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A semi-continuous model of the scattering of gas atoms by metal
surfaces

I. PIENKOWSKA (WARSZAWA)

THE SCATTERING of gas atoms in the thermal energy range by clean and atomically smooth
metal surfaces is considered. The revised version of Landau’s theory, based on the continuum
model of the solid, is exploited to examine the scattering patterns. The statistical character
of the influence of the thermal motion of the metal surface on the gas atom is modelled by
means of the two-dimensional normal distribution function. The probability density function
of the gas atom scattering in a given direction is obtained (in the analytical form). The ap-
proach covers two phenomenological scattering regimes: quasi-elastic and in-elastic.

W pracy rozpatrzono rozpraszanie atoméw gazow szlachetnych o energiach termicznych
na czystych (tzn. bez zaadsorbowanych gaz6w) oraz idealnych pod wzgledem struktury krystalo-
graficznej powierzchniach metali. Analize rozkladéw katowych odbitych atoméw gazu oparto
na zmodyfikowanym modelu Landaua, w ktérym ciato stale jest przedstawione jako osrodek
ciagly. Celem opisu wplywu na atomy gazu ruchu termicznego powierzchni metalu wprowa-
dzono funkcje gestoéci prawdopodobieristwa odbicia atomu gazu z predkoseia (vy, v;) w postaci
dwuwymiarowego rozkladu normalnego. Nastepnie obliczono g¢sto$é prawdopodobiefistwa
odbicia atomu gazu pod katem 6,. Proponowany model dotyczy dwoch wyrdznionych feno-
menologicznie rodzajow rozpraszania: quasi-elastycznego i nieelastycznego.

B macroameii pabore paccMOTpeHO paccesHHE aTOMOB ONIAro/IapHBIX ras’0B C TEMUIOBBIMH 3HEp-
THAMH HA YHCTHIX (T. €. Ges acopGHpOBAHHLIX ra30B) B HACANBHAIX, 110 OTHOIIEHHIO K KPHCTA-
JIHYecKOol CTPYKTYpE, MOBEPXHOCTAX METAJUIOB. AHAJIM3 YIJIOBBIX paclipee/icHHil oTpayKeHHBIX
4TOMOB rasa omupaerca Ha mogadmmpoBanHoit Momenu JlaHmay, B KOTOpOHt TBephoe Teno
MIPEACTAB/IACTCA KAK CIUIOMHYIO cpefy. C Le/bio ONMMCAHUA BIMAHHA HA ATOMBI rasa TeIo-
BOTO [IBFDKCHHA MOBEPXHOCTH METa/UIa BBe[eHA (YHKIMA IUIOTHOCTH BEPOATHOCTH OTpAXE-
HHs ATOMA r'asa CO CKOPOCTBIO (Ux, Uy) B BHE JBYMEPHOIO HOPMALHOIO PACIpefe/ieHuA. 3aTeM
PacyHTaHa [UIOTHOCTs BEPOATHOCTH OTPRKEHHA aToma rasa mox yrnom 6,. Ilpemnosennas
MOZeNhb KAcaeTcA [BYX THNOB PACCEAHMA palTHYAIONAXCA (eHOMEHONIOTHYECKH: KBasH-
YIPYToro M HEympyroro.

Notations

a, D the Morse potential parameters,
f(vx,v;) the probability density function of the gas atom scattering with the velocity
(Ux’ Uz)’
h Planck constant,
h(y) the probability density function of the gas atom scattering for y = tg6,,
k Boltzmann constant,
m the mass of the gas atom,
m, the atomic mass of the solid,
m,, m; parameters of the f(v., v;) function,
M the coefficient defined by the formula (3.7),

M = M%),
p,q,r the coefficients described respectively by the formulae (3.3), (3.4), (3.9),
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T: surface temperature,
T, the kinetic temperature of the gas atom,
Vi(Vx, Vz) the velocity of the incident gas atom,
vr(vx,v;) the velocity of the reflected gas atom in the stochastic approach,
Ux(Uy, U;) the velocity of the reflected gas atom in the deterministic approach,
{w*> the mean square displacements of a surface point,
y the quantity defined by the formula (3.8),
&, the average energy transferred by the incident gas atom to the bulk solid
modes,
g the average energy transferred by the incident gas atom to the surface solid
modes,
6; the angle of incidence of the gas atom,
6y the angular position of the peak of the density pattern,
46 = 6;-0y,
6, the angle of reflection of the gas atom in the stochastic approach,
6p the Debye temperature,
A the full width of the density pattern measured at half-maximum,
0y, 0; parameters of the f(vy, v;) function,
@(x) the function defined by the formula (3.1),
o frequency of a normal mode,
. the cut-off frequency.

