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Similarity theory of turbulence in a plasma inhomogeneity
C. M. TCHEN (NEW YORK)

THe mNHOMOGENEOUs density and electric field in a plasma cause an instability, which develops
into turbulence. The turbulent spectrum is divided into three subranges. The mean' density
gradient of the plasma supplies an energy to the turbulent motions, and constitutes a source
in the production subrange; the non-linear behavior maintains a cascade transfer of energy
across the spectrum in the inertia subrange and, finally, the molecular diffusion forms a sink
of energy in the dissipation subrange of large wave numbers. A similarity theory is developed,
based upon a mixing-length for plasmas and dimensional considerations. It predicts the
spectral laws k=2, k~* and k% in the respective production, inertia and dissipation subranges
of the density spectrum, and a spectral law k=2 in all subranges of the electric field spectrum.
Those results of the similarity theory agree with a more complicated analytic theory of
repeated cascade.

Niejednorodnoéé gestoéci i pola elektrycznego w plazmie prowadzi do niestatecznoéci oraz
turbulencji. Widmo turbulencji podzielié mozna na trzy zakresy. Sredni gradient gestosci plazmy
dostarcza ruchom turbulentnym energii i stanowi Zrédlo w zakresie produkcji; nieliniowo$é
zjawiska utrzymuje kaskadowy charakter przekazywania energii w zakresie inercyjnym, a dyfuzja
molekularna tworzy pochlaniacz energii w zakresie dysypacyjnym duzych liczb falowych.
Rozwinigto teorie podobiefistwa oparta na *“‘dlugosci mieszania” dla plazmy oraz na rozwaza-
niach wymiarowych. Zgodnie z ta teoria nalezy oczekiwa¢ zaleznosci widmowych typu k=3,
k™' i k~* w odpowiednich zakresach: produkcyjnym, inercyjnym i dysypacyjnym widma
gestoéci, jak réwniez zaleznosci typu k~* we wszystkich zakresach widma pola elektrycznego.
Te wyniki teorii podobieristwa sa zgodne z wnioskami bardziej ztozonej teorii kaskady wielo-
krotnej.

HeomHOPOOHOCTH TUIOTHOCTH H 37IEKTPHUYECKOTO MOJIA B IUIa3Me MPHBOAAT K HeyCTONUMBOCTH
M K TypOysienTHoCcTH. CrieKTp TYpOYNEHTHOCTH MOYKHO Pasfe/NTh HA TpH AuanasoHa. Cpejqmuit
rpajyeHT IUIOTHOCTH IUIa3Mbl TIOABOAMT TYPOYNEHTHBIM NBIKEHHSAM SHEPIHIO M COCTABJIAET
HMCTOUHMK B paGouem auanasoHe, HEJIMHEHHOCTh ABJICHAA MOJUIEPYKUBAET KACKAMHBI XApaKT¢D
HepeAauy SHEPIMH B HHEPTHOM [MANas’oHe, a MoJleKynspHas Juddysua obpasyer mornota-
TeNb SHEPIMHM B AWCCHIIATMBHOM JHMamnasoHe GONBUIMX BONMHOBBIX uncen. CosmaHa TeopHs
nopoGrs, KOTOpas OMMpaeTcsA Ha [UIMHe CMEIleHMA’ [UIA IUIA3MBI, 8 TAIOKe Ha pasMepHbIX
paccykaenmsax. CornacHo 3ToH TeOpHM ClIeyeT OMKHMJIATEh CIEKTPaIbHBIX 3aBHCHMOCTel TRIa
k=3, k=' m k~* B cooTBeTCTBYIOIIMX paGoumMM, HHEPTHHIM M IHCCHUIATHEHBIM AHANAS0HAX
CTeKTPa IIOTHOCTH, KK TO)KE 3aBHCHMOCTH THIIZ k —3 BO BCEX /IHANa30HAX CUEKTPA 3JIEKTPH-
YECKOro HoJiA. DTH Pe3yNbTaThl TEOPHH COBIAMAIOT CO CJIEACTBHAMH GoJiee CIIOMHOK TEOPHH
MHOTOKPATHOTO KacKafa.

