unsteady flow, either with or without shock waves. It should be clearly under­
stood that they are only one class of solutions to Eq. (3.17) for nozzle flows; there are 
many others. On the other hand, such similarity solutions are an important class of solu­
tions because they give so much information with relatively little computational effort. 
Hence it is worthwhile to investigate those conditions under which such solutions hold. 
This can be done by studying the possibility of matching inner and outer solutions. 

3.4. Matching inner and outer solutions 

In view of the fact that the throat is at x = 0 in the outer variables, matching is per­
formed in the limit as lxl ~ 0 for the outer solutions, and as lx*l -+ oo for the inner solu­
tions. In order to complete the demonstration of consistency between inner and ·outer 
solutions, the possibility of matching should be shown both upstream and downstream 
of the throat. Here, in the interests of brevity, the inner solutions will be matched onlv 
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with the downstream outer solutions, this being sufficient to obtain the information desired. 
In addition, only the velocity components will be matched because all r~maining variables 
can be calculated from them. 

The outer solutions are written using Eqs. (2.4), (3.2)1 and (3.8) and expanding the:Ql 
about x = 0. We consider the important case for which t/J1 and t/J2 possess at least a few 
derivatives with respect to x, as x--. 0. Thus, 

(3.24) U = 1+E{</>tx (0, t)+x<Ptxx (0, t)+ ... } 

2{ y2 . [ y2 ] } +E .fxx(O, t)T +hx(O, t)+x hu(O, t)T+hxx(O,t) + ... + ... 

V= E 2y{fx(O, t)+xfxx(O, t)+ ... }+ ... 

The expansions for U and V for x* ~ 1 (and thus by Eq. (3.18)1 , for s* ~ 1) are 
found by substituting Eq. (3.23) into Eq. (3.18)2 and (3.19}. They then may be written 
in outer variables by using x* = x/~* and 6*2 = ()'+l)E*. The resulting equations 
are 

(3.25) 
V= E*4b2xy+ ... , 

where only the first term of Eq. (3.23) has been used in the above. Comparing Eqs. (3.24) 
and (3.25) term by term, it is seen that 

(3.26) 

E*t/2 = E, </>~x(O, t) = 0, 
2b 

tPtxx(O, t) = - .. ;­
y)'+l' 

fxx(O, 1) = 4b', h,(O, 1) = -2b(P+ ~ {1'). /,(0, 1) = 0. 

First of all it should be noted that, sinc;e ad)s not found in any term, the shock posi­
tion is not given to this order of approximation. In fact, from Eq. (3.23), the first term 
in V which would involve a is of order E*x*- 2 = O(E*2

) = O(E4
), where x* = O(E*-1

'
2). 

Therefore, information from downstream which sets the shock position arises from fourth­
order outer terms. 

From Eqs. (3.26)1 , (3.16), and (2.5) one can show that'~'* = O(T) if n = 1/2, and this 
is chosen to be the case here. Therefore it is consistent with the present solutions to include 
the unsteady term in Eq. (3.17). 

Equations (3.26h and (3.26h indicate that the outer velocity in the vicinity of the 
sonic line is linear in x. Equations (3.26)4 and (3.26)6 indicate that the outer wall is there­
fore parabolic in the vicinity of the throat. Finally, Eq. (3.26)5 shows that the function 
of time, {J, is prescribed by hx, and thus by the initial conditions imposed on the outer, 
downstream solutions. 
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4. Discussion 

It is clear from the above, that if one were to match the inner solution with the upstream 
outer solutions, results essentially the same as those shown in Eq. (3.26) would result. 
That is, since the inner function z either is asymptotic to - 2bs* or equals 4bs*, the only 
differences would be in the cons~nts. On the other hand, Eq. (3.26)5 which involves p 
requires very careful attention because there is only one function p, with two matching 
conditions, involving possibly two different initial conditions, one upstream and one. 
downstream of the throat. This interaction between upstream and downstream conditions 
could be very complex; studies with very simple initial conditions are being made. 

The essential result of the above matching is that the only restriction imposed on the 
outer solution by matching with the given inner similarity solution is that the outer wall 
shape must become parabolic as · the throat is approached. Otherwise, there is no restric­
tion on wall shape. It also seems apparent, from Eq. (3.26), that one could formulate 
a problem involving stationary walls, with nonsteady flow. However, it is not all clear 
whether arbitrary oscillations could be imposed on the flow. This point also deserves 
further study. In this regard, it is worth noting that wall shapes which vary .with time 
do affect p, since fxt is found in the equation for h, Eq. (3.9), and hx(O, t) is the forcing 
function for the equation for _p, Eq. (3.26)5 • 

Although attention here has been focu8ed on the throat region as a region of possibly 
nonuniform validity of the outer solutions, it is worth mentioning that an inner region 
is also necessary w~n a shock exists in the outer region. That problem is presently being 
studied. 

It is believed that systematic derivation of the Szaniawski type of solutions presented 
here places them in the proper perspective and indicates that they are of fundamental 
importance in the study of both steady and unsteady transonic flows. 

This work was partially supported by the Office of Naval Research, Project Squid, 
under Contract N00014-67-0226-0005. This support is gratefully acknowledged. 
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