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A thermodynamic derivation of non-history dependent constitutive
relations for elastic, viscoelastic, fluid, and perfectly plastic bodies

D. G. B. EDELEN (BETHLEHEM, PENNSYLVANIA)

ConsTITUTIVE relations based upon a general solution of the Clausius-Duhem inequality are
applied to isotropic bodies under the requirements of invariance under superimposed rigid
body motions and invariance under orthogonal transformations of the reference state. Under
the assumption that the powerless part of the constitutive relations vanishes, it is shown that
the theory models elastic, viscoelastic, and fluid behavior in the presence of heat conduction.
Constitutive relations for perfect plastic bodies are also obtained under a straigh-tforward
relaxation of certain differentiability conditions.

Rownania konstytutywne, oparte na rozwiazaniu ogolnym nieréwnosci Clausiusa-Duhema,
zastosowano do cial izotropowych zakladajac niezmienniczoéé¢ wzgledem naloionych ruchéw
ciala sztywnego oraz wzgledem ortogonalnych transformacji ukladu odniesienia. Zakladajac
znikanie tych cztonéw zwigzkéw konstytutywnych, ktére nie sa zwigzane z wykonywaniem
pracy, stwierdzono, ze teoria ta modeluje ciala sprezyste, lepkosprezyste i ciekle uwzgledniajac
zarazem zjawiska przewodnictwa cieplnego. Otrzymaé mozna takze zwiazki konstytutywne
dla cial doskonale plastycznych droga prostego oslabienia pewnych wymagan dotyczacych
rozniczkowalnosci.

OnpepenaAloniue ypaBHeHHs, OCHOBaHHbIE Ha oDllem peuwieHun HepaBeHcrBa Kirasmyca-Iio-
XeMa, NPHMEHEeHB! 1A ONMHCAHWA W30TPONHBIX TeJ, HA KOTOphle HANOXeHb! TpeGoBaHUA HH-
BapHAHTHOCTH MO OTHOLUEHHIO K YKECTKHM JIBWKEHHAM M WHBAPHAHTHOCTH MO OTHOIIEHHIO
K OPTOTOHAJIBHBIM IpeoGpasoBaHMAM MCXOIHOTO cocTosiHMA. [TokaaaHo, 4To, B NPeNONoIKeHHH
MCUE3AHHS YacTH ONpe/IeNAIOIIEro YPaBHEHHS, TEOPHA ONMCHIBAET YIPYroe, BASKOYNpYroe
M FKHKOCTHOE IOBEICHHE MaTepHana NpPH HaJHUHH TerompoBogHocTH. Ilpm HekoTopom
ocyiabneHun ycnoBHi AuddepeHUHPYEMOCTH 1I0IYYAIOTCA TAaKyKe OMpe/eNAole YpaBHEeHHA
JUISL MIea/IbHO TIJIACTMYECKHMX MATepHaJoB.

1. Introduction

ONE of the basic endeavors of modern work in continuum mechanics is the derivation of
constitutive relations for real material bodies from fundamental thermodynamic con-
siderations. The results that have been reported to date in this area stem from two distinct
schools of thought concerning non-equilibrium thermodynamics and the forms and inter-
pretations of the second law of thermodynamics. One school has followed the pioneering
work of ONSAGER [1] and has obtained useful and important results for linear pheno-
menological problems [2, 3, 4]. Extensions of the Onsager theory have also been made,
so as to include general non-linear phenomenological problems [5, 6, 7, 8, 9]. This has
led to significant increases in both the generality of the theory and the scope of problems
which can be handled within the framework of the Onsager theory. In particular, VERHAS [7]
has used the non-linear Onsager theory to give the first thermodynamic derivation of con-
stitutive relations for a perfect plastic solid of the v. Mises type.

