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Certain solutions of the flow of a one-component
three-phase mixture

A. SZANIAWSKI (WARSZAWA)

Two theoretical models of a one-component, three-phase mixture with solid and liquid phases
dispersed in a volumetrically dominant gaseous phase are considered. The first model is in
thermodynamic equilibrium, in the second one small perturbations of equilibrium state are
admitted. Analising the properties of flows of the considered mixture some attention was paid
to the vanishing velocity of propagation of acoustic perturbations with decreasing frequency,
to the possibility of appearing of thin condensed layers called here ‘‘accumulation waves”
and to the general properties of isobaric flows. It was underlined that the equilibrium model
of the mixture in certain problems of flow may present unsatisfactory and even paradoxical
results.

Rozpatrywane sa dwa modele mieszaniny jednoskladnikowej z fazami stalg i ciekla, rozproszo-
nymi w dominujgcej objgtoéciowo fazie gazowej. Pierwszy model znajduje si¢ w izobaryczno-
izotermicznej rownowadze termodynamicznej, w drugim uwzgledniono niewielkie zaburzenia
rownowagi. Analizujac wlasnosci przeplywowe rozpatrywanej mieszaniny, zwrécono uwage
na znikanie predkosci rozchodzenia sie zaburzeri akustycznych w miare malenia czgstosci za-
burzen, na mozliwo$¢ powstawania cienkich warstw z fazami skondensowanymi, nazwanych
falami akumulacyjnymi oraz na ogbélne wlasnosci przeplywéw izobarycznych. Podkreslono, ze
w niektorych zagadnieniach przeplywowych réwnowagowy model mieszaniny moze dawac
niezadowalajacy opis rzeczywisto$ci a nawet czasami moze prowadzi¢ do paradoksalnych
wynikow.

PaccmoTpeHB! ABe MOAEH OJHOKOMIIOHEHTHOH cMecH C TBepHo# W »kuaxoi dasamu pacnpe-
AeJIeHHBIMM B npeobnamaromiei oGbemMom rasosoit daze. [Tepsas mogens Haxonurcsa B u3obap-
HO-H30TEPMHUECKOM TEPMOJHMHAMHYECKOM PaBHOBECHH, BO BTOPOH MOJeNH yuTeHbl HeOOJNb-
IIMe BO3MYILEHHS paBHOBeCHS. AHAMM3HPYA CBOHCTBA TEeUEHHA pAacCMaTpHBaEMOil cmecH
obpallleHoO BHHMaHHe Ha HCYE3HOBEHHE CKOPOCTH PAclpoCTPaHeHHA aKYCTHYECKHMX BOSMYLLIEHHIH
10 Mepe YMeHbLIEHHA YacTOThl BO3MYIleHHIt, HA BOSMOMHOCTh BOSHHKHOBEHHA TOHKMX CJIOEB
C KOH/IEHCHPOBAaHHBIMH (ha3aMH, Ha3bIBAEMBIMH aKYMYJIATHBHBIMH BOJTHAMH, a TaKXKe Ha obine
cBoiicTBa u3o6apuyeckux TeueHui. IToguepKHYTO, YTO B HEKOTOPEIX NpodIeMax TeUeHHs paB-
HOBECHAadA MOOEJIb CMECH MOMKET l'IpHHOlIHTb K HEYL[OTBO[JHTCJIBHOMY OIMHCAHHID jICﬁCl‘BHTeJIb-
HOCTH M Ja)Ke MHOTIA MOMKET BECTH K NapajIoKCajIbHLIM pe3yJIbTaTaM.

1. Introduction

A ONE-COMPONENT, three-phase mixture has such a peculiar property that it might exist
in equilibrium in isobaric and isothermic conditions only. Isobaric flows are in general
difficult to realize and the equilibrium conditions of the mixture considered should also
not in general be fulfilled. However, also of interest seems to be the study of the properties
of idealized equilibrium flows, and we shall here accord it the principal attention. Hence
we shall consider two models of a one-component three-phase mixture: the first, denoted
by E, in idealized isobaric and isothermic equilibrium; and the second, denominated
by P, more realistic, in perturbed state, but with only two fractions of identical small
liquid or solid spheres dispersed in a continuous, volumetrically dominant gaseous phase
The surface tension in both models will be disregarded.
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Table 1
- [N 0° 50—52
T[°K] .P[';n—; ob? ey
H,0 273 611 ~10-% 6.75
NH; 195 6070 ~10-* 4.48
CO, 217 518000 ~10-2 1.75

The phases diagram for the thermodynamic equilibrium, without taking into account
the surface tension, is qualitatively demonstrated in Fig. 1. The triple point in pressure,
temperature p, T, space corresponds to the interior of the triangle 012 in specific entropy,
specific volume space s, 1/p. The physical constants in triple point state for water,
ammonia and carbon dioxide are given in Table 1. The gaseous, liquid and solid phases
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are denoted by the upper indices 0, 1, 2, respectively, and the triple point equilibrium state
is denoted by‘a bar.

