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Classes of discontinuous motions in elastic and rate-type materials.
One-dimensional case

I. SULICIU (BUCHAREST)

IN THE PAPER, different classes of regulated functions are introduced. Hadamard’s theory of
wave propagation (when an isolated curve of discontinuity is present) is generalized for the
frame of regulated functions (when a countable set of discontinuity directions can meet at
a point). Kinematic and dynamic jump conditions are given. For the rate-type materials, necessary
conditions for the constitutive equation to be written in the form of a continuously differen-
tiable functional of strain (regulated function) are given. Finally, for motions with second-
order discontinuities (generalization of acceleration waves), one proves that on a bounded
and closed domain, the number of discontinuity directions at a point is at most two for the
elastic case and at most three for the “rate” case; moreover, the set of points where there are
effectively two (respectively three) discontinuity directions, is at most countable.

W pracy wprowadzono rozne klasy funkcji z nieciaglosciami pierwszego rodzaju. Uogdlniono
teorie propagacji fal Hadamarda, w ktorej wystepuja izolowane krzywe nieciaglosci, na uklady
funkcji z nieciagto$ciami pierwszego rodzaju, ktore, dla odmiany, dopuszczaja w kazdym punkcie
istnienie przeliczalnego zbioru kierunkoéw nieciagtosci. Wyprowadzono kinematyczne i dyna-
miczne warunki dla skokoéw nieciggloéci. Dla materialow typu predkosciowego podano warunki
konieczne na wyrazenie rownania konstytutywnego w postaci ciagle rozniczkowalnego funkcjo-
nalu od odksztalcenia (bgdacego funkcja z nieciagloSciami pierwszego rodzaju). W zakori-
czeniu, dla klasy ruchow z nieciaglosciami drugiego rzedu (uogoélnione fale przyspieszenia)
udowodniono, ze na obszarach ograniczonych i domknigtych istnieja co najwyzej dwa kierunki
nieciaglosci w kazdym punkcie dla przypadku sprezystego i co najwyzej trzy — dla przypadku
“predkosciowego”. Ponadto zbidér punktéow, w ktorych istnieja faktycznie dwa (odpowiednio
trzy) kierunki nieciggtosci, jest najwyzej przeliczalny.

B paGore BBefieHE! pasHble Kiacchl GYHKIMI ¢ pa3phiBaMd nepBoro poga. Teopus pacrpo-
CTpaHeHHs BOJH Alamapa, B KOTOPO#i BBICTYNAIOT H30/MPOBAHHEIE KPHBBIE pasphIBa, 00061~
Ha Ha CHCTeMbl (DYHKIMIT C paspbIBaMH IEPBOTO POfa, KOTOpble B OT/IHYME OT OBBIYHOrO J0-
NYCKAIOT B KaXKJOH TOYKE CYIIECTBOBAHME CUETHOIO MHOM(ECTBA HANpAaBJIeHWil paspblBa.
BriBeieHbI KHHEMATHUECKHE M JUHAMHYECKHE YCIOBHA AMA CKAYKOB paspbisa. Il marepua-
JIOB CKOPOCTHOTO THIIA HAIOTCA HEOOXOAMMEIE YCNOBHA IJIA BEIDKEHHA ONpENE/IAIOIIEro
YpaBHeHMA B BHje HempepblBHO audepenumpyemoro dyHxumoHana or Aedopmarmit (Oy-
ayuero ¢yHKIMelH ¢ pa3pbiBaMH IepBoro pofa). B sakmouenue [s Kiiacca JBIDKEHMI C pas-
pbIBaMH BTOpPOro popa (oGoOlueHHBIE BOMHBI YCKOPEHHA) [OKA3aHO, YTO B OrPaHHUYEHHBIX
H 3aMKHYTBIX 0GJIACTAX CYLIECTBYIOT IO KpaiiHeil Mepe [Ba HanpaBJIeHHA PaspbiBa B Kaucaoi
TOYKE JUIS YNPYToro cjIyyad W Mo KpaiHedl Mepe TpH — JUIA ,,cKopocTHoro’” ciyuas. Kpome
3TOr0 MHOMKECTBO TOYEK, B KOTOpBIX CYILECTBYIOT (haKTHUEeCKH ABa (COOTBETCTBEHHO TpPH)
HanpaBJICHHWA paspbiBa, ABJAETCA MO KpaiHeH Mepe CUETHBIM.

1. Introduction

WE CONSIDER here only the motions of a material body # which can be described with
a single spatial coordinate x for the actual coordinate and X (X € [a, b]) for the coordinate
in the reference configuration. The notation used throughout this paper follows mainly
the notation involved in [1, 2].
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The motion of a body # in a function x:D — R (D = [a, b] X [to, 1,]) giving the
location x = x(X, t) at time ¢ of the material point which had position X in the reference
configuration. The stress T = T(X, t) will be here a real number defined as the force
per unit area in the reference configuration. When the derivatives

F(X,t) = oxx(X,t), y=F-1, x=axX,t)=VX,1),

(1) %= @x(X, 1) = 4V(X,1) =V

exist, we call them, respectively, the deformation gradient, the strain, the velocity and the
acceleration of X at time ¢.

A motion must obey the law of balance of momentum

X, X
(1.2) 3 [ x(X,000dX = [ b(X,0)e0dX+T(X,, 1)~ T(Xy,1)
Xy X

for every pair X, X, € [a, b]. Here body forces b(X, t) are assumed sufficiently smooth
with respect to (X, #), and g, is the mass density in the reference configuration.

Let the strains y: D — R take their values as an interval I ¢ R; then we say that the
body, # is elastic if there exists a smooth injection function g: I — R such that

(1.3) T =g().

We consider now a domain 2 of y T plane. Let ¢, y: 2 — R; then a quasilinear first-
order constitutive equation of the rate type (see, for example, [1] Sec. 36, and [3] Chap. I11)
is postulated under the form

(1.4) T = o, T)y+yy, T),

if T=T(X,t)and y = y(X, t) are differentiable with respect to .

The first part of Sec. 2 of this paper presents some results from [4, 5] concerning reg-
ulated functions defined on the real line. The second part of Sec. 2 introduces the regulated
functions defined on plane domains with real values. In Sec. 3, the classical results of
HADAMARD [6] (see also, for instance, [7]) are obtained for motions belonging to different
classes of regulated functions.

The word “wave” has not been used since the discontinuities of the motion have not,
in general, the character of an isolated wave, i.e., a perturbation which propagates through
the body and reaches at different times ¢ different material particles X. The motion x
is supposed to be a continuous function with respect to (X, t), however, its derivatives v
and F (or y) may have different values at a fixed point P, = (X,, #,) and for a fixed unit
vector e, at Py, depending on the way we reach P, along a right or left tangent curve
to e,; these discontinuities will be called first-order discontinuities. This is a generaliza-
tion for shock waves.

If v and F are continuous but have one-side derivatives with discontinuities of the
type described above, then we say the motion has second-order discontinuities; this re-
presents a generalization of acceleration waves.

In both cases the set of discontinuity directions e, for a fixed P,, is at most countable;
moreover, if (X, 1) varies over a bounded domain, the set of points at which there are
at least two discontinuity directions is countable.
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The kinematical and dynamical conditions of compatibility have similar forms to
those already known [6, 7], but they depend on both the considered point and direction.

In Sec. 4, conditions under which the constitutive equation (1.4) describes a single
material are discussed (see also, Sec. 5.2). Many of the proofs given there follow the proof
of classical theorems in the theory of differential equations as, for example, can be found
in the books [8, 9]; however, more detailed proofs of these results can be found in [10).

The solution obtained is an explicit function of two variables (see Sec. 4), the value
of ¥ at time ¢ and the history of y up to time ¢; i.e., it is a function of y(¢) and history
parameter 7(f); 7(f) being a functional of y:[f,, f] = R. The discontinuities of 7(¢) are
essentially determined by discontinuities of y(f). The history parameter z(¢) is, roughly
speaking, of a class better than (r).

In the last section are discussed the conditions imposed on a. motion with first- and
second-order discontinuities in order that it may represent a motion of an elastic or a rate
type material body %.

