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Natural oscillations of subsonic gas low near a .cascade and a biplane 

V. B. KURZIN (NOVOSffiiRSK) 

SoME problems of natural oscillations of the potential subsonic gas flow are considered. In case 
of the cascade of plates, the corresponding mathematical problem is solved by the method of 
sticking together and in case of the biplane, the same problem is solved approximately by means 
of Wiener-Hopf method. The natural frequencies dependencies on the cascade or the biplane 
parameters and parametors of ftow have been ~btained. Examples and comparisons with the 
experiment are given. 

THE POSSIBILITY of gas to make natural oscillations in open regions was known in acoustics 
long ago. The theory of open resonators has recently been intensively developed in view 
of their extensive application in radio engineering [1, 2]. 

Certain attention has recently been paid to the problem of natural oscillations of a gas 
flow near open regions due to the phenomenon of acoustic resonance in turbo-machines. 
In this case, problems of acoustics are substantially complicated by the necessity of taking 
into consideration the windage losses. 

Natural oscillations of gas flow near a flat cascade of plates and a biplane are considered 
in this paper. 

1. A corresponding mathematical problem is formulated as follows. Determine in the 
region of gas flow (Fig. 1) the function cp(x, y)-the amplitude of the unsteady constituent 
function of the velocity potential 

4i(x, y, t) = 4>0 (x, y)+rp(x, y)e'd. 

The function rp is to satisfy the equation: 

o2rp o2q> oq> 
(1) (1-M2)-+--2kM·-+k2m = o OX2 Oy2 a OX T ' 

where M is Mach number of mainstream, k ==: wbfa, w--frequency (radfsec) of gas oscilla
tions, b-the chord of a plate, a-the sound velocity, and satisfy. boundary conditions 
as well: 

1 !:f_o . oy- at (x, y) e L,., 

2. (p] = 0, [09']=0 ay at (x, y) e Z,., 

3. (p] ~ 0 at (x, y) e L,, x ..,.IJ+nhsin{J, 

4. rp = 0 at E -+ - oo, 

where p is the unsteady constituent of pressure. 
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FIG. 1. 

Moreover, for the case of cascade, let us introduce a supplementary periodicity con
dition: 

(3) 

where p == 'lnmfNh, h-is the cascade gap, N-the natural number. 
2. In the case of a cascade, the problem formulated is solved as follows. The whole 

region of the solution is divided into region D! in front of the cascade, region D: behind 
the cascade and regions D,. between plates. In consequence of periodicity condition (3), 
the solution in regions D! and D! can be represented by Fourier series of the form: 

CIO 

* \, .r cp 1 == ,L.; a,.J"' 
n=O 

CIO 

P2 = ~ b,f,. + ccp~, 
n-o 

where a,., b,. are arbitrary constants, and the term ccp~ contains in itself a wake information~ 
In the region D0 the ·solution can be represented by the Green-Stokes formula: 

f [ ocpo oG . M J Po = G ifP - av Po- 2ik Gcp0 cos oc ds, 
8 

(4) 

where s is the contour of the region D0 , G-Levy-function of the Eq. (1)," is the conormal 
to the contour s, oc-the angle between the external normal vector and the flow velocity 
vector. 

Let us take as G the Green function. of the Neumann problem for the strip region 
0 < y < hcosP-i.e., oGfw = 0 with y == 0, h. 
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Then, taking into account that on the left and the right boundaries of the region D0 

the function cp0 must continuously turn into the function cpt and cp!, respectively, we 
can obtain from 'formula (4) the relations: 

(5) 

h h+bsin/1 

cpt(~, rJ) = f F[G(O, 17; 0, 17o), cpf(O, 17o)]drJo + f F[G(O, 17; 

cp1(bcos{J, YJ) 
2 

0 b~/1 

bcos{J, 1]0), cp~(bcos{J, 1]o]d1]o, 
h 

J F[G(bcos{J, 17; 0, 1'/o)cpf(O, 1]o)]d1Jo 
0 

h+bsinjl 

+ J F[G(bcos{J, 17; bcos{J, 1]0), cpf(bcos{J, 1]0)]d1]0 , 

bsin/1 

F[G, cp] = G ~: - ~~ cp-2ikMGcpcosa. 

From the relations (5), an infinite system can be obtained of homogeneous algebraic 
equations for determination of constants an and bn, the system being closed for the constant 
c by third boundary condition. Eigerivalues are determined from the nontriviality condi
tion of the solution of this system. 
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FIG. 2. FIG. 3. 

Note that natural frequencies of gas oscillations are complex ones due to the windage 
losses. Some of their typical dependencies on the cascade and the flow parameters are 
shown in Fig. 2. Given in Fig. 3 is a comparison of calculated dependencies of natural 
frequencies with the PARKER [3] experiment, the results of which are denoted by dots 

on the calculated curve h = 0.645. 
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If an external ~ of o.sWlations exists in a ftow, t~n, at freque~ies of oscilla
tions "'ill81 to natutai ones, the corresponding disturbam:es will resonate with natural 
frequencies oscillations of gas. As an exampl~, Fig. 4a shows the ~pen~w;e of )Jydro
dynamic reactions upon plates on the frequency of forced oscillations of plates. During 
acoustic resonap.ce when the frequency of o~cillations plates coincides with the natural 
frequency of gas oscillations, this dependence is close in character to analogous dependence 
for a simple oscillator. This analogy also Occurs in the shear dependence y phase between 
a hydrodynamic reaction and the plate displacement (Fig. 4b ). 

:JmCy f3:r00 ~ 
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FIG. 4. 

3. In the case of biplane, let us represent the general solution of the problem in the 
region confined between the plates, by Fourier series: 

-I kMx eo 
l-M1 ~ Am(x-b) -AmX mn; 

q; = e L.J [cme +bme ]cos-h-y' (6) 
m-1 

where 

ik 
A.o = 1- Ml · 

If we assume the additional condition A.1 b ~ 1, then the expression (6) with x = 0 
can approximately be represented as: 

CO 

t, ) _,. , "\, mn 
q;\0, y = c0 e 0 + L.J d,.cos T y, 

m=O 

and with x = b 

(7) 
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The first terms of these expressions may be considered as the amplitudes of waves 
coming from opposite ends of the biplane, and the other terms under summation sign 
may be considered as amplitudes of diffraction back waves from open ends. 

With such interpretation of the expression (7), the following relations hold: 

(8) 

where R0 and Rb are reflection coefficients for waves coming to the left and to the right 
ends of the biplane, respectively. In approximation (7), these coefficients can be determined 
as for a semi-infinite biplane by the Wiener-Hopf method. 

The relation (8) comprises a homogeneous system of algebraic equations with respect 
to constants c0 and d0 • The equality of its determinant to zero gives a condition for de
termination of natural frequencies of gas flow oscillations near the biplane. It is of the 
form: 

where 
- h h=_, 

b 
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