1. Introduction

The spectrum F(k) of a hydrodynamic turbulence in the wave number k space has
been first treated by a similarity method of KoLMOGOROFF [1]. Since the governing para-
meter in the inertia subrange is the rate of dissipation &, the Kolmogoroff law
(1.1) F = const ¢*/3k—513

directly follows from a simple dimensional consideration, without recourse to hydrodynam-
ical equations. The dissipation subrange adds the molecular viscosity » as a second para-
meter. The determination of the relevant combination of the two parameters ¢ and »
requires an analysis of the physical processes in the hydrodynamic equation. To this end,
and with the use of the Navier-Stokes equation of motion, HEISENBERG [2] considered the
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balance between a molecular dissipation function and an energy transfer function, which
are proportional to the molecular viscosity » and an eddy viscosity 7', respectively, with
a sum »+7’. The flow of energy from the inertia into the dissipation subranges is governed
by the ratio ¢/v+7’, or better by its derivative, which produces a compound parameter
g/v?. A subsequent dimensional analysis leads to the Heisenberg law

(1.2) F = const (g/v?)2k~7.

By an analogous argument on the introduction of a gradient w; = |VU]| of mean wind U,
the similarity method leads Tchen [3, 4] to the spectral law
(1.3) F = const (g/wy)k™?
in the production subrange, which precedes the inertia law (I.1) and the dissipation law
(1.2) in the wave number space.

In order to diminish the degree of ambiguity in the above dimensional theories,
analytical attempts have been suggested, among which we only mention the repeated-
cascade theory. It considers a velocity fluctuation as consisting of a series of ranks, repre-
senting many degrees of randomness. The picture is born from the concept of many
interacting scales in turbulence, as suggested by BoussiNesQ [5] and von WEISZACKER [6].
TcHEN [7] described the various ranks by coupled equations of motion of different ranks,
and calculated the eddy viscosity by means of a Langevin equation of turbulence. The
method achieves the closure of the double hierarchy [8] of correlations and of relaxation
memories. Not only is it able to reproduce the spectral laws (1.1)-(1.3), but also to deter-
mine their numerical coefficients.

In view of the more complicated processes governing a plasma turbulence, the similarity
method does not seem to show a clear headway at the first glance. Therefore Tchen resorted
to extending the repeated cascade theory [9]. After having clarified the mathematical and
physical foundations of the governing transport processes by the repeated-cascade theory,
we may ask whether we are now in a better position of developing a similarity theory which
provides a simpler physical tool of studying plasma turbulence. For this purpose we must
recognize that the crucial difficulty remains in finding a mixing-length which can
characterize a shear eddy viscosity of plasma turbulence. Therefore we shall elaborate
this concept and its foundation in Sec. 4, after a brief discussion of the dynamical equations
in Sec. 2 and of its transport processes in Sec. 3. Only then will that mixing-length [, which
serves as a self-consistent scale of eddy mixing, be able to transform the dynamical
equations of plasmas into equations of spectral balance. Since !’ is found to be a very
simple variable in Sec. 4, the similarity method can then proceed in a simple fashion to solve
the equations of the spectral balance in Sec .5.

2. Turbulent transport processes

A plasma inhomogeneity in a constant magnetic field B has a mean density N and a mean
electric field E, which necessarily are both non-uniform. A density fluctuation » and
a field fluctuation E are superposed to those mean background quantities. In representing
the fields, we introduce a mean velocity U and a velocity fluctuation w, which are
U = cEy/B, and u = cE/B, where ¢ is the speed of light. Since the fluctuations are most



SIMILARITY THEORY OF TURBULENCE IN A PLASMA INHOMOGENEITY 453

evident in the plane transversal to the magnetic field, we write the equations governing
those fluctuations in that transversal plane, as follows:

%+V ‘n(U+u)xez = —(uxeg): VN+DV3n,

(2.1
V-n(U+u) = —u-VN+4VZn,

The productions are represented by —u- VN and —(ux eg) - VN, the non-linear cascade
transfers are represented by V- (nu) and V - (ma x ep), and the collisions are represented
by DV2n and AV?n as proportional to th& molecular diffusivities D and A.

Upon multiplying the dynamical Egs. (2.1) by n, we can derive the equations of spectral
balance. Therefore, the transport processes, as represented in the system of Egs. (2.1),
essentially determine the various transport functions governing the spectral balance.