2. Regulated functions
2.1. Regulated functions on real line

In this section we reproduce briefly some results from NicoLescu [4] and DIEUDONNE [5],
We denote by R or R! the set of real numbers and 7 an interval on R with origin in g and
with the other extremity in b (a, b may be finite or infinite).

DEFINITION 2.1. A function f:I — R will be called a regulated function on I if for any
te€l, f has one-side limits

fu=0) = f~()) = lim fs)

st s€l
s<itta

and

ft+0) =f*(1) = lim f(s).
540, 5e]
s>1,0£b
We denote by R°(1) the set of regulated functions f:I — R.

DEFINITION 2.2, A function f:1 — R is called a step function on I if there is an increasing
finite sequence {t;}o<i-n of points of I (closure of I in ﬁj such that tqo = a, t, = b and fis
constant on each of the open intervals (t;, t;,,), i = 0,1, ...,n—1.

THEOREM 2.1. A necessary and sufficient. condition for f:[a, b] =+ R to be a regulated
function is that f be a limit of uniformly convergent sequence of step-functions.

As a consequence of this theorem one gets that the set of discontinuities of a regulated
function is at most countable.

DEFINITION 2.3. A regulated function f € R°(I) is said to possess one-side derivatives
on I if the following limits exist:

f:(@) = lim . fut) = lim ﬂs)-;f: )

f&)=f~®
51,5l s—1 s—t,5el s

s<t,l#a s>1,t5#b
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We write fe R\(D) if fe R(I), £, f; € R°(J) (if, for instance, a € I, we define f,(a) =
= f.(a+0), so that f, is defined on whole I, etc.). We write fe C°'(I) if fe C°(I) and
Jos fae RO

The following result belongs to 4. Denjoy (see, for instance, NicoLescu [4], Chap.
XVII): If f:[a, b] —» R has in any point of [a, 5], one-side derivatives, except on an at
most countable set, then in any point of [a, 5] but an at most countable set, f has a de-
rivative.

PROPOSITION 2.1. Let f, ¢:[a, b] = R be two functions in C [, b], so that |f(s)| < ¥(s)
(where s € (a, b) are the points where both derivatives exist and are equal). Then | f(b)—f(a)|
< ¢(b)—¢(a) (see DIEUDONNE [5], Chap. 8).

As a consequence of Proposition 2.1 it is easy to prove the following:

LEMMA 2.1. Let f:[a, b] = R be a function in C° [a, b] so that

|fil < MIf1,f(@) =0, M > 0.
Then f(t) = 0 for any t € [a, b].

2.2. Regulated functions in the plane

We denote by R?> = Rx R the Euclidean two-dimensional space and by D < R?
a plane domain. Leti = (1, 0) and j = (0, 1) be standard basis in R*. We consider another
orthonormal basis (e,, e;) in R? having the same orientation as (i, j). We introduce the
following notations

2.1 7, = (Po,e1,€3), 7 = (Po,ey),
i.e., 7, is the frame formed by vectors e,, e, with the same orientation as i, j and with

the origin in P,, and =, is the frame formed by vector e, with the origin in P,. Based
on e,, e, we introduce the vectors

(2.2) i = nhye,, f3=he +xhe,,

where » = + or — and h; > 0, h, > 0 (i.e., h; are positive real numbers).
Let P, be a point in R? and let us consider the following sets:

A () = {P,Pe R, P = Po+Mfi+2:05 41, 4, >0, X, +4,€ (0, 1)},

2 Af () = {P,PeR}, P=Py+iff,0<i<l}. x=+or -

A%(m,) are open right triangles with a vortex in P, and a leg of length 4, in the positive
direction of e, and the other leg of length £, in the positive direction of e,, for 4} (),
or in the negative direction of e,, for 45 (P,). 45 (=,) represents an open segment along
e, with starting point in P, and with the end point in P,+#4, e, and similarly for 45 (z,).

DEFINITION 2.4. A function f:D — R is said to have one-side limits in P, € D in the
direction e, if for any ¢ > O there are hy(€) > 0, h,(¢) > 0 and the numbers f3,(P,), fx,(Po)
such that

|A(PY=f,(Po)| < & for any P € 43,,(m;) D,
|/Q)—f(Po)l < & for any Q € Ajy(3) ND.
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DEFINITION 2.5. We say that a smooth curve P(s) = Py+se;+0(s), |0(s)|/s = O for
s — 0, is right (left) tangent to e, in P, if there is an s, > 0 such that P(s) lies on the right
(left) side of e, for s € (0, so).

The following proposition is obvious.

ProPOSITION 2.2. If f:D — R has one-side limits in Py € D in the direction e,, then
these limits are given by

lim f(P(s)) = f(Po),  lim (@) = Fi(Po).

where P(s) is a smooth right tangent curve to e, in Py and Q(s) is a smooth left tangent curve
toe, in P,.

DEFINITION 2.6. Let D be a plane bounded domain. We say that the boundary 0D of
D is of class C°' if for each point P, € 3D there exists a ball B, with center P, such that
8D B, can be represented in the form t = g(X) or X = h(t) with g or h in C°'.

DErFNITION 2.7. A function f:D — R is called an R>-regulated function if [ has one-side
limits in the direction e, in P, for any P, € D and any unit vector e, . The set of all regulated
functions on D will be denoted by R°(D).

For a fixed P, € D, e, depends on the angle 0 € [0, 27} between e, and i, e, = e,(f)
and therefore f;%(P,) are functions of 6. If P, € D and 0D is a smooth curve, then &
belongs only to an interval of length 7; since f'is not defined on the exterior of D, one of
its one-side limits at the end of this interval has no sense. If D € C°, then 6 may belong
to an interval of length greater than zero but smaller than 2.

PROPOSITION 2.3. For a fixed Py e D, f£(P,) are R'-regulated functions (regulated
functions on the real line) on 6 € [0, 27]. In fact, the following relations are valued as

]iﬂ:fx-ﬂa;)(Po) = f;';{a,)(loo)- a]i“;f:z‘o,)(Po) = f:ﬂa.](Po),

B1—+0, 1=+
0y <ty ;<0

ol,iﬂlf"tmz}(f’ 0) = fra0n(Po)s gl,i_r.':f m0(Po) = f;0(Po)-
>0, O3>0,
The proof follows at once from definitions.
COROLLARY 2.1. An R?-regulated function admits at any point an at most countable
set of discontinuous directions.
DEfFINITION 2.8. Let D = R? be a bounded domain with éD of class C**; {A k=1, m
is said to be a partition of D if: (1) Ay are connected domains whose boundaries consist of
straight line segments and parts of 0D, (2) 4;nAy = ¢ for any Lk =1,...,m, | ¥k,

and (3) \_J 4i = D.
k=1
DEFINITION 2.9. A function g:D — R is called a step function on D if there is a finite
partition {A}1 :x<m of D such that
g(P) = C, =const for Ped.

Now, we can prove the analog to Theorem 2.1 for compact plane domains.

THEOREM 2.2. If g.:D — R is a uniformly convergent sequence of step functions to
a function f, then f is an R*-regulated function; conversely, any R*-regulated function on
a compact domain is a uniform limit of step functions.
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Proof. The first part of the theorem can be proved in a similar way as for Theorem
2.1, so we omit it.

For the second part of the theorem we have to build a sequence of step functions
uniformly convergent to the given R2-regulated function f.

According to Proposition 2.3, for a fixed P, f3,(Po) are R'-regulated functions of
the angle 0 € [0, 2#). We choose ¢ = 1/n and let 8, be fixed; then there are h,(0,,n) > 0,
4,65, n) > 0 such that

P ~FikaoPo)| <~ for any P 4F(w:(60)),

Q) ~Fiza0(POl < - for any Q & 4 (2:(00)).
Consider
4, (“z(eo)) = A (nz(ﬂo)) vdy (32(90)) U{Py+se,(00)}, s€ (0, hy (0o, ’T)) .

