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Similarity theory of turbulence in a plasma inhomogeneity 

C. M. TCHEN (NEW YORK) 

THE INHOMOGENEous density and electric field in a plasma cause an instability, which develops 
into turbulence. The turbulent spectrum is divided into three subranges. The mean· density 
gradient of the plasma supplies an energy to the turbulent motions, and constitutes a source 
in the production subrange; the non-linear behavior maintains a cascade transfer of energy 
across the spectrum in the inertia subrange and, finally, the molecular diffusion forms a sink 
of energy in the dissipation subrange of large wave numbers. A similarity theory is developed, 
based upon a mixing-length for plasmas and dimensional considerations. It predicts the 
spectral laws k- 3, k- 1 and k-s in the respective production, inertia and dissipation subranges 
of the density spectrum, and a spectral law k- 3 in all subranges of the electric field spectrum. 
Those results of the similarity theory agree with a more complicated analytic theory of 
repeated cascade. 

Niejednorodnosc g~stosci i pola elektrycznego w plazrnie prowadzi do niestateczno8ci oraz 
turbulencji. Widmo turbulencji podzielic moma na trzy zakresy. Sredni gradient g~stosci plazmy 
dostarcza {Uchom turbulentnym energii i stanowi ir6dlo w zakresie produkcji; nieliniowosc 
zjawiska utrzymuje kaskadowy charakter przekazywania energii w zakresie inercyjnym, a dyfuzja 
molekularna tworzy pochlaniacz energii w zakresie dysypacyjnym dt1Zych liczb falowych. 
Rozwini~to teori~ podobieilstwa opartll na "dlugosci mieszania" dla plazmy oraz na rozwai:a­
niach wyrniarowych. Zgodnie z tll teorill nalezy oczekiwac zalemosci widmowych typu k- 3, 

k- 1 i k- 5 w odpowiednich zakresach: produkcyjnym, inercyjnym i dysypacyjnym widma 
g~stosci, jak r6wniei: zalemo8ci typu k- 3 we wszystkich zakresach widma pola elektrycznego. 
Te wyniki teorii podobienstwa Sll zgodne z wnioskarni bardziej zlozonej teorii kaskady wielo­
krotnej. 

Heo;::umpo~oCTH IIJIOTHOCTH H 3neKTpiNeCKoro noiDI B IIJia3Me npHBo,wrr K HeyCTOiitmBOCTH 
H K zyp6yneHTHoCTH. CneKTp zyp6yneHTHOCTH MO>KHO pa3,rteJIHTL Ha TpH .rtH&na30Ha. Cpe;::uudi 
rpa,rtHeHT IIJIOTHOCTH nJia3Mbl llO):tBO.z:tHT 1J'p6yJieHTHbiM ):tBIDKCHWIM 3Heprmo H COCTaBIDieT 
HCTOtmm< B pa6otleM ):tH&n830He, HeJIHHCHHOCTL HBJICHHH no.rt.z:tep>KHBaeT KaCK~IH xapai<T<;p 
nepe,rtatiH 3HeprHH B HHepTHOM ,ltHana30He, a MOJICKyiDipHaH .rtH<txi>Y3HH o6pa3yeT norJIOTH­
TeJIL 3HeprHH B .z:tHCCHnaTHBHOM ,ltHana3oHe 6oJibiiiHX BOJIHOBbiX tiHCeJI. Co3,rtaua Teopu 
llO,ltOOHH, KOTOpaH OnHpaeTCH Ha ".rtJIHHC CMCWCHHH" .rtJUI nJia3Mbi, a TaiOI<e Ha pa3MCpHbiX 
paccy>~<.rteHIDIX. Cornacuo 3TOH TeopHH CJie,rtyeT o>KH.rtaTL cneKTpaJILHbiX 38BHCHMOCTeH THna 
k - 3 , k - 1 H k -S B COOTBeTCTBYJO~HX pa6otiHM, HHCpTHbiM H ,ltHCCHnaTHBHbiM ,ltHana30HaX 
cneKTpa llJIOTHOCTH, KaK TO>I<C 38BHCHMOCTH THna k-3 BO BCCX ,ltHana30Hax cneKTpa 3JICKTpH­
tiCCKOrO llOJIH. 3TH pe3yJILTaTbl TeOpHH COBlla,rtaiOT CO CJIC):tCTBHHMH 6oJiee CJIO>I<HOH TeOpHH 
MHoroKparnoro KacKa,rta. 