In the terminology of a single turbulent cascade, a density or a field spectrum can be
divided into a portion with wave numbers up to k, which serves as a macroscopic back-
ground, and a portion with wave numbers greater than k, where the more random
fluctuations operate. Those two portions are denoted by the superscripts (...)° and (...)',
respectively. Thus, we can write
(2.2) u=u+u, n=n+nr.

The ensemble averages ¢...»° <{...>" of macroscopic and random ranks serve to screen
between the macroscopic and random components. A quantity having no superscript
covers the whole spectrum.

In the above cascade representation, we can introduce a vorticity function of density,

(2.3), JO = ((Vn9)%)°,
with J = {(Vn)®), and a mean density vorticity
2.3); J = (VN)?,

JO and J play the role of backgrounds.

The fluctuations of the eddies produce an eddy viscosity, n = #°+17’, of macroscopic
and random components, n° and #’, which form the transport properties of the mean
background vorticity J and of the macroscopic background vorticity J°, respectively.

In terms of 7%°, %', J, J° and on the basis of the transport processes enumerated in
Egs. (2.1) and (2.3), we can write the production function, the transfer function and the
dissipation function, governing the transport across a density or a field spectrum, in the
sequence of cascade of increasing wave numbers:

—°J, 9'J°% (D or A)J°.
3. Spectral balance

It is important to remark that, in view of the orthogonality of the field components
governing Egs. (2.1), and of the presence of the shear in the mean field, the normal eddy
viscosity %’ will govern the equation of balance of the density spectrum, while the shear
eddy viscosity 73, will govern the equation of balance of the field spectrum, as follows:

n°J—y'J°=DJ° = yJ—DJ,
~n31 S+ JO=AJ° = —ny, J—AJ.

(3.1)



454 C. M. TcHeEN

They originated from the dynamical Egs. (2.1). The right-hand members are written by
the reason of conservation at large wave numbers, including £k = oo, and are valid for
a plasma turbulence in statistical equilibrium. The system of Egs. (3.1) can be simplified
into the following form:

n'(J+J°)+DJ® = DJ,
— o (JH+TO)+AJ° = AJ.

While the discussion of the eddy viscosity tensor is referred to Sec. 4, the system of Egs.
(3.2) are seen to determine the velocity spectrum F(k) and the density spectrum G(k) in
principle. It is to be remarked that the total areas under the spectra are

(3.2)

(3.3) %(..2) = [dkF(K), %(;;2) = [G®).
0 0

4. Plasma mixing-length as a basis of similarity theory

In analogy with the Prandtl formula for the eddy viscosity in a shear flow [10], we write
the velocity fluctuation u3, due to a mean shear dU,/dx, = w,, in the form

(4.1) Uy = —1

0%, *
Since the mean velocity has a gradient in the x, direction, the length scale, responsible

for the eddy mixing in the same direction, is /3, called a mixing-length. When the velocity
fluctuation (4. 1) is substituted into the shear eddy viscosity

(42) N2 = {uxly)’,
we find
4.3 N2 = =) w,,

where (Ii*)’ becomes a dispersion, or variance of the eddy displacements.
When we define the normal eddy viscosity 5’ by

44 7 = 1 = ([ dmaOu (M) = w1y,
(1]

we can write the dispersion as
4.5) KB = An'o"ty,
where @’ is a relaxation frequency, or w'~! is a duration of the correlation of velocities in
Eq. (4.4). By interpreting @’ as a duration of dispersion, the formula (4.5) is the standard
formula for the dispersion by eddy movements.

If we assume that the relaxation process, which brings a transport property in

equilibrium, is mainly due to the eddy motions rather than the molecular motions, we can
write

(4.6) o' = k7',
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instead of the molecular relaxation frequency k%». Under those circumstances, and upon
substituting for o’ from (4.6), we can reduce (4.4) and (4.5) to

@) 7 = Kk,
and
(4.8) I'? =32 = 2k2,

Hence, we have identified the plasma mixing-length [’ as proportional to k~*, which is
the scale dividing the macroscopic and the random ranks in the cascade decomposition
(2.2). Such a mixing-length, which is independent of the spectrum, greatly simplifies the
solutions of the system of Egs. (3.2).