Now, let o,(f,) be the angle between the vectors Py+h, (0, n)e,, Po+h(0,, n)e,+
+h, (00, n)e, and we take the open intervals 7,(6o) = (6o — a(6o), 0o+ 2(6o)); we have

U IL(6) = [0, 27] which implies the existence of 6,, ..., 6,,, withL:l I,(0,) o [0, 2x].

80e(0, 27] i=1

We write the numbers 6, — &,(6;), 6k, O + «,(6;) in increasing order and denote them by
0=u1 {az{...{amz=2n.

We have obtained around P, a set of triangles of angles o;, ; —o; in the vortex P,. For
any P, Q in one of these open triangles, we have

B) A <=

my _ :, —_—
We denote by 4,(Po) = int |_J 4u(7,(e)) and we have () 4,(Po) > D, which implies
i=1 PQEE
() 4.(Py) = D.
k=1
Now taking the intersections between the obtained domains 4,(P.) and between
4,(Py) and D, we get a set of a connected disjoint open sets denoted by A%, k = 1, ..., m(n)

min) _

and |_J 4% = D. The boundaries of 4%, k = 1, ..., m(n) consists of straight line segments
k=1

and parts of the boundary of D. Obviously,

f(P)~f(Q)] <= for any P, 0 & 4.
Consider now the sequence of step functions

Cct Pedk
&(P) =\ s(P) Pe otk

where C* = f(Q), and Qis an arbitrary fixed point in 4%. Then for any Pe D,| f(P)—g.(P)|<

k=1,..,mMn),

< % and therefore g,(P)—===f(P).
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COROLLARY 2.2. The set of discontinuity points of an R2-regulated function defined
on a compact domain, through which pass at least two discontinuity directions, is at most
countable.

According to Corollary 2.1, the set of discontinuity directions through any point
is also at most countable. Of course, the set of discontinuity points in which there is only
one discontinuity direction is of continuum power.

Let (ei, e3) and (e}, e3) be two orthonormal bases in R> with the same orientation
as standard basis (i, j) and « € (0, 7) be the angle between e, e;. Let two families of
smooth curves be

- Py(4,5) = Po+ el +5e1+0,(s), 2>0,5>0
@4 Ps(A, 5) = Pot Aot +se2 +05(s),

where 0, (s), 0,(s) are such that, for fixed A, the curve P (4, s) lies on the right of e} and
P,(2,s) on the left of e}; moreover,

]imm — hmw &= .
50 5 5=+0 §

Let D be a plane domain and f: D — R be an R?-regulated function. For any fixed 4,
we have

lim /(Py(4,5)) = /3(Po+ei),
lim f(P(4, 5)) = f3(Po+ Jel).

We prove now that
lim /73 (Po+ A1) = £33 (Po),
A=0

2.5) - " .
imgfng(Po'f')*el) = f7i(Po),

where 7} = (Po, e}, el) and a2 = (P,, €2, e2). We obtain here f=1(Py) if e} lies on the
right-hand side of e} and f71(Po) if e} lies on the left-hand side of ej.

First, we need to show that there is a smooth curve s = g(4), with g(0) = g'(0) = 0;
then we have

(2.6) Pi(A, g(B) = Po+Ael+g(Ret+0,(g(D),

which is a smooth tangent curve to e} at P, and lies on the right of e (if ¢ does).

LeMMA 2.2. Let A, and s, be two sequences of decreasing numbers converging to zero,
with the additional property: s,_|A, < 1[n. Then there is a smooth function g:[0, 2,] = R
with the following properties: g(4,) = s,, g(0) = 0 and g’(0) = 0.

Proof. Consider the sequence of smooth and decreasing functions g,, g.:[0, 4,] = R,
having the following properties: (1) g,(4) = si, i =1, ..., n, (2) g(A) =0, A€ [0, Zp41),
(3) gus1(A) = g.(2), 1€ 0, A,;2]1J [As, A;]. The sequence g, is uniformly convergent
to a function g, as it is easy to verify, and g(0) = 0.
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Now, for 1€ [0, 4,], we have g'(1) = limg,(2) and g’'(0) = 0, because limg,(%) = 0

n-+00 =0

for any n. Let us show that limg’(i*) = 0 for any j.‘ -0, 4, > 0. We have
k-

800/ < () oy < 8-}l = Sy <
where l,k < k< 2"1;-1‘ Hence g(4) is differentiable for any 4 € [0, 4,] and g'(0) = 0.
LeMMA 2.3. In the conditions stated above, (2.5) holds.
Proof. Consider an arbitrarily decreasing sequence 4,—0, 4,>0, 4, > 4,,,.
It is obvious that if the limits in (2.5) exist for any decreasing sequence, they exist also
forany 4, —» 0, 4, > 0.
For any n we find a d, > 0 such that

1
|f:§ (Po+ Anel)—f(Pa( A, 9))| < = for0 < s < 4,,

where P,(4,,s) is given by (2.4). We choose s, < &, such that s, < 4,,/(n+1) and
S, < S.—1. Hence, for any decreasing sequence 4,, we can find a decreasing sequence s,
which satisfies the conditions of Lemma 2.2. Then we have

| /o2 (Po+ Anel) =3 (Po)| < | f23 (Po+ AneD) —f(P2(Pn, 50)l
_ 1 -
HI(P2 (s 52) =S4 (POl < - +1f(Pa(hns g(An) =13 (Po)
As lim | f(Py(2n, 8(2s)) —/73(Po)l = 0, if € lies on the right of e}, we get one of the second

relations of (2.5). The other relations of (2.5) can be proved in a similar way.
DEFINITION 2.10. Consider fe R°(D), P, € D and (e, e;) an orthonormal basis as
above; we say that f has one-side derivatives on the direction e, at P, if for any smooth right
and left tangent curve to e,:P(s) = Py+se, +0(s), 0(s)/s = 0 for s — 0, the limits
e - —f+
llm f(P(s))s f‘xg(P()} - 5;,f(Po), lim f(P(s))S f;z(PD) = 5:,ﬂ,Po)

50 (1]
>0 5>0

exist for right and left curves, respectively, and are independent on curves P(s).
We denote by R!(D) the set of all fe R°(D), possessing one-side derivatives for any
P, € D and any orthonormal basis (e,, e;) which are regulated functions with respect
to any P, € D for any fixed (e, e,), and by C°'(D) = C°(D)nR*(D).
DEFINITION 2.11. A function f e R°(D) will be called totally regulated on D if for any
P, € D and any unit vector e, with the origin in P, the following limit
ii_rgf(PoHel) = /< (Po)

i=0

exists. The set of these functions will be denoted by R}(D). Also, we say fe R3(D) if
e RE(D)AR'(D) and

A=0
iA>0

exists for any P, € D and any e,, and for e, fixed, 8;,/(P,) is a regulated function with
respect to Py € D,
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Now we can prove one of the most important results of this section.

Generalized Hadamard LEMMA 2.4. (See HADAMARD [6] Sec. 72, and TRUESDELL and
TouPIN [7], Sec. 174). If f € R°(D) and o5, f(P,) exists in Po, then 8} fi;(Po) exists and
we have
2.6) 0z, f(Po) = 9%,/ (Po),
where mt, = (Po, ey, e;), my = (Py, €,) from (2.1).

Proof. Consider a family of curves

P(2,5) = Py+ Aey +se;, +0(s)
lying on the right side of e,, with 0(s)/s — 0 for s = 0; we have

||f,,:(Po+zel)—L:(Pa }f(P(l, 5)) —frz(Po+ 2e,)
y A

= 5;,f(Po)| <

P 2’ N x_
5 \ LGNS ;. pipy.
Let 4, >0, 4, = 0 for n » o0, A4,,; < 4,. Then, according to Lemmas 2.2, 2.3, we
can find a decreasing sequence s, =+ 0, 5, > 0, 5,_;/4, < 1/n and a g(1) = s such that
g(4,) = s, and the curve Q(4) = P(4, g(4)) is a right tangent curve to 7 at P, and

|£(QU) ~fexPot hne)| _ 1
| T n
Since
i £(0G) 5B _ iz ey,

the lemma follows.
COROLLARY 2.3. If f has one-side derivatives in the e, direction at P,, then
2.7 0%, [, (Po)] = [0x,/(Po)],
where
(/2. (Po)] = £ (Po) =1+, (Po),
[0x,/(Po)] = 05,/(Po)— 0x,/(Po).
COROLLARY 2.4. Let fe C°*(D). Then

041P) = 0 ) = lim TELIDTD) _ gepip),

t
A0

i.e., a continuous function possessing one-side derivatives, it is differentiable on each direc-
tion ny = (P, e,).