1. Introduction 

The spectrum F(k) of a hydrodynamic turbulence in the wave number k space has 
been first treated by a similarity method of KoLMOGOROFF [1]. Since the governing para­
meter in the inertia subrange is the rate of dissipation e, the Kolmogoroff law 

(1.1) 

directly follows from a simple dimensional consideration, without recourse to hydrodynam­
ical equations. The dissipation subrange adds the molecular viscosity v as a second para­
meter. The determination of the relevant combination of the two parameters e and v 

requires an analysis of the physical processes in the hydrodynamic equation. To this end, 
and with the use of the Navier-Stokes equation of motion, HEISENBERG [2] considered the 
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balance between a molecular dissipation function and an energy transfer function, which 
are proportional to the molecular viscosity 11 and an eddy viscosity 'YJ', respectively, with 
a sum 11+'YJ'· The flow of energy from the inertia into the dissipation subranges is governed 
by the ratio s/11 + 'YJ', or better by its derivative, which produces a compound parameter 
s/112• A subsequent dimensional analysis leads to the Heisenberg law 
( 1.2) F = const ( sj112)2 k- 7 

• 

By an analogous argument on the introduction of a gradient W 8 = I VUI of mean wind U, 
the similarity method leads Tchen [3, 4] to the spectral law 

(1.3) F = const (e/Ws)k- 1 

in the production subrange, which precedes the inertia law (1.1) and the dissipation law 
(1.2) in the wave number space. 

In order to diminish the degree of ambiguity in the above dimensional theories, 
analytical attempts have been suggested, among which we only mention the repeated­
cascade theory. It considers a velocity fluctuation as consisting of a series of ranks, repre­
senting many degrees of randomness. The picture is born from the concept of many 
interacting scales in turbulence, as suggested by BousSINESQ [5] and von WEISZACKER [6]. 
TcHEN [7] described the various ranks by coupled equations of motion of different ranks, 
and calculated the eddy viscosity by means of a Langevin equation of turbulence. The 
method achieves the closure of the double hierarchy [8] of correlations and of relaxation 
memories. Not only is it able to reproduce the spectral laws (1.1)-{1.3), but also to deter­
mine their numerical coefficients. 

In view of the more complicated processes governing a plasma turbulence, the similarity 
method does not seem to show a clear headway at the first glance. Therefore Tchen resorted 
to extending the repeated cascade theory [9]. After having clarified the mathematical and 
physical foundations of the governing transport processes by the repeated-cascade theory, 
we may ask whether we are now in a better position of developing a similarity theory which 
provides a simpler physical tool of studying plasma turbulence. For this purpose we must 
recognize that the crucial difficulty remains in finding a mixing-length which can 
characterize a shear eddy viscosity of plasma turbulence. Therefore we shall elaborate 
this concept and its foundation in Sec. 4, after a brief discussion of the dynamical equations 
in Sec. 2 and of its transport processes in Sec. 3. Only then will that mixing-length I', which 
serves as a self-consistent scale of eddy mixing, be able to transform the dynamical 
equations of plasmas into equations of spectral balance. Since I' is found to be a very 
simple variable in Sec. 4, the similarity method can then proceed in a simple fashion to solve 
the equations of the spectral balance in Sec .5. 

2. Turbulent transport processes 

A plasma inhomogeneity in a constant magnetic field B has a mean density Nand a mean 
electric field E0 which necessarily are both non-uniform. A density fluctuation n and 
a field fluctuation E are superposed to those mean background quantities. In representing 
the fields, we introduce a mean velocity U and a velocity fluctuation u, which are 
U = cE0 / B, and u = cE/ B, where c is the speed of light. Since the fluctuations are most 

http://rcin.org.pl



SIMILARITY THEORY OF TURBULENCE IN A PLASMA INHOMOGENEITY 453 

evident in the plane transversal to the magnetic field, we write the equations governing 
those fluctuations in that transversal plane, as follows: 

on 
Tt+V·n(V+u)xes = -(uxes)·VN+DV2n, 

V·n(V+u) = -u·VN+).V2n. 
(2.1) 

The productions are represented by -u · VN and -(u x es) · VN, the non-linear cascade 
transfers are represented by V · (nu) and V · (nux es), and the collisions are represented 
by DV2n and ).V2n as proportional to themolecular ditfusivities D and ).. 

Upon multiplying the dynamical Eqs. (2.1) by n, we can derive the equations of spectral 
balance. Therefore, the transport processes, as represented in the system of Eqs. (2.1), 
essentially determine the various transport functions governing the spectral balance. 

In the terminology of a single turbulent cascade, a density or a field spectrum can be 
divided into a portion with wave numbers up to k, which serves as a macroscopic back­
ground, and a portion with wave numbers greater than k, where the more random 
fluctuations operate. Those two portions are denoted by the superscripts ( ... )0 and ( ... )', 
respectively. Thus, we can write 

(2.2) u = u0 +u', n = n°+n'. 
The ensemble averages ( ... ) 0

, ( ... )' of macroscopic and random ranks serve to screen 
between the macroscopic and random components. A quantity having no superscript 
covers the whole spectrum. 

In the above cascade representation, we can introduce a vorticity function of density, 

(2.3) 1 JO = ((Vno)2)o, 

with J = ((Vn)l), and a mean density vorticity 

(2.3h 

1° and j play the role of backgrounds. 
The fluctuations of the eddies produce an eddy viscosity, rJ = rJ0 + r]', of macroscopic 

and random components, rJ 0 and rJ', which form the transport properties of the mean 

background vorticity J and of the macroscopic background vorticity 1°, respectively. 

In terms of rJ 0
, rJ', .i, 1°, and on the basis of the transport processes enumerated in 

Eqs. (2.1) and (2.3), we can write the production function, the transfer function and the 
dissipation function, governing the transport across a density or a field spectrum, in the 
sequence of cascade of increasing wave numbers: 

-n° i, n' 1°, (D or ).)1°. 

3. Spectral balance 

It is important to remark that, in view of the orthogonality of the field components 
governing Eqs. (2.1), and of the presence of the shear in the mean field, the normal eddy 
viscosity n' will govern the equation of balance of the density spectrum, while the shear 
eddy viscosity 'Y/~ 1 will govern the equation of balance of the field spectrum, as follows: 

(3.1) 
'Y}oj_'Y}'JO-DJO = 'Y}J-DJ, 
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They originated from the dynamical Eqs. (2.1). The right-hand members are written by 
the reason of conservation at large wave numbers, including k = oo, and are valid for 
a plasma turbulence in statistical equilibrium. The system of Eqs. (3.1) can be simplified 
into the following form: 

rj'(i+J0)+DJ0 = DJ, 

-'fj~1(i+JO)+).JO = ).J • 
(3.2) 

While the discussion of the eddy viscosity tensor is referred to Sec. 4, the system of Eqs. 
(3.2) are seen to determine the velocity spectrum F(k) and the density spectrum G(k) in 
principle. It is to be remarked that the total areas under the spectra are 

00 

(3.3) 
00 

~ (u2
) = J dkF(k), 

0 
~ (n2

) = J dkG(k) . 
0 

4. Plasma mixing-length as a basis of similarity theory 

In analogy with the Prandtl formula for the eddy viscosity in a shear flow [10], we write 
the velocity fluctuation u~, due to a mean shear iJU2fox 1 = w., in the form 

(4.1) , I' au2 
Ul=-1--· 

iJxl 

Since the mean velocity has a gradient in the x1 direction, the length scale, responsible 
for the eddy mixing in the same direction, is /~, called a mixing-length. When the velocity 
fluctuation (4. l) is substituted into the shear eddy viscosity 

(4.2) 

we find 

(4.3) 'f/~ 1 = -(/~2)'co, 

where (/~2)' becomes a dispersion, or variance of the eddy displacements. 
When we define the normal eddy viscosity 'f/' by 

(4.4) 
00 

'fJ' = 'f/t1 = (J d-ruao)u!(-r))' = (u'2w'-1)', 
0 

we can write the dispersion as 

(4.5) 

where eo' is a relaxation frequency, or w'- 1 is a duration of the correlation of velocities in 
Eq. (4.4). By interpreting w'- 1 as a duration of dispersion, the formula (4.5) is the standard 
formula for the dispersion by eddy movements. 

If we assume that the relaxation process, which brings a transport property in 
equilibrium, is mainly due to the eddy motions rather than the molecular motions, we can 
write 

(4.6) 
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instead of the molecular relaxation frequency k 2
11. Under those circumstances, and upon 

substituting for w' from (4.6), we can reduce (4.4) and (4.5) to 

(4.7) 

and 

(4.8) 

Hence, we have identified the plasma mixing-length /' a'i proportional to k-1, which is 
the scale dividing the macroscopic and the random ranks in the cascade decomposition 
(2.2). Such a mixing-length, which is independent of the spectrum, greatly simplifies the 
solutions of the system of Eqs. (3.2). 

5. Solutions by the similarity method 

We divide the universal range of the spectra into the production, inertia and dissipation 
subranges. Except for the inertial subranges which are governed by the transfer functions 
alone, other subranges are governed by a pair of neighbor transport functions. Thus, upon 
substituting (4.3) into (3.2), we can write the following equations governing the three 
subranges: 

(a) production subrange 

(5.1)1 

(5.1)2 

(b) inertia sub range 

(5.2)1 

(5.2h 

(c) dissipation subrange 

(5.3)1 

(5.3h 

rj'(J+J0
) =DJ, 

Ws/'2(f+JO) = J..J; 

rj'J0 =DJ, 

Ws['2JO = )..J =: Erp; 

(rJ' +D)J0 = DJ, 

(wsl'2 + J..)JO = }..J. 

The system of Eqs. (5.1)-(5.3) are the particular forms of the general system of Eqs. (3.2), 
and will be used here to find the solutions F(k) and G(k) by a similarity method. 

A. Field spectrum F(k) 

The field spectrum F(k), covering the three subranges (a), (b), and (c), can be obtained 

by eliminating J + 1° from the Eqs. (5.1)-(5.3), giving 

(5.4) 'YJ' = Q['2' 

with 

(5.5) 

A subsequent substitution of (4.7) into (5.4) yields 

(5.6) u' = Q[', 

and, hence, 

(5.7) 
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B. Density spectrum G(k) 

(a) Production subrange. The density spectrum in the production subrange is governed 
by Eq. (5.1)2 , rewritten in the form 

(5.8) 

the differential of which can more adequately describe the flow of density transport from 

J to Jo, without the interference of the right-hand side of (5.8). Therefore, the parameter j 
determines the spectrum G to be 

(5.9) 

Since G and J have the dimensions 

(5.10) 

respectively, we can rewrite (5.9) as an identity, in the form 

(5.11) n2k- 1 = (n2k2Y"k-P, 

requiring oc = 1, {3 = 3, and hence reducing (5.9) to 

(5.12) G = constJk- 3 • 

(b) Inertia subrange. The density spectrum is governed by equation (5.2h, having a pa­
rameter erp/w~~> of dimension 

(5.13) 

When we write 

(5.14) 

and note that G has the dimension n2k-1, we obtain, by identification, oc = 1, {3 = 1, 
reducing ( 5.14) to 

(5.15) 

(c) Dissipation subrange. The spectrum is determined by equation (5.3h rewritten in 
the form 

(5.16) 

The transition from the inertia to the dissipation subranges can be best described by 
the differential form of ( 5.16), which is 

(5.17) 
dJO 
dk 

2Jk: 
k3[1 +(kfks)2]2 

~ 2Jk; k- 3
' 

fork ~ k8 • Hence, the governing parameter is Jk;, which permits to write 

(5.18) 

Since G has a dimension given by (5.10), and Jk: has the dimension n2k\ we can rewrite 
(5.18) dimensionally, in the form, 
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identifying IX = 1, {3 = 5, and reducing (5.18) to 

(5.19) G = constJk; k- 5
, 

The transition between the inertia and dissipation subranges is characterized by the critical 
wave number ks, defined by (5.16). 

6. Conclusions 

The similarity method, which had proved to be a simple and useful tool of analysing 
hydrodynamic turbulence, had always shied away from plasma turbulence, in view of the 
difficulty of composing the many parameters in plasmas. Even when the relevant sets of 
parameters were well established the difficulty remained in structuring the shear eddy vis­
cosity, in addition to the normal eddy viscosity, and in determining the mixing-length of 
plasmas which serves as a basis of the similarity method. The resolution of those two diffi­
culties is approached here from investigating the physical processes, as represented in the 
dynamical equations of a plasma inhomogeneity, and from modeling the relaxation of an 
eddy transport property. When the above basis of similarity is found, the equations of 
spectral balance can easily be solved by a dimensional analysis. We find the laws k- 3 , 

k- 1 and k- 5 in the production, inertia and dissipation subranges of the density 
spectrum, and a power law k- 3 in all subranges of the field spectrum. Those results agree 
with a more complicated analytic theory, based upon the repeated-cascade. Although the 
similarity method can find a physical basis and hence can proceed to analyse the plasma 
turbulence in an elementary manner, it cannot compete with the repeated cascade method, 
which clearly models the closure problem, and determines all the numerical coefficients. 
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