5. Solutions by the similarity method

We divide the universal range of the spectra into the production, inertia and dissipation
subranges. Except for the inertial subranges which are governed by the transfer functions
alone, other subranges are governed by a pair of neighbor transport functions. Thus, upon
substituting (4.3) into (3.2), we can write the following equations governing the three
subranges:

(a) production subrange

(5.1, n'(J+J° = DJ,

(5.1), w,'H(J+J°) = AJ;
(b) inertia subrange

(5.2), yn'J° = DJ,

(5.2), w0 = AJ =g,
(c) dissipation subrange

(5.3), (7' +D)J° = DJ,

(5.3); (w "2+ 2)J° = AJ.

The system of Egs. (5.1)~(5.3) are the particular forms of the general system of Egs. (3.2),
and will be used here to find the solutions F(k) and G(k) by a similarity method.

A. Field spectrum F(k)

The field spectrum F(k), covering the three subranges (a), (b), and (c), can be obtained
by eliminating J+J° from the Egs. (5.1)«5.3), giving

(549 7' =QI,
with

(5.5) Q = Dw,fi.
A subsequent substitution of (4.7) into (5.4) yields
(5.6) u' =L,
and, hence,

(5.7 F = %3,
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B. Density spectrum G(k)

(a) Production subrange. The density spectrum in the production subrange is governed
by Eq. (5.1),, rewritten in the form
(5.8) I'Y(J+J° = AJlw,,
the differential of which can more adequately describe the flow of density transport from

Jto J°, without the interference of the right-hand side of (5.8). Therefore, the parameter J
determines the spectrum G to be

(5.9 G = J%k*.

Since G and J have the dimensions

(5.10) G~ nkt, J~nk?,
respectively, we can rewrite (5.9) as an identity, in the form
(5.11) n’k~ = (nPk*’k-t,
requiring « = 1, § = 3, and hence reducing (5.9) to

(5.12) G = constJk™3.

(b) Inertia subrange. The density spectrum is governed by equation (5.2),, having a pa-
rameter £,/w, of dimension

(5.13) g wg = n.
When we write
(5.14) G = (glw,) k8,

and note that G has the dimension n*k~!, we obtain, by identification, « = 1, f = 1,
reducing (5.14) to
(5.15) G = const(g,/w )kt .

(c) Dissipation subrange. The spectrum is determined by equation (5.3), rewritten in
the form

J
SR S — .

(5.16) Jo = Tr k7’ k, = w2

The transition from the inertia to the dissipation subranges can be best described by
the differential form of (5.16), which is

dJe° 2Jk?
R & = T+ EE)T
o
for k > k,. Hence, the governing parameter is JkZ, which permits to write
(5.18) G ~ (JK2Yk5.

Since G has a dimension given by (5.10), and Jk? has the dimension n*k*, we can rewrite
(5.18) dimensionally, in the form,

k=t = (Pk*yYE-?,
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identifying « = 1, f# = 5, and reducing (5.18) to
(5.19) G = constJk2 k3,

The transition between the inertia and dissipation subranges is characterized by the critical
wave number k,, defined by (5.16).

6. Conclusions

The similarity method, which had proved to be a simple and useful tool of analysing
hydrodynamic turbulence, had always shied away from plasma turbulence, in view of the
difficulty of composing the many parameters in plasmas. Even when the relevant sets of
parameters were well established the difficulty remained in structuring the shear eddy vis-
cosity, in addition to the normal eddy viscosity, and in determining the mixing-length of
plasmas which serves as a basis of the similarity method. The resolution of those two diffi-
culties is approached here from investigating the physical processes, as represented in the
dynamical equations of a plasma inhomogeneity, and from modeling the relaxation of an
eddy transport property. When the above basis of similarity is found, the equations of
spectral balance can easily be solved by a dimensional analysis. We find the laws k=3,
k=* and k~° in the production, inertia and dissipation subranges of the density
spectrum, and a power law k=3 in all subranges of the field spectrum. Those results agree
with a more complicated analytic theory, based upon the repeated-cascade. Although the
similarity method can find a physical basis and hence can proceed to analyse the plasma
turbulence in an elementary manner, it cannot compete with the repeated cascade method,
which clearly models the closure problem, and determines all the numerical coefficients.
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