In what follows, it is convenient to introduce, for a given direction e, in a point P,
the directional derivative in the direction —e,, i.e.,

2.8) 05 f(Po) = lim S(P—Ae Ii_f;_: (Po) )
A=0
i>0
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where f;-(P,) = limf(P— Ze,). Therefore, in the meaning used in Corollary 2.4, if we
A=0

A>0
take e, = i or j, we can introduce the following notation:

@9 0% f(P) = 34,f(P), Of(P) = OH f(P):

COROLLARY 2.5. According to Denjoy’s theorem (see Sec. 2.1 above) in condition of
corollary 2.4, f(X, t) is differentiable with respect to (X, t), for a fixed t, (X), everywhere
but on an at most countable set, i.e., 0§f(X,t) = d5f(X,t) and &} f(X,t) = o7 fiX,t}
everywhere on a parallel segment to the X axis or to the t axis in D, except on an at most

countable set.
PROPOSITION 2.4. Let f'e C* (D). Then

(0%1)%,(P) = (9xS)x,(P),

(2.10) (0 f)%,(P) = (37 Nk, (P),

® =+ or —

Jor any Pe D and any n, = (P, ey, e,).

Proof. We shall prove only the first relation (2.10) for x = — ; the other relations
follow quite similarly.

Consider Pe D and n, = (P, e,,e;). Let 4, —+ 0 be a decreasing sequence and
P, = Py+ A,e;. We draw through P, the straight line ¢ = £, and denote by {a},}.ev the
points on the segment (X, t,) € D, where dxf(X, t,) # 03X, t,).

These points form an at most countable set. Then for any 4, we can find a decreasing

sequence s, >0, 5,_; < %)., such that 0§ f(X+s,,t,) = 0xf(X+s5,, t,). According to

Lemma 2.2, there is a smooth function g(4) = s with g(4,) = s, and with the property
that P() = P+ Ae, +g(A)i is a right tangent curve to e, at P. The relation follows im-
mediately.

Another useful result is given by

PROPOSITION 2.5. Suppose f € R®(D) and f is continuous on D with respect to t for any
fixed X, then

J#(Po) = f5;(Po) = £ (Po)
Jor any m, = (Py, e, e;), ®; = (Py, e,) with e; # + j (e; = cosfi+sinb)).

Proof. Consider Po+ A,e;, Ay > Ayy1, 4 = 0,1 = c0; using the continuity of f
with respect to t, we can write

If(P°+A.e1+U)—ﬂPo+2,.el)I<% for Ji—Asinb| < 5

choosing ¢ = 53 as in Lemmas 2.2, 2.3, we obtain t* = g* (4), so that Py+ Ae;+g~ ()
is a smooth curve tangent to e, at P, on the right and P,+ Ae, +g* (4)/ is tangent on the
left. Then for # — oo and involving the above inequality, we get the announced result.
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3. Compatibility conditions

In this section we generalize the classical jump conditions for the case when the func-
tions involved are the elements in different classes of regulated functions. Usually, the
conditions of compatibility or jump conditions are divided into two groups: (a) the condi-
tions which must be satisfied by functions describing the geometry of motion only are
so-called kinematical jump conditions, (b) the conditions which involve (dynamical)
equilibrium of forces are called dynamical jump conditions.

3.1. Kinematical jump conditions

In this subsection the main results are contained in two theorems (Theorem 3.1 and
Lemma 3.1). First, the theorem generalizes the kinematical compatibility conditions for
shock waves, the second result combined with the first generalize the compatibility condi-
tions for acceleration waves.

THEOREM 3.1. Let f:D — R be a function of class C°* (D); then for any P, € D and any
7, = (Po, €y, €3), €; = cosbi+sinbj, we have

(3.1) [(0% /e, (Po)lcost + [(6 f)x, (Po)Isinb = O,
where the signs from the operators 03, 0f are indifferent, by-the Proposition 2.4, and
[(0% /)x,(Po)] has the meaning from (2.7).

Proof. Let A:[0,5,] = R, A(s) > O for s€ (0, 5), A(s)/s — O for s - 0 and let
P = Py+se;, P' = P+e;, Q = P+ Aicosbi, Q' = P+ Asinfj, where Q(s), Q'(s) move
along tangent curves to e; at P,, on the right and left of e, respectively. We have

SPY—f(P) _ AAPY-(Q) . Q) -f(P)

I T

= 0} f(Q)sin0 + 9z f(Q)cosf+ 2, (Asin6) + 2,(AcosO)
fPY-AQ") | fA@H-AP)
it

= 0} f(QY)sin6 + 5 f(Q")cosO + 2, (Asinb) + 2,(Acosb),
where £2,(isinf) — 0, etc. for A — 0.
Since A(s) —» 0 and Q(s), Q'(s) = P, along e; for s — 0, then according to Proposi-
tion 2.4, the theorem follows.
Generalized Schwarz LEMMA 3.1. Let f be a function with the properties: (1) f € C'(D),
and (2) dx f, 8, f € C**(D); then the following equalities

(3.2) (0# (@)%, (Po) = (9% (8:.1))5,(Po), %= + or —
hold for any Py e D and any n, = (P, e, e,). The signs from 0%, 0f are indifferent.
First, we prove
LEMMA 3.2. Let P, be a point in D through which there exists one discontinuity direc-
tion for the four functions 0% (0x f), 0%(8, f); denote this direction by e, then the following
equalities:

FN @ = @) for 0ef0.3),
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04(0.1) (Po) = 0 (0x ) (Po)  for ﬂe(i’z‘-,x)

hold. The signs correspond to each other. If @ = 0 or 0 = n[2, both equalities hold.
Proof. We prove only the first equality. Since there is only one discontinuity direc-
tion through P,, we have

lim 0x(0,f) (Py) = 0x(2:./) (Po)

PPy
and
lim 07 (0x f) (P1) = & (0x f) (Po).

P,—+Py
Introduce the function
(P(f) =f(X’ I)_f(XO,!)e te ['rﬂytl]
and apply the mean value theorem; then
P(t)—@(to) = (ts—10){8, f(X, )= 8, f(Xo, D)} 1 € [to, 1,];
for X sufficiently close to X, we can write
(1) —@(to) = (1, — 1o)X~ Xo) {85 (8, ) (Xo, 1)+ 07 (X — X,)}
= (t;—10) (X—Xo) {0x (8.f) (X0, 10) +0(t — to) + 07 (X — X) } .
Then
X, t,)=f(Xo, 1) _ SX, t))—f(X,, 1))
X=X, X-X,
= (t;—t0){0x(0.f) (X0, fo)+0(f—"to)+0?(X—Xo)} .

For X - X, we get

Oxf(Xo, t1)—0x f(Xo, to) = (t;—1o) {0%(3.f) (Xo, 10)+0(f - to)}
and therefore
3¢ (0xf) (Xo, to) = 0x(0,.f)(Xo, to)-

Proof of Lemma 3.1. Since 0 (dxf) and 03(0,f) are R2-regulated functions
on D, the set of points in which there are at least two discontinuity directions is at most
countable (see Corollary 2.2). Let this set be denoted by {P,},ev. Consider now P, € D,
a unit vector e, in P, and P(s) a right tangent curve to e; in Py. Then there is a sequence
of points P, — P,, P, = P(s,) with the property that through any P, passes only one
discontinuity direction. According to Lemma 3.2 and Proposition 2.4, we obtain

(0% (0.))3,(Po) = (8% (0x.1))3,(Po).
Here the order of + signs is not important (is indifferent).