The second school bases their development on the Clausius-Duhem inequality and the
principle of equipresence (see [10] for a report on some of the results obtained by this
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line of investigation). Use of the principle of equipresence, however, leads to significant
mathematical complexities in order to obtain results which may serve as a basis for modeling
viscoelastic and fluid behavior. On the other hand, we have given [11] a complete solution
of the Clausius-Duhem inequality without adherence to the principle of equipresence,
and have thereby obtained a very simple thermodynamic theory which is adequate for
modeling elastic, viscoelastic, and fluid bodies with heat conduction. The purpose of this
paper is to show that this same thermodynamic theory is also capable of modeling perfect
plastic behavior. Thus, a unified thermodynamic derivation of the constitutive relations
for elastic, viscoelastic, fluid, and plastic bodies is provided.

2. Summary of previous results

The work reported in this paper is a direct extension of a general thermodynamics
(primitive thermodynamics) which was obtained in [11]. Since this thermodynamics is
based upon a general, rather than a particular, solution of the Clausius-Duhem inequality,
it exhibits a number of features which are absent in most treatments given in the current
literature. We therefore give a summary of our previous results for the convenience of the
reader and for reference in later sections.

The reduced dissipation inequality is obtained in the standard way by using the energy
balance equation to eliminate the energy source per unit volume in the Clausius-Duhem
inequality. For a one-component nonpolar material body referred to a material description,
we have

(2.1) — (P +70)+05 ' TA4X + (000)~" h40,40 > 0,
where
(2.2) eotl = eTA0,x!, ool = ph*0,x'

and all field variables are considered as functions of the reference configuration coordinates,
X4, and the time, 7. Here, and throughout, we use the notation d, = d/dx%, d, = d/éx’,
where x' are the coordinates of the current configuration. We also assume, in the interest
of simplicity, that the reference and the current configurations are referred to Cartesian
coordinate covers. The symbolism used in the above equations and throughout this paper
for designation of physical quantities follows that of TRurspiLL and TourIN [12].

Under the explicit assumption that the Helmholtz free energy density can be written
in the form

23) V=YX, 1), m(X,1), 0px' (X4, 1)),

where 7, (X4,¢),a = 1, ..., q, are ¢ additional arguments which may be present as con-
sequences of nonstatic conditions, the reduced dissipation inequality can be written in the
equivalent form

(2.4) X-J=0.

Here, X and J are vectors, in a (g+ 13)-dimensional vector space with inner product A- B,
which are identified atcording to the scheme

(2.5) X = {0, 7, 3%, 0,0},
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_ o (7 AR o
J= {‘7?" 0 _-_6_57,,_’ 0 T — 6@;‘7
and w is a vector, in a (g¢+ 10)-dimensional vector space, which is identified according
to the scheme

(2.7 w={0,n,d,x'}.
Thus, for instance, (2.3) and (2.7) give ¥ = ¥(w). The general solution of the reduced
dissipation inequality is thus given by all functions J(X; w) such that
(2.8) X-JX;w = 0.
The basis for obtaining the general solution of the inequality (2.8) is the following

decomposition theorem which was established in [13]. Every vector field J(X; w), which
is of class C* in X and of class C° in w, admits the unique decomposition

(2.6) , (909)“1!"},

(2.9) J(X; w) = Vy @(X; w)+ UX; w),
where the vector U(X; w) is such that
(2.10) X - UX;w) =0.

This theorem allows a significant simplification of the reduced dissipation inequality,
since (2.9) and (2.10) give X- J(X; w) = X - V, @(X; w); that is, the problem is reduced
from that of finding vector functions J(X; w) such that X - J(X; w) > 0 to the problem
of finding scalar functions @(X; w) such that X+ V,@(X; w) = 0. In fact [13], if J(X; w)
is known, then @(X; w) is given by

1
.11 P(X; w) = [ X I(1X; w)dr.
0

With the aid of the identifications (2.5) through (2.7), it is now a simple matter to show
that a J(X; w) which is of class C' in X and of class C° in w satisfies the reduced dissipation
inequality if, and only if,

R L

(2.12) &Y
(2.13) LA
omg o,
o b
2.14 A 4
&1 @I = g T aea T
oD
2.15 S OP
( ) (000~ 1A 33.0) + U4,
(2.16) OU+7 U+ 8, UA+3,0U% = 0,
1
@.17) @ = [ Pex; ) 2%,
i T