It should be emphasized that the density ratios of the gaseous to the condensed phases
are very small and, consequently, in the models considered of a mixture with volume-
trically dominant gaseous phase, we will disergard the specific volume and the total volume
of condensed phases

(1] 1,2 (1]
(.1 e L

91.:<]’ £ -?_-;<1.
By £°, £!, £* are represented the ratios of mass of each phase to the total mass of the
mixture. In this case, the triangle 012 considered in Fig. 1 may be reduced to its simpler
form in Fig. 2 and in the three-phase region of this triangle the proximal vicinity of the
s-axis should be excluded.

Special attention will be paid to the mixture which may be isentropically compressed
to a negligibly small volume of condensed phases only (the region below the s = s
line in Fig. 2).




CERTAIN SOLUTIONS OF THE FLOW OF A ONE-COMPONENT THREE-PHASE MIXTURE 443

For the equilibrium model E of the triple point mixture, we shall assume that all phases
move with the same velocity uw and we shall choose the mass ratios &', &2 as two
parameters of the thermodynamic state of the mixture. The values of the pressure and the
temperature should be constant p = p, T = T, while the density ¢ = p and the specific

1/p° 17-;
FiG. 2.

entropy § = § may change with changing of &', £2. The equations of flow of this model
may be presented in the form [1]:

du
(1 2) ﬁ +(ll & V)ll = f,
. o
ot

U VE = —@"(I—E'—E)V-u, n=1,2,

where f is the body force and a', a? are the ratios of the specific entropies, equivalent to
the ratios of the latent heats:

EO‘_EZ
(13) al = 1—02 = ﬁ-.

The density ¢ and the specific entropy s of the mixture are determined by the formulae:

e e

§ = £950 4 Elgl 4+ £252,

(1.4)

In the model P of a three-phase mixture in the state of perturbed equilibrium, the veloc-
ities u” and the temperatures 7" of all phases (n = 0, 1, 2) may be different. Also the

pressure p may be different from p. Choosing in a manner similar to the mode] E the mean
velocity

(1.5) u = £+l 4+ £202,

and the mass ratios &, £2 as the main parameters of flow, we shall additionally introduce
here the parameters of perturbation

(1.6) W' =u"-u, AT"=T"'-T, dp=p-p,
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and consider only the linear isotropic approximation in respect to these last parameters.
The existence of the viscous stress tensor and the heat flux in the gaseous phase will be
disregarded, all dissipative effects being attributed to the interaction phenomena between
condensed particles and the gaseous phase (exchange of mass, energy and momentum).
The previously derived equations [1] for the model P are:

0 | (@ V)u = f—EoRTVIL.,
ot p
665" +u_v§n — éov__;ﬂ_ +‘5an
0 1y1 2y2
(1.7) (2 )(AT @) (V-u )(A;N- Ap)+V(u+w°)+§i§_;ﬂ,’
?
a3 ATO ﬂ =$I(Q1X] Zl)_]_Ez(QzXz ZZ)
(‘3 ( T P ) £°
o AT a1,
E—?—-}'U-V ?-— = E’Tz 5
a"" TG DWW V)u = Y+ ORTY -/
X"AT" AT® gﬂ(i __Q'IA_ET_),
; T

n 0 n
(L.7) Zh = —M"- ar AT "(%-—Q"Af ),

Yn = dﬂ(wo_wn)’ WO — _(Elwz_i_&zwzyé-o,
n=1,2,

where R is the gas constant, C° = ¢p/R, C"* = ¢""*/R are non-dimensional specific
heats, Q"2 = (s°—5"?)/R non-dimensional latent heats of evaporation, and /"2, H'12,
L1 g2 /12 are Onsager constants for determining the fluxes of mass X*'2, energy
Z"?, and momentum Y"? from the gaseous phase to the condensed phases.

The equations of flow for both models of a one-component three-phase mixture having
been obtained, we shall now pay attention to some of their particular solutions and to the
compatibility conditions on such discontinuity surfaces as may possibly occur.