3.2, Dynamical jump conditions

First, we shall derive dynamical jump conditions corresponding to the shock waves.
DEFINITION 3.1. 4 motion x = x(X,t), (X,t)eD = [a,b]x [to, 1] of a material
body & will be called a motion with first-order discontinuities if

x e CRX(D) = C°(D)n RE(D).
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Involving (2.9), (1.1) can be written as

(3.3) V: = 0tx(X,t), F*=0§x(X,1), y*=Ft-1,
We put down the following hypotheses:

(i) x is a motion with first-order discontinuities.

(ii) The stress T = T(X, t) is a totally regulated function on D.

(iii) The following equality

Ia,, by, 1) = f V*(X,t)dX = f V)5, (X, dX = f IO, 1dX
holds for any fixed ¢, any fixed basis e, , e, and any interval (a,, b,) = (a, b) such that T
is continuous with respect to x at a, and b,.
From Corollary 2.5 and Proposition 2. 4 we also have
by
(iii) Iay, by,1) _f V-(X,t)dX = f V)L (X, 0)dX = J V)H)E&X, 0)dX.

If the directions # and j are not dlrecuons of discontinuity for V#, then the condition
(iii) is automatically satisfied.

Note that the hypotheses (i)-(iii) are only sufficient conditions for results we derive
here.

In conditions (i) and (i), the momentum of material body # which, in the reference
configuration occupied the segment [a,, b,] and had mass density g, = const, is at time ¢,
by definition

by
(.4) H(ay, b, 1) = [ V*(X,1) 00dX.

Let Po e D and e, be a unit vector. Consider two tangent curves to e, at P, on each

side of e, , of equations

‘bl = Xu-l-j.COIans‘f‘ol(i),
Cix
t=to+4;
a, = X,+ Acotan6—0,(4),
C,:
= f°+l,

where 0,(4)/2 - 0 for 2 - 0,0,(4) > 0 for A€ (0, 4,] and 6 is the angle between e,
and X-axis. The straight line through P, along e, has the equation
X(t) = Xy+ (t—1,) cotan 6.

Now, consider those ¢ for which X(¢) € (a,, b,). Then, for At > 0, At — 0, taking
into account the conditions (i)-(iii), the following formula can be derived

x(t)
(.5)  GrHG@, b, )= [ eodiuV*(X,ndX+ f 00 1 V* (X, 1)dX
ay x(t)
+ 0o cotan 8{(V*), (X(), t) (V4)1(X(), 1)} = T3,(by, ) - T1i(ay, 1),
where 7, = (P, e,,e5), =t = (P,i,/), mi=(P,j, —i), m = (P,i), =i = (P, —i).

Equation (3.5) represents, in this case, the }aw of balance of momentum for zero body
for ces.

10 Arch. Mech. Stos. nr 4/74
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We now state the following
THEOREM 3.2. In hypotheses (i)-(iii), the following dynamical jump relation

(3.6) 00 { ()7, (X0, t6)— (V)a,(Xo, to) Jeotanl = T (Xo, to) — T3, (Xo, to)
or
(3.6) [T]x,(Po) + 0o cotan 6[V],,(Py) = O

holds for any Py € D and any m;(P,, e, e;), e, = cosbi+sinbj. From now on the sign +
will be omitted when it is indifferent, i.e., we shall write (f*),(Po) = (f)%,(Po).

Proof. For A — 0 we have t — f,, X(t) - X,, and the theorem follows according
to Lemma 2.3.

Now we shall derive dynamical jump condition corresponding to the acceleration
waves.

DEFINITION 3.2._We say that the n}_otion x of the body # has second-order discon-
tinuities if x e C*(D) and V, F e C**(D).

We now assume that B

(i) x has second-order discontinuities on D,

(ii) The stress T = T(X, t) is from C°!(D).

The law of balance of momentum yields

by
3.7 [ 0ot V(X, 1)dX = T(by, 1)~ T(ay, ).
a

THEOREM 3.3. If the hypotheses (i)-(ii) hold, then the following dynamical relations
(3.8) 20(0 V)5, (Po) = (Ox T),(Po), »= —or +
hold, too, for any Py e D and any n; = (P,, ey, e;). The relations (3.8) can be written
also as
(3.9) 00[0: V], (Po) = [0x Ty, (Po)-

Proof. Let Cbearight tangent curve to e, at Py, of equation b, = X, +cotanf(t—t,)+
+0(t—1,). Denote X(t) = X,+cotanf(t—1,). Then substituting in (3.7), a, = X(¢) and
dividing by b,(t)—a,(?), we get

by(1)
1

bO-a,0),)
Take a sequence f, —+ #,, and using hypotheses (i)-(ii), we obtain
00(9:¥)s, (Po) = (0x T)xy(Po).

o {3 VX, )= 0 V(by, 0} dX+007 V(by , 1) = 05 T(by, 1)+t —15).

4. On the solution of a differential equation for the rate-type materials

We shall consider a simple and bounded domain D in y, T plane, i.e., a domain for
which (y;,T), (y2, T)e D imply (dy;+(1—A)y,, T)eD and (y,Ty),(y,T.)eD
imply (y, AT;+(1—4)T,) e D for any A€ [0,1]. We shall be concerned with func-
tions y, T:[t,, t,] » R, y, T e R'[ty, t,].
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Usually we shall take 7, = 0; moreover, we shall assume that y (respective T)is defined
on [0, #,], so that for any ¢, y(t) = p(t—0) = = () or p(t) = y(t+0) = p*(¢). We shall
denote the set of functions from R![0, #,] with this property by RL[0, #,].

Suppose ¢, w:ij — R and consider the equation

T=¢0. Di+ve. T YO =70 (1 p

S TO) = T,

for functions y, T of class C'. Hence, for the Eq. (4.1), the natural class to look for the
solutions in some meaning is C'. Due to Denjoy’s theorem, we may modify Eq. (4.1)
as to look for solutions in R! or in C°!. Thus we write

Ty = o0*, TH9a+v(*, T*), T*©) =T, »*(0) = yo,
Ts = 9'3(?_, T_)J’; +W(y_s T—), (?05 TO) € D

The meaning of Ty, T, etc., is given by Definition 2.3. In this way, when y, T e C!,
then (4.2) reduces to (4.1).

We shall try to find a kind of map which will associate to each y e RL[0, #,] (or
y € Clo,1y or ¥ € Clo,y,)) a function 7, defined on some subinterval [0, ) < [0, ;]
(w being the largest possible ¢ € (0, t,]), of the same class as ¥ on this subinterval. It will
be given some necessary conditions of existence, uniqueness, continuity and differentiability
with respect to uniform convergence topology of this map when y moves in RL[0, #,]
(or Cio, 113> Cio 1,)-

DEerFINITION 4.1. A pair of functions (y(t), T(t) )e D for t € [0, w,) is called a solution
of class R, for the initial value problem (4.2) if for any y € R, [0, t,] with y*(0) = y, there
is an w, € (0, t,] and an R}, function T:[0, w,) » R, such that the pair (y(t), T(t)) verifies
(4.2) for all t € [0, w,) and for a given y € RL[0, t,], w, is the largest t with this property.

In order to find a solution of problem (4.1), we shall apply the so-called Lagrange’s
method of variation of parameters. Take the problem

(4.3) T=9 TP y0) =7, TO) =T, (7o, To)eD.

If @ is “good enough” and y € C*[0, 1,], y(¢) # 0 on [0, 1,], then we can find a “good
enough” solution in large (see HARTMAN [8], Chaps. 1I, I1I, V; CODDINGTON & LEVINSTON
[9], Chaps. I, II) for any (y,, Ty) € D:

4.2)

(.44) T=f(?, Yo To)a ?E(Cﬂ-,ﬂh)s m: = wt(y(h TD)
of the following problem

dT
(45) Ey_ = tp(}"} T‘)! T(’Yn) = TO') (705 TD) € D'

The solution (4.4) has the following properties

of _ of
_a;_go(}”f)’ 5?0'>09

(46) (?:f(?, Yos To]) E.D, VE (w_,w_'_)’
(wy, lim f(y, yo, To)) € D.