1. Introduction

THE DISCRETE, lattice models of the solid are the main object in the study of gas-solid
surface interactions [1]. These theories usually start with an oversimplified description
of crystal lattices and even in the advanced stage in the three-dimensional theories rough
assumptions concerning the bonds between atoms are used. Further, for discrete models
principal use can be made of the statistics of numerical results. However, it is known
that for thermal energies of the ineident atoms the solid acts as a whole, and for this reason
the use of continuum description of the solid seems to be preferable. The continuum
models of the solid have not been extensively studied in the context considered and there
are only a few papers [2], starting with Landau’s [3], in which this approach is used.

In the present paper, we intend to describe the use of the continuous model for the
analysis of rare gas atoms scattering in the thermal energy range by clean and atomically
smooth metal surfaces. Only those processes will be regarded in which the de Broglie
wavelength of the gas atom is small compared with the characteristic interaction length.

This requirement validates the assumption that the model obeys the laws of classical
mechanics.

2. The gas-metal surface energy exchange

We started with the revised version of Landau model [4] in which the solid was regarded
as a semi-infinite, isotropic, elastic continuum. The modified Debye model was employed
to represent the frequencies w of the solid modes. These frequencies are limited by the
cut-off frequency w, [5].
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The average energy, transferred by the incident gas atom to the bulk (#,) and surface
(£,) solid modes, was calculated using the following assumptions:

the Morse potential represents the interaction of the gas atom with the solid as a whole;

this potential depends on the distance of the gas atom from the equilibrium posi-

tion of the solid surface;

the gas-solid coupling is described by a linear function of the displacement of a point

on the solid surface.

The values of #, and £, depend on the mass and the incident velocity of the gas atom,
on the values of the interaction potential parameters, and the physical properties of the
solid (its density and elasticity). The exact forms of #; and &, are given in [4].

The model described above enables us to calculate the velocity components (U, U;)
of the gas atom leaving the surface:

U, =V,

2.1
(2.1) U,=]/V,‘—%(El+53)(l—T,/T,,

if V,, V; are the velocity components of the gas atom with the mass m, impinging on a solid
surface at the angle 6;; T and T, are the temperature of the| surface and the kinetic tem-
perature of the gas atom, respectively.

Hitherto, the original Landau’s theory has been modified only by taking into account
the more realistic solid model—i.e., the elastic continuum instead of a fluid type con-
tinuum—and by using the Morse potential instead of the simplified, pure repulsive potential
originally used in the Landau paper.

3, The scattering pattern

For the description of the scattering pattern we have introduced to our previous pure
deterministic model certain stochastic concepts. Bearing in mind ‘that the normal and
tangential (to the solid surface) components of the velocity of the incident gas atom cam
be treated independently, we have chosen a two-dimensional normal distribution func-
tion f(v,, v;), giving the probability density of the gas atom scattering with the velocity
(vg, v;). This function has been represented as a product of two normal distributions:

_ 2 _ @mm) (@—my)?
S, 00) = 20,0, [D(m, [ (V20,)) +1] o [ - 20 20} ]

(3.1 ) X
20 =7 [ eoar.
V=
0
Now, as the mean values of the distribution function we take the velocity components
of the reflected gas atom, obtained previously from the deterministic model—i.e., we
assume:

(3.2) m, = U, m,="U,.
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The expressions for the dispersions o, and o, we choose on the basis of pure pheno-
menological considerations, founded on the analysis of available experimental data.
These data [1] show that the following factors are decisive for the type of gas-metal scatter-
ing considered: p is the distance of closest approach of the gas atom to the surface during
the collision, g the average number of vibrations of a point on the metal surface within
the characteristic inferaction time—i.e., the time during which the incident gas atom
covers the distance equal to the characteristic interaction length a, r the average character-
istic velocity of points of the solid surface.

The significance of the first factor has been discussed, for example, by MILLER, SuB-
BARAO [6]. In the same paper is given the approximate formula, describing this quantity.