2. Acoustic perturbations

The disappearing of the speed sound is the main characteristic feature of the
equilibrium model E considered. Since the isentrope s = § = const is a horizontal
straight line in the (p, 1/0) space (Fig. 1), we immediately obtain:

= op(e,s) _
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The isentropic speed of sound does not exist in the model P, where the dispersion and
the attenuation of sound should be expected. Introducing into the equations of flow the
harmonic plane acoustic perturbation proportional to exp[—pux+iw(t—x/a)], we found
in [2,3] that for small w the phase velacity a and the damping coefficient u are proportional
to ]/ w:

22) a~yo, p~yo.

Hence, the isentropic speed of sound @ = 0 is also here equal to the limiting value of the
phase velocity a for @ — 0. But quite unusually this limiting value is zero and unusually
also the rate of changing of @ and u (the derivative in respect to w) is very large, being pro-
portional to 1/J/w.

On the basis of further considerations it may be expected that the relations (2.2),
derived for the model P only, should be more generally valid also for real one-component
three-phase mixtures. But quantitatively, the region of their validity (small @) is not very
large and it may probably have little practical importance. However, it is difficult now
to give a practical interpretation of the results obtained, because no research being made
in acoustics of the one-component three-phase mixtures, either from the empirical or
from the theoretical point of view, is known to the author.

3. Accumulation waves

On the basis of Rankine-Hugoniot conditions it is easy to verify that the shock waves
in the model E with no difference of pressure may not exist. At least on one side of the
discontinuity surface the mixture must contain two phases only. Les us additionally con-
sider now such triple point mixtures, with sufficiently small specific entropy, which may
be compressed by a shock wave into mixtures composed of solid and liquid phases only
(the region below s = §! line in Fig. 2). Since the volume of condensed phases is negligibly
small (1.1) and, in consequence, the density ratio on both sides of the discontinuity surface
should also be negligibly small p_/o, < 1, thus we may in our case reduce the R.-H.
conditions to the simpler approximative form:

ilo 9— 1 2 _
S o <1, &+& =1
(3.1) p+e-(u)? = po, ©- =p°/(1—EL—-£2),
2 - - ‘_
A SR~ ICEY SOV SR )

Lower indices denote the position towards the shock wave surface (Fig. 3). This system
of equations may be solved and its solution for given difference of pressure 4p = p,—p
may be presented in the form:

B gl o |/

RT P CVRT I/E"
1 4p

. =1-&_ = [5’ (Q2 IAP) ~il= E)(Q‘+———):II(Q’ oY,

(3.2)
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where the flux of mass
(3.3) G- = p-u-

has been introduced. The region of validity of these results must be restricted to such
mixtures as may totally be condensed by the shock wave.
We may determine this region by means of the inequality
14
e L
(.4) EL 4 ————ﬂp—si >1
1
+ R o
¢ p

| =
o

obtained from the condition &2_ > 0.

The main characteristic feature of the condensing shock wave considered is the
cumulation of the flowing triple point mixture in a thin two-phase layer, close behind the
surface of the shock wave. Since the volume of condensed phases should be negligibly

T
a two phase laye
&%=0
= lp=0 -
u- Po .-,_u““
I
eLe2p RRER 1,65
1
1
b
u-=Urd-_ E_U. uy=y-d,
FiG. 3.

small, this thin layer is here considered as a discontinuity surface on which the mass of the
mixture is totally condensed with the rate of cumulation G-. Joining two condensing shock
waves characterized by the same Ap and generated by two flows moving in opposite
directions (Fig. 3), we may obtain a new wave, called here an accumulation wave. This
wave might appear as a result of interaction of two intersecting streams of a triple point
phase mixture. On both sides of an accumulation wave the pressure is the same and on its
surface takes place the total condensation of the gaseous phase.

We shall now determine the parameters characterizing the plane accumulation wave
generated by two unidimensional homogeneous flows of a triple point mixture (Fig. 3b).

Choosing a system of reference moving with the velocity U of the accumulation wave,
we may reduce the problem to a superposition of the two condensating shock waves
considered above with upstream velocities #- = (u-—U)and u, = —(u,— U). Introducing
these velocities into the first relation (3.2), we find

(-9 4 _ us=UF _ (—u) _ wVE+u VE
PR CUReE) VE+VE
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and from the second relation (3.2) we find the total accumulation flow rate

o WUy

(3.6) G =G-+G, =§“I/Rf(%+171?)l/%=e Ve

The diagrams of u, U versus u_U for £9/£° = const, u,/u_ = const and V/U = const,
where

(3.7) V=yEEGKE = (V& + VE)VRT-V/plp,

are presented in Fig. 4. For given velocities u—, u,, and mass ratios &1, £2, &1, &2 on both
sides of an accumulation wave we may find, from the diagrams in Fig. 4 or from the
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formulae (3.5), (3.6), (3.2), the velocity and other quantities characterizing the accumulation
wave. We shall explain this by a simple example.