690 1. SuLiciu

Now it is evident that we can omit the restriction () # 0; moreover, we let y be a func-
tion in R4 [0, #,] and f from (4.4) will give a solution for the problem

D Ty = 90+ TH% T*O) =T,, »*(0) = yo,
’ Ts - q)(?" T_))-’-” (?’o, TO) € D!

if we choose w € (0, #,], so that (y(?), f(y(t), Yo, To)) € D for t € [0, w). In fact, we have
to choose w so that (1) € (w_, w,) for 1 € [0, w).

We can prove the following

THEOREM 4.1. Let ¢: D — R, ¢ and 09[0T be continuous on D. Suppose D is a bounded
simple domain of yo T plane. Let y € R{[0,1,], To e R and y*(0) = y, be such that
(o, To) € D. We also assume that there exists a continuous function k depending on
v,k:[0, t,] = R, k(t) > 0, such that for any solution T € Ry of the problem (4.7) for
y € RL[0, 1,] fixed, we have

“4.3) (T] = k],
where [T)(t) = T(t+0)—T(t—0). Then the problem (4.7) has a unique solution.

Proof. We have to prove the uniqueness only. We suppose there exist o, > 0,
@, > 0and T,, T, € R} such that (y(r), Ty(t)) e D for t € [0, w,) and (y(t), T»(r)) € D
for t € [0, w,) are solutions of problem (4.7). Then, for f € [0, w), ® = min(o,, @,)

o e > 0 = ;
Tia=Tas = @0 TH-90*, T = 5o DT =T

Write T = T, —T,. From (4.8) it follows that T is continuous. Hence, as y, is bounded
on [0, f] and d¢/dT is bounded on D, we have

4.9) IT)| < M|T|, T(©) =0.

According to Lemma 2.1, T(t) = 0 for t € [0, w), so T,(t) = T,(¢) for t€[0,w). If
® = o, then for t€ [w,,w,), T,(t) can be considered as an extension of T,(t), that
contradicts the maximality of w, and therefore w, = w,.

If we look for a solution in C°' or in C', then the condition (4.8) is automatically
satisfied, y and T being continuous functions.

Now, we shall use Lagrange’s method to obtain a solution for the problem (4.2).
We choose an arbitrary, but fixed y € Ry [0, #,] with y*(0) = y,. Instead of T,, we put
an unknown function of ¢, 7(r) and determine this function, so that (4.2) is verified. We
have

. ) . b5/ . .

Td e %()ﬂ" Yo T)?d+ F{”(}’ﬂ Yo» T)fg = 93(?+,f(?+- Yo, T)?¢+lp(y+,ﬂy+, Yo, 'I)).
Taking into account (4.6), we can write
(4.10) 14 = ply*, 1), 0)=T,,

or

@.11) 7(t) = To+ uf u(y(s), ©(s)ds,
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where
(4.12) ply, 1) = 'P()’,ﬂ_)’,__n_,z)ll
E(’” Yo, T)

Due to the equivalence between (4.10) (if we add the equation for z,) and (4.11), we can
solve the problem (4.2) using functions 7 € C°' for y e R} or 7€ C! for y e C%, ie,
T is “roughly speaking”, of a class “better” than y (and T). 7 will be called the history
parameter.

The existence and uniqueness of the problem (4.10) (or (4.11)) for a fixed y € R [0, #,],
are assumed in very weak hypotheses concerning the function u. We shall deal with con-
tinuity and differentiability of the solution when ¥ moves in R3[0, 7,].

In fact, the following theorem can be proved.

THEOREM 4.2, Suppose the following conditions hold:

(1) Dg is a simple bounded domatn,
(ii) u: Do — R is a continuously differentiable function and Ou/0T, duloy are bounded

on Dy,
(iii) Yo, To» Vn» T are real numbers with properties, (yo, To), (Ju, Tp) € Dy, lim§, = o,
L] !
lim T, = T,,

(iv) ¥u, ¥ € RSIO, 1,1, 7(0) = 7, *(0) = o and y, = y, when n — oo in the norm
lIyll = max [y(0)].
1ef0, 14]

Then: (1) for each problem

(1) =To+ [ u(¥(s), =(s))ds,
0

o) = Tot [ p(n(s), (e)ds, n=1,2,..,
0

there exist the maximal intervals [0,w) < [0, t,], [0, w,) = [0, ;] (o, w, € (0, t,]) and
(t), 1a(t) uniquely determined functions from C®, so that (y(t), ©(t)) € D, for t € [0, w),
(7a(2), ta(t)) € Dy for te[0,w,) and (y(@=0), 1(w-0)) € Dy, (Yn(0s—0), Ta(ws—0))
€D, and if o < t; and w, < t,, then (y(@+0), 1(w—0)) ¢ Do, (¥a(®wn+0), 7a(w,—0))
€ D,. When n - oo, we have :

o < lim infw,, () =lim 1,(t), te€]0,w).

(II) The map y(-) = =(-) is continuous (FRECHET) differentiable mapping with respect
to uniform convergence.

Proof. The proof of the first part of this theorem is similar to classical proofs con-
cerning the continuous dependence of the solution upon initial data (see, for example,
HARTMAN [8], Chaps. II, III, V, and CoDDINGTON & LEVINSON [9], Chaps. I, II). We shall
give a proof for the last part of this theorem.
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Let y,/eR$[0,,] (one-side continuous function from Ry, such that (y,, To),
Yo+ Ao, To) € Dy (o = ¥*(0), I, = 1*(0)) for a sufficiently small A. Then there are
w,w; € (0, ] (w < liminfw,) and ©(f), 7;(¢) such that

A0

(“412) nuO)-() = f [uly + 4, ©)— pu(y, T +u(y, ©)—p(y, ))ds
0

b
- [z%;- (40,0, 21+ 2, 62(n—r))(n—r)]dw

0

for t € [0, @), with & = min(w, wy), 0; = 0,(s), 0, =0,(s) and 0 < 0;, 6, < 1.
We introduce the notations

o

op
A ot (y 5 T)

nn = 2070 2.9

, C = max , P = max
(v.r)ely (y,v)eDy

and we show that |V;(f)] < M < oo for any |4| < a, and ¢ € [0, @). Indeed, from (4.12)
we get

t
Va()l < Clilla+P [ V(s)lds
0
and applying Gronwall’s lemma

@13 Vi)l < Cllll|dexp(@P), te [0, ).

Relation (4.12) can be written also as

@14  Vi()- f [_gg v r)l(s)+—g%(y, T)V,\(S)]df= f [%g Wil )
[1] 0

1

- %‘;}(y. r)]I(S)dH of[g—f (y, T+40,V)— g—‘: (r,r)]Va(S)dr-

Consider now the initial value problem

viy- [ [—aa;i s D1+ 2, ) V] ds = 0.
[

This problem possesses a unique continuous solution ¥ e C°'[0, ) for y, /e R%[0, t,]
and 7 € C°'[0, w), given by

4.15) V() =exp (J.% (7, t)ds) (f exp (— f%i-i (y, ‘t)dfl)—g% (y, 'r)lds).
0 0 0

As 7, is continuous with respect to y+ A/ and du/dy, du/d are continuous, according
to (4.13) we get from (4.14), for A - 0

limV,(t) = V), te[0,w).
20
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Based on the first part of this theorem, if we introduce the functional # which associates
with each function y € R%[0, 7,] and each number T, ((yo, To) € D) a real valued func-
tion 7 defined on some interval [0, w,)

(4.16) ()= Fly(:),t,T), tel0,w,),

and taking into account the hypothesis (ii) of the theorem and formula (4.15), we can
say Z is a continuously differentiable mapping and write

@4.17)  OF[y(-), 1, Toll(-)] = V(1)

g : P
= exp (Ja_f(y,x)ds) (Jexp(-—ofg‘; (7, r)ds'l)%(y, t)fds).

Now, we can return to problem (4.2) and prove the following.
THEOREM 4.3. For the problem (4.2), we suppose the following conditions to be satisfied:
(i) D is a plane bounded simple domain,
(ii) @, : D — R are continuous on D and d¢|dy, d|0T, 8*p|0T?, dy|dy, dy|oT exist
and are continuous and bounded on D, and

(iii) the condition (4.8) holds.
Then for any y € RL[0, 1,1, ¥* (0) = ¥,.