Following their arguments we assume that the coefficient p can safely be taken in the
form:

(3.3) p=14 ZkDT' cos*d;,

where D is the well depth of the Morse potential.
The quantity g can be expressed as the ratio of the characteristic interaction time
7, = a[V, and the characteristic time of vibrations 7. = 2n/w.—i.c.,
7, aw,

(3.4) g=t=0

Te

Note that in the gas-solid scattering processes considered g = 1.
The coefficient r is described as the ratio of the square root of the mean square dis-
placement of a point on the solid surface {w*) and the characteristic time of vibrations z.:

(3.5 r =Y <{w? w./(2n).
For the quantity {w?» we have adopted the well known formula, which follows from the
Debye theory of vibrations of the elastic solid [7], namely:
3R3T,

(3.6) W) = mhE "
Here m, is the atomic mass of the solid, 6p—the bulk Debye temperature, ~—the Planck
constant.

Now, it seems plausible to assume that the three factors referred to above are in-
dependent and hence, for an isotropic surface (o, = o,), we write:
3.7 o, = 0, = Mpgr.
The proportionality coefficient -M is regarded as a semi-universal constant (i.e., the same
for all thermal energy rare gas atoms, scattered by clean and atomically smooth metal
surfaces). The resulting formula for the probability density function h(y) of the gas atom
scattering in a given direction has the form:

e n(y’+1){¢(m:f( Vie)+1 [_ %—_G%] )
o2 ] o2

o V2?42 oV 22 +2 oxV 272 +2

(3.8)

y = tgh,.
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4. Results

We shall use the familiar parameters 460 and A to characterise the scattering patterns

(Fig. 1).

59'35”9;

Fic. 1. The density pattern.

Figures 2, 3 and 4 illustrate the typical calculated density patterns for 6; = 0° and

6, = 60°, respectively.
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Fic. 2. The dependence of the density
pattern on the gas temperature T,. Ar/W,
6; = 0°, T, = 1100°K, M = 0.01.
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F=001 g;=0°

hitg&)}
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Fic. 3. The dependence of the density
pattern on the surface temperature Tj.

Ar/W, 6, =0°, T,=350°K, M =001
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hitg&)

!

Ne/w Tp=400°% M=001

F1G. 4. The lobular scattering pattern. Ne/W, 6; = 60°,

T, = 400°K, M = 0.01.

It is seen that the lobular scattering, known from experimental data, is obtained. The
plot of the function A(tgf,) vs. 0, is symmetrical for 6; = 0° and not symmetrical for
0; # 0°.

Figures 5 and 6 represent the features of the theoretical intensity distributions as
functions of the surface and gas temperature. The width A of the density patterns increases
with T, but diminishes with T,,. Similarly, the values of the parameter 46 increase with T
and decrease with T,.

An interesting point is that the case 46 = 0° occurs as a rule for T, # T,. Further,
it is important to note that, generally speaking, we have obtained:

46,, > A6y, > Aby,,
J'Ar > ’1'Ne > 1!&-

The results shown in Figs. 7, 8 illustrate the dependence of the density patterns on the
incidence angle 6;.

4.1)
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Fic. 5. The dependence of 46 and A parameters on Ty and T;. Ne/W, 6; = 60°, M = 0.01, I—46, II—A.
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FIG. 6. The dependence of 40 and A parameters on T, and Ty. Ar/W, 6; = 40°, M = 0.01, [—40, II—A.
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FiG. 7. An example of the quasi-elastic scattering FiG. 8. An example of the inelastic scattering
pattern. He/W, T, = 800°K, Ty = 2100°K, pattern. Ar/W, T, = 400°K, Ty = 2100°K, ’
M = 0.01. M = 0.01.

In the case of He, the deviation A6 is almost equal to zero and the width A diminishes
with 6;. Such behaviour is characteristic for the quasi-elastic regime of rare gases thermal
scattering [8].

By contrast, for Ar, the deviation A8 may differ substantially from zero and the width 4
increases with @ . These features characterise the inelastic regime of thermal scattering [8].
The occurrence of the two regimes appears to be an asset of this approach.

The dependence of the density pattern on 0; is rather complex, as may be seen in Fig. 9;
this is due to the competitive influence of different factors, discussed previously. Behaviour
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FIG. 9. The dependence of A6 and A parameters on 6;, for different gas and surface temperatures. Ar/W,
M = 0.01.

similar to that presented in Fig. 9 has been observed in many rare gases scattering ex-
periments [1].

The above qualitative results satisfactorily reproduce the essential characteristics
of the scattering considered of the gas atoms. This fact seems to support the claim that
the approach, based on the continuum description of the solid, can at least be as useful
as the results of discrete theories.
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