Let us consider two triple point mixtures of water (R = 462m?/s?- °K, T = 273°K,
p = 611N/m?, 0! = 19.8, 0?—Q! = 2.9, o"? ~ 10°kg/m?®) with mass ratios

Bl =045 £ =05 €& =0 £ =09,

moving in opposite directions with velocities |u-] = 10m/s and |u,] = 2m/s. Thus we
immediately obtain 3° = p/RT = 0.00485kg/m?, £ = 0.05, £3 = 0.1 and for £3/&° = 2,
u,fu- = —0.2, we find from the diagram in Fig. 4 (the crossed point) u—/U = 2, V/U = 2.4.
We may verify also that, as assumed in (1.1), the volume ratios are very small
£12 g9/E%12 < 10~*. From the above data we obtain the velocities:

U=5m/s, wu-=10mfs, wu, = —-2nmys, ¥V = 12mys;

8 Arch. Mech. Stos. nr 3/74
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the flux of mass and the difference of pressure (3.7):
G = 0.82kg/m?s, dp/p = 0.0039;
and the mass ratios (3.2):
B =1-£- =016, &, =1-£, =0.22.

The thickening rate of the accumulation layer G/o'?2 = 0.8-10~3m/s is much less than
the flow velocities.

In the framework of the equilibrium model E of the triple point mixture, we obtained
some information concerning the conditions of generating accumulation waves. To obtain
more details concerning the inner structure and the real thickness of these waves, it would
be necessary to take into account the very complex dissipative phenomena occurring in
the flow but such is not the object of this paper.

4, Isobaric flows of the model £

The triple point mixture may exist in equilibrium in isobaric conditions described by
its equations of flow (1.2).

When the body force is equal to zero f = 0, the solution of the first Eqs. (1.2) is very
simple: each point of the mixture moves in the isobaric region with a constant velocity
on its straight line trajectory. The field of flow in the triple point region would be
composed of all these straight line trajectories, with accumulation waves eventually ap-
pearing. But outside the triple point region, two phase regions may exist and the unknown
surfaces dividing these regions should be determined by solving a complex problem with
given boundary conditions.

The existence of a body force f # 0 has an important influence on the problem under
consideration because the isobaric conditions are here especially difficult to realize. For
instance if u = 0, the state of mechanical equilibrium of a triple point mixture may be
realized on a surface p = p = const only, and not in a three-dimensional space. Not only
here but also in other flow problems it is doubtful whether the idealized model £ may be
used for a satisfactory description of the reality.

Returning to the first model of an isobaric flow with body force equal to zero f = 0,
we will present h:re, as examples, two exact solutions of the Eqs. (1.2), describing steady,
cylindrical or spherical one-dimensional flows of the triple point mixture. Since, according
to the first equation (1.2) du/dt+(u- V)u = udu/dr = 0, u = const along straight stream
lines, we obtain:

k - .
@1 Vou= d(r*u) u _ { 1 for cylindrical case,

2 for spherical case,

where r is the cylindrical or spherical coordinate (radius) and u is the radial velocity.
Introducing (4.1) into the second Egs. (1.2), we obtain two equations:
d&"

1
gl =il (1),
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which are fulfilled by the solution:

(rmf—=(r)* m # n,
A+ myn=1,2.
The constants r' < r? chosen determine the boundaries of the triple point region. On
r = r' or r = r? the solid or liquid phases respectively vanish and the region of isobaric
expansion (u > 0) or compression (¥ < 0) is determined by r! < r < r?. We shall not
discuss here the possibilities of physical realization of such flows.

(4.3) & -

5. Final remarks

For description of flow of many continuous media, two sorts of approximation models
are, in general, applied. In the first approximation the dissipation of energy is disregarded
(for instance the non-viscous gas, etc.) and in the second approximation the dissipation
is taken into account to correct the non-dissipative solution.

For a one-component three-phase mixture, the flow of its non-dissipative model E
must be isobaric, with all resulting consequences — often paradoxical (such as vanishing
of the speed of sound, impossibility of realizing of straight line trajectories in the
neighbourhood of curved walls, etc). Since the non-vanishing gradient of pressure exerts
an important influence on flow phenomena, it may be expected that in non-isobaric flows
the non-dissipative model might not give a satisfactory description of reality, and the
dissipative effects, even in the first approximation, should be taken into account. However,
even the simplest dissipative models (such as the model P) are sufficiently complicated to
involve considerable difficulty in solving even comparably simple flow problems.

It seems that the peculiar properties of flows with slow velocities of one-component
three-phase mixtures would be an interesting theme for experimental research also, and
should yield information about their real properties.
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