(I) There are w € (0, ¢,) and T:[0, w) = R such that y(t), T(t) , where T(t) is given
by

T(I) = f(y(t): Yos t(‘))! te {0’ w),
(1) = Fy(*), 1, To]

is the unique solution (in the sense of Definition 4.1) of problem (4.2), f and F being de-
termined by (4.4) and (4.16), respectively.

(1) The map y — T defined by (4.18) is a continuously differentiable mapping (for any
t € [0, w)) in the sense of uniform convergence topology.

Proof. Let y e R{[0,#,] and T, € R, so that »*(0) = y, and (y,, To) € D. Now,
we can follow the procedure which we have followed when we derived the results under
the formulas (4.3)-(4.7) and (4.10)-(4.12).

We intend to apply the Theorem 4.2 to obtain a solution for the problem (4.2). For
that we need to make precise the domain of definition for u(y, v) defined by (4.12) for
a fixed 4. f(¥, Yo, 7) is defined for any 7 with (y,, 7) € Dand w_(y,, 7) < ¥ < @4 (Yo, T),
and establishes a one-to-one correspondence between 7 and 7, for a fixed y, and y.

Denote by 7, and z_ the two values of z for which the segment (v, 1) crosses dD;

(4.18)

o
(o, 7) € Dfor 7 € (7, 7). Consider the domains D, = D with D, ¢ D,,,and U D, =D
1

(for example, D, = {(y, Dy, T)eD, |y| <n, |T| < n, dist ((y, T), D) > % see, for

instance, HARTMAN [8], Chap. II) and denote by 7,-, 7,. the intersections of (y,, 7) with D,.
Then dist ((yo, Tas), D) = 1/n and (yo, 7) € D for v € [7,-, 7,4]. The properties of
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o, (yo,-7) imply that for any & > 0 and any 7 € [7,-, 7,.] there exist the neighbourhoods
V'(7), V" (%) such that

w+(?m i')+£ < Ct“.(?o, 17), TE V’(:“):

w_(¥0, 7) < 0_(y0, T)+&, TEV'(T).

Take ¢ = 1/n and V,(3) = Vi(7) () V.'(7); then we can write

1 _ 1
o_[yo, 1’)—"5' <0_(¥0,T) < Yo < 04 (Y0, T) < 0y (yo, T)— b3

for 7 € ¥,(7). Now we may find a finite covering of [z,., Tas), 58y Viu(%1), «ovs Fa(Tm)-
Choose w’(yo) = max w_(yo, ;) and ) (¥o) = min w,(yo, 7). Thenw’ (¥,) < yo<
i=1,. i

op M =‘1| e

< ', (y,). Denote
A(}'O’ TD) = {(}’$ ’I),‘Y € (w:(?o), w;(?o)) , TE (Tll— ’ TN+)} 4

then (y, T) e D, where T = f(y, y,, 7) for any (y, 7) € A(yo, Ty).
According to Theorem 4.2 for u:4(yo, To) » R and y € R4[0, 1,] = RY[0, #,] with
y*(0) = p,, there is an w, € (0, #;] such that

(4.19) () = Fly(*), 1, Tol, tel0,w)
is a solution of the problem (4.11) and
(4'20} T(t) = f(?(‘)) ?0’ r(‘))! e {01 (ul)

is a solution of the problem (4.2).

If w, = t,, the existence is proved. Assume w, < t,. We have (y(0;—0), 7(w, —0)€
e A(yo, To) and (y(0;+0), T(w,—0)) ¢ A(yo, To). There are two alternatives:
either y(w,—0), T(w;—0) € D and y(w,+0) does not belong to the segment
(0~ (0, t(@;—0)), 04 (¥o, 7(w; —0))) and hence w, = w (this concludes the proof), or
(y(@;+0), T(w,+0)) e D (we have used here the fact that v is continuous). If
(¥(w,+0), T(w, +0)) € D,, we choose this point instead of (y,, T,) and building another
A(y(w,+0), T(w, +0)), we can apply the same procedure as before and we get an o} > o, .
If we are still in D,, then applying successively this procedure, we obtain either i = f,
or (y(wi+0), T(wi+0)) ¢ D,, but it is a point from D. Then there is an n, > n such
that (y(w} +0), T(w} +0)) € D,,, etc.

Finally, we find an o <1, so that (y(?),T(1))eD t€[0,w) and if o <1,
(y(@—-0), T(w—0)) € D and y(w+0) does not belong to the segment (w_(yo, T(w—0)),
w+(y0’ T(&J—O))).

To prove the uniqueness of the solution, we suppose there are two solutions of the
problem (4.2), (y(t), Ty (1)) € D for t€[0,w") and (y(t), T2(1)) € D for te [0, »?),
with 7*(0) = yo, T#(0) = T4(0) = Tp.

Then, as D is a simple domain relative to axes, ¢ and y are smooth bounded func-
tions on D and j, is bounded on [0, #,], we can write

'j'u— j‘u - [%:i(?q', THp.+ % (", T”)] (TH-13)
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and, therefore
|Twu—Taa | < MITH# =T#|, THO)-T#©0) =0, te[0,w)

with @ = min(w’, ®?). Now, taking into account the assumption (iii) and Lemma 2.1,
we obtain T, (f) = T,(t) and o' = w?.

The continuity and differentiability of the map y — f(y, ¥, 7) are consequences of
the properties of ¢ and y; these imply df/dy, df/0t are continuous. On the other hand,
the continuity and differentiability of =(¢f) = #F[y(-),?, Ty] are given by Theorem 4.2.
The differential of f can be written as

@2 YO, 70, TOUD) =5 (7O, 7or TOVO+50 (O, o, T0)

x €Xp (tf ug-’zé (7(5), 7(s)) ds) [ofcxp ( - j—g—iﬁ (¥(sy), T(51)) dsl) x

;
g gi;i (@), ¥) b |

where u(y, 7) is given by (4.12). The theorem is completely proved.

As a consequence of Theorems 4.3 and 4.2, we have, for y € R}[0, t,], 7(t) of class
C® for t € [0, w) and therefore the discontinuities of T at time f are given only by dis-
continuities of y at the same time r. The discontinuities of the derivative of T are also
depending on 7. If we suppose ¥ € Cp',,;, then 7 is of class C', hence the discontinuity
of the derivative of T at ¢ € [0, w) depends only on the discontinuity of the derivative
of y at #, the discontinuities of p’s derivative on the interval [0, t) having no influence.

If we consider that T(¢) is determined as a function of two variables (not necessary
as a solution of Eq. (4.2)), y(¢), and some history parameter z(¢) which is a functional
of y(*) up to time 7, then from the above remarks it appears as natural to suppose some
smoothness properties on the functional relation and not on the past history of y.

5. Discontinuous motions in elastic and rate-type materials

5.1. Elastic materials

5.1.1. Motions with second-order discontinuities. Suppose that the motion x is a motion
with second-order discontinuities (see Definition 3.2) and the stress T is given by formula
(1.3), T = g(y). Then Theorem 3.3 can be applied (the hypothesis (ii) being automatic-
ally satisfied) and yields

) el V1 (Po) = £ Doy, (2.

Using Theorem 3.1 for fequal to ¥ and y, respectively, and denoting
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we get

(5.3) [0t V]x,(Po) + Cl0x Ve, (Po) = 0,

(54 [0t V1, (Po) + C[0x ¥]x,(Po) = 0.
Lemma 3.1 implies the additional relation

(5.5) [0x V1x,(Po) = [0;¥]x,(Po).
The relations (5.1)-(5.5) yield

56 (002~ %D o032 =0,

i
If [Ox y]x,(Po) # 0, we have
_ 4

and (5.7) will admit real solutions only if dg/dy = 0.
Relation (5.7) shows that through any P, € D there are at most two discontinuity
directions. Now, according to Corollaries 2.1-2.3, the following theorem is true.
THEOREM 5.1. For an elastic. material in a motion with second-order discontinuities,
the number of discontinuity directions through any point is at most two, and the set of points
at which there are effectively two discontinuity directions, is at most countable.