0
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for some scalar function P(X; w) of class C! in X and of class C° in w such that
(2.18) P;w)=0, PX;w)=0

(see Section 3 of [11]). If these conditions are satisfied, the “dissipation” X-J(X; w)
is given by

(2.19) X J(X; w) = P(X; w).
The vector
(2.20) U = {U, U%, U4, U4},

whose components occur in the relations (2.12) through (2.15), is the nondissipative part
of the vector J = Vy@+ U. This follows from the observation that the dissipation obtained
from the vector U is given by X - U, while (2.16) shows that X+ U = 0. Explicit nonzero
forms for the vector U have been given in [11 and 13]. Clearly, the occurrence of the vector
U provides for a wide range of new possibilities. For instance, there is a choice of U for
which a fluid will flow perpendicular to the gradient of its thermodynamic pressure, while
for another choice of U, the balance of energy for a rigid heat conducting body becomes
a hyperbolic partial differential equation for the determination of the temperature field
whenever V6 - VO # 0 (see Section 4 of [11]). In view of these results and (2.12), we set
two additional restrictions in the analysis given in [11]. A thermodynamics is said to be
simple if, and only if, U = 0; a thermodynamics is said to be regular if, and only if, @ is
independent of the argument 6. The following results are then obtained in Section 4 of [11].
A J(X; w) of class C! in X and of class C° in w gives a simple and regular solution of the
reduced dissipation inequality if, and only if,

(2.21) Y= PO, 0,x) = V),
(b o
(2.22) 7} = = 6—9,
ow od
=174 _
223) T =5 T Ha
ob
-17,A4 _
(2.25) & = {0, 8,7},
(2.26) X = {9,%, 0,6},
1
@2.27) @ = | P(X; i) 25,
3 T

for some function P(i; ) of class C? in X and class C° in w such that

(2.28) P(0; &) =0, P(X;d)>0.
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We also have the reciprocity relations

- -

Y qa__°% 78
@3 3@ 1 a1
8 a1l 0 s
(2.31) 3(050) =15 0(04xY) I
2 d A _ 0 B
(2.32) 35s0) ht = a(aAﬁ)h

These relations constitute a non-linear generalization of Onsager’s relations, the form of
which was first obtained by GYARMATI [5, 6]. We also have the relations

0 (1 pu_
(2.33) E("é"o i a(ajxf)) - a(a,.x‘J o
o (1., oo ! 0P )
(2.34] mj) (_Q: Ti - 3(5,4.*‘)) a(anf) (90 i~ @(5511)

which are the nonequilibrium form of the Maxwell relations obtained from the cross
derivatives of the Helmholtz free energy. The assumption of simplicity reduces (2.12)

o 5(1‘5 , and hence ¢ = ¥W+0n = V-0 g-ké?— is a function
a a0 a6

of W, X and 6 unless od/ 80 = 0. It is for this reason that we assume the thermodynamics
to be regular. A simple and regular thermodynamics thus preserves the thermostatic rela-
tions 1y = —3¥/d0, ¢ = ¥—08¥/00 in the dynamic case.

to the form 5 =

3. Invariance and symmetry requirements

The results reported in the previous Section were strictly thermodynamic in nature
and hence they do not reflect the invariance and symmetry properties of real material
bodies. The natural invariance properties of material bodies require that all scalar valued
functions of the field variables be invariant under superimposed rigid body motions [14, 15],
while symmetry properties pertain to specific properties of the bodies such as isotropy,
homogeneity, etc. The consequences of the invariance and symmetry requirements will
be obtained in this Section after the constitutive relations are rewritten in terms of a spatial
description.

A straightforward substitution of the material constitutive relations (2.23) and (2.24)
into (2.2) gives

AT S S . 4 )
- R PO RO
' i . 0D
h —9964xm.

If we define a new function ¢ by

(3'2) ¢(akx.i: akﬂ; 9, ani) = Gi(an‘ak-i:I’ ankake; 6! adxl:)s
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then (3.1) yields the constitutive relations

L oo
J =
(3.3) t} = pd,x! EER%) +0 TR
d¢
e
(3.4) A = of 30.0)°
where

¥ =Y, d,.x),
¢ = (O, 0,00, 0,4%%),
and (2.27) and (2.28) become

(3.5)

1
(3.6) ¢ = [ P(ra &, ©6:6; 6, ant)."_;’_,
1]

(3'?) P(akx.‘: &B; G’ a;{xi) ; 0! P(o& 0; 6! a}lx‘) = 03

where P is of class C? in (9,x', 8,60) and of class C° in (6, 0,4x).
Since all quantities are determined in terms of the scalar valued functions ¥ and ¢ (and
P), isotropy and invariance under superimposed rigid body motions obtain if, and only if,

(3.8) ¥ = ¥(0, tr(C), tr(C?), tr(C?)),
(3.9) ¢ = ¢(tr(d), tr(d?), tr(d%), 5,00;0g", d'/6,08;6, djd*16,60,6; 6, tr(C), tr(C?), tr(C?)),

where

(3.10) C = ((94x' 95x'gy))
is the strain tensor and

(3.11) 2d = ((6,9,--&-3_;1:,-))

is the rate of strain tensor (see [14, 15, 16] for the details). The form of the function ¢ is
not completely arbitrary, however, in view of the requirements expressed by (3.6) and
(3.7;

1
(3.12) ¢ = [P(ztr(@), T2 tr(@), T3 te(@), 723,09,08",7%d"3,00,0,
0

t*did*9;00;0; 0,tr(C), tr(C?), tr(C?)) ?

(3.13) P20, Plicgo-0=0.

If ¢ is taken to be independent of the rate of strain tensor, then (3.3) and (3.4) give
the customary constitutive equations for an isotropic, elastic, heat conducting body.

If ¥ depends only on tr(C), tr(C?) and tr(C?) through the form
(3.14) det(d,x") = %tr(C)a——%tr{C)tr(Cz)qk-—;-lr(C’),

and
¢ = P(tr(d), tr(d?), tr(d®), 3,00;6¢"; 6, tr(C), tr(C?), tr(C?)),
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then (3.3) and (3.4) give the customary constitutive equations for an isotropic, non-linear,
heat conducting fluid. In fact, the contribution to the stress from the rate of strain tensor
assumes the form A8/ + Bd/ + Cd,.d*/ and the signs of the coefficients 4, B, and C derive
from the positivity requirement expressed by (3.12) and (3.13). For a linear body, we have
Adfd{ +2ud], and the positivity condition (3.13) gives the standard results u > 0,
32442u = 0.

The general case, wherein the only restriction is the positivity condition (3.13), gives
the constitutive equations for isotropic, viscoelastic bodies with heat conduction. In partic-
ular, there are possible contributions to the stress from tensors of the form

0¢
B@ma, 65,0 990
o T

4 o(dxd™3,00,6)

We thus conclude that simple, regular thermodynamic systems, which satisfy the
conditions imposed by invariance under superimposed rigid body motions and isotropy,
encompass a wide range of physical properties of material bodies. The one autstanding
exception is the lack of a basis for the representation of plastic material behavior.

4. The perfect plastic solid

The general form of the constitutive relations for an isotropic fluid which we obtained
in the last Section is

(4.1) t] = 00,x 5(2?;.-} +0 a(gf;'c‘) ’

where

4.2) W = W(0, det(d,x)),

(4.3) ¢ = ¢(tr(d), tr(d?), tr(d®), 3,00,0¢"; 0, tr(C), trC?), tr(C>)).

We thus have

| o o % &
i s i <A
(4.9) t{ = —pdl+o 3(”(‘0) +29 @(t[‘(dz)) +3 E(tr(th)) gd‘,{,
where
_ i 4&?__—-
(4.5) —p = det(d,x') d(det(94x%))

is the thermostatic pressure.

The theory given above is based on the assumption that the function P, which occurs
in the relations (3.12) and (3.13), is of class C? in the rate of strain variables. Thus, the
coefficients which occur in (4.4) are continuous with continuous first derivatives as a con-
sequence of (3.3) and (3.12). We will now show that the continuity conditions on the
function P, and hence on the function ¢ can be relaxed for simple thermodynamic systems,
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The vector U vanishes for a simple thermodynamic system, and hence the vector J is
given by

(4.6) J(X; w) = Vx®.

The reduced dissipation inequality X - J > 0 thus takes the equivalent form
X:Vy® >0,

so that we must have

4.7 X Vi@ = P(X; w)

with

(4.8) PX;w) >0, PO;w)=0.

The important thing is thus the continuity of X - J(X; w) = P(X; w), not the continuity
of J(X; w). In fact, it is clear that whenever the vector U vanishes, it is sufficient to require
P(X; w) to be continuous such that (4.8) is satisfied. In particular, P(X; w) need not be
differentiable at X = 0. It is thus clear that Vx¢ = J(X; w) can have a jump discontinuity
at the origin and still satisfy the reduced dissipation inequality. This observation provides
us with the added generality which is needed in order to model perfect plastic bodies as
we shall now show.
If we introduce the abbreviations

j=t@), o=tr@), p=1tr@),
t=(6h). E=(@),

the constitutive Eqs. (4.4) take the equivalent form

(4.9)

_ o 5¢ 3¢
We thus have
(4.11) tr(t) = —3p+3g~‘?i +20j5 - "5 e aﬁ

One of the characteristic properties of a perfect plastlc body is that the mean pressure,
—tr(t), is a function of the arguments 6 and det(d,x') only. Since p is a function of 6 and
det(d,4x*) only, (4.11) shows that tr(t) will have the required property if, and only if, ¢ is
a solution of the partial differential equation

@12) aa‘f +2 %2 13 a(z H(0, det(dx').

The general solution of this part:al differential equation is given by
1 A

(4.13) ¢ = ih+é,

where gf; depends on the arguments j, o, f# only through the functions

(414 to = tr(od®) = a—— /%

@419) o = tr(od) = f—jot %
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where

1
(4.16) od = d— = jE

is the deviator of the rate of strain tensor. However, the function ¢ must be nonnegative
for all d as a consequence of (3.12) and (3.13). An inspection of (4.13) shows that this
can be the case if, and only if, 4 (6, det(d,x)) = 0, in which case we have

4.17) ¢ = ¢(ag, Bo, 3:00;08"; 0, tr(C), tr(C?), tr(C?))
and

ad o
(4.18) t= —pE+29+~-—od+3g A - (82— con),

, o op o ¢
(4.19)  tr(ot?) = {4%(3 ) +1280 - PN afT;+ e (650) }9

(4.20)  tr(ot?) -{Sﬁo( a¢) (%) B T%Po G, a¢ (2_;;)

-2

where
(4.21) o= t—%tr(t)E = t+pE

is the deviator of the stress tensor.

A second characteristic feature of perfect plastic solids is the existence of a (positive)
yield stress, o, which is independent of the rate of strain tensor (i.e., ¢ can depend on
the arguments 6, tr(C), tr(C?), tr(C?)) and a yield function ¥(a, b) such that

(4.22) Y(o2tr(ot?), o3 tr(ot?)) = 0.

One of the simplest yield functions is Y(a, b) = a— K, where K is a positive function of
the arguments 0, tr(C), tr(C?), tr(C?). This gives

(4.23) tr(ot?) = 02K

which is the ©. Mises yield condition if ¢ and K are constants [17, 18]. Substituting (4.19)
into (4.23), we obtain

] a2

which is an equation for the determination of ¢. One solution of this equation which
vanishes with a, and S, is given by

(4.25) b= _‘3 Y Keg.

6 Arch. Mech. Stos. nr 2/74
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This solution is admissible in the thermodynamic sense, since
¢ = f |/Krzao—— f VKtr(22, d’)—

i.e., P(xg, fo;...) = a ]/Kao and P is real and nonnegative, since K is positive and «, is

nonnegative. As a function of the rate of strain tensor, however, the function ¢ given by
(4.25) is continuous, but not differentiable at d = 0