5.1.2. Motions with first-order discontinuities. Suppose now that the motion x of an
elastic material is a motion with first-order discontinuities in the sense of Definition 3.1.
The hypothesis that the material is elastic involves condition (ii) from Theorem 3.2.
Applying Theorems 3.1, 3.2, we get

[V1e,(Po) + Clyle,(Po) = O,
g(?:,(Po)) —g(?:;(Po)) +00 C(V,(Po)— V:;(Po)) =0.

From (5.8) we have

(59 00 C(¥2,(Po) = 75,(Po)) = g(v4,(Po)) —&(y=,(Po))-
Therefore, if [y],,(Po) # 0, we obtain

2(74,(Po)) —2(72,(P))
5.10 2 = s
) 0l = P75, P

Obviously, (5.10) will have real solutions for C only if g is an increasing function.

Relation (5.9) or (5.10) may be interpreted as follows: in a point P, € D, two given
numbers * and y~ can be one-side limits of the strain at P, along the unit vector ey,
if the slope of e, is given by (5.10); on the other hand, if e, is known as a discontinuity
unit vector and one of one-side limits is also known, then the value of the second one is
given by (5.10).

For motions with first-order discontinuities, there are no other limitations relative
to the number of discontinuity points or directions than general ones for R*-regulated
functions.

(5.8)
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5.2. Rate-type materials

Let D be a simple bounded domain in the plane y o T and suppose (0,0) e D. Let
@, y:D — R, having the properties from Theorem 4.3. A quasi-linear rate-type material
for smooth strain and stress histories is described by the Eq. (1.4).

DEFINITION 5.1. One says that a quasi-linear rate-type material admits a natural rest
configuration, if y(t) =0 for te(t,,t;) and T(t,) = 0 implies T(t) = 0 for te (t,1;)
foranyt, <t,,t;,t €R.

ProPOSITION 5.1. If w(y, T) is Lipschitzean in T on D (in the conditions of Theorem 4.3,
y verifies this requirement) and (0, 0) = 0, then the rate-type material described by the
Eq. (1.4) admits a natural rest configuration.

The fact that a material possesses a natural rest configuration can be expressed in
other words as follows: if the material is not deformed and has no initial stresses, then
stresses cannot appear in it.

Suppose that the rate-type material described by (1.4) possesses a natural rest con-
figuration; i.e., (0, 0) = 0 and for ¢ < 0 this material was in the natural rest configura-
tion. Then the set of initial conditions (yq, Tp) from the problem (4.7) verifies the follow-
ing relation

(511) To oo f(}’m 0’ 0) - fo(?o), ?ﬂ € (w— (Os O)s O)+(0, 0)

(see Theorems 4.1, 4.3). It means that the initial states lie on a curve, which is solution
of the problem dT/dy = @(y, T) T(0) = 0.

As we shall see further, the rate-type material has to have the property that ¢(y, T) > 0;
therefore the function f,(y) is an increasing function. The curve (y, fo(y)) € D,
y € (w_,w,) can be called instantaneous response curve from the rest configuration.

From this discussion it follows that for a rate-type material with a natural rest con-
figuration, the initial stress cannot be given arbitrarily, but is determined by initial
strain. In other words, a rate-type constitutive equation of the form (1.4), in the condi-
tion of Theorem 4.3, and %(0, 0) = O describes a single material rather than a family
of materials.

5.2.1. Motions with second-order discontinuities. Suppose that the motion x of a rate-
type material is a motion with second-order discontinuities on the domain 4 from the
X o ¢ plane. Then the strain y € C*'(4) and by Theorem 4.3 the stress T belongs to the
same class C° (4). Of course the initial conditions y,(X) and T,(X) have to be of class
CP! with respect to X. By Theorem 4.2, the history parameter 7 has smooth derivatives
with respect to ¢ and is at least of class C%(4) with respect to X, ¢ jointly.

Applying Theorem 3.1 to 7, we have

(5.12) [0x Tlx,(Po)cosO+ [, T]x,(Po)sinf = 0,
and for 0 # +x/2, we obtain

(5.13) (Ox 7)7,(Po) = (Ox 0)x,(Po) = (Ox 07, (Po), 72 = (Po, €4, €2),

7y = (Po, €,);
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it means that except the ¢ direction, the function 7 has no other discontinuity directions.
Taking into account formulas (4.18) (Theorem 4.3), we can write (3.8) (Theorem 3.3)
as

i)
14 u(@VEPD) = 1L (7, you DY P P+ 50, Yo DWdera (X, 0

)
+L 0, DN0x )2, (P,

Here » = + or —, depending on the tangent curve to the unit vector e; = cosfi+sinfj
from n, = (P,, e,, €,), plus for the left tangent curve and minus for the right tangent

curve. x, = + for f e -—;, +%) and %, = — otherwise. We have supposed 0 # ;I:%
and we have applied (5.13). Using (4.16) and (4.17), we obtain
(5.15)  (0xDR,(Po) = (8F (X, +), 1, Tology(X, -)])3,(Po)

+ g?—o[y(X, -), t, To] (0x Ty (X, 0).

Here, the expression of 6%[...|dfy(X, .)] is given by (4.17), where we put
I(-) = 0§ y(X, -), %, has the same meaning as in (5.14).
Now, from (5.14), we obtain

)
(5.16) Wl V1P = 27, 70, 1 [P,
and following the same way as for elastic materials, we get
g
(5.17) 0C? = (7270, 9) = 7. S, Yor ).

In obtaining the last equality the formula (4.6) has been involved.

Therefore, there are three possible discontinuous directions for a motion with second-
order discontinuities in a rate-type material; the two directions given by (5.17), which
are depending on the whole history of strain and the direction X = const. Similar conclu-
sions as those from Theorem 5.1 hold here as well. Also, from (5.14) we can see that as
a result of integration of constitutive equation, the equation of motion contains some
additional terms but the characteristics of the system remain the same.

5.2.2. Motions with first-order discontinuities. In the condition of Theorem 4.3, taking
into account Proposition 2.5, the results for motions with first-order discontinuities in
rate-type materials are similar to the corresponding results for elastic materials. The main
difference consists in the fact that slope of discontinuity directions are depending in this
case on the history parameter = as well.

We shall discuss now the meaning of the condition (iii)-(4.8) involved in the Theorem
4.3, in order to obtain uniqueness in the case when motions with first-order discontinuities
are considered.

Suppose that the motion x:4 — R satisfies the supplementary assumption:

(iii") The set of points P € A with property

O x(P) # 0, x(P) or 0%x(P) # dxx(P)
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is formed from isolated arcs of smooth curves, whose slope is not parallel to the axes;
that is, if C is an arc of smooth curve for which 3} x(Py) # &7 x(P,), P, € C, then there
is an open disc d(P,) with the center in Py, divided in two parts by C such that §;" x(P) =
= 0y x(P) for P e d(Py)—C. (See also [11]).

As an immediate consequence of hypothesis (iii") and Theorem 3.1 is the following: if
d,x is discontinuous when crossing C, then the same is true for dy x. If we denote by §(P,)
the tangent straight line to C in P,, then

oF x(Py) = (6,x);% (Pu) = (a,x): s (Po),
rx(Py) = (arx):%n(PO) == (a,x):z_(Pa),

where

ﬂ; - (Pﬂ’j! _f)’ nil - (PCH _jll‘)! J"E;' - (Pl]! 9?; e;)9 ﬂ; = (Pl)s e;s e;)
and ef is a unit vector at P, lying on the same side of d(P,) as j; similarly for ej.

For a fixed X and an interval [1,, t,] such that (X,t)ed for fe[t,,1,], there is
a finite number of discontinuity curves which cut the segment (X,1), € [to, 1], say
C;, 1 < i< N.Denote by P; = (X, 1;) the intersection points of C; with the segment and
by ¢; the slope of C;. Then there is a function k:[ty, t,] = R, with k(t;) = oc}. From
Theorems 3.1, 3.2 and the Eq. (5.2), we get

PIX, 1) = 0o [TUX, 1),

or using the function k, for any 1 € [t,, 1,]

MIX, 1) = kO[TIX, 1).

This means that the condition (iii) holds when condition (iii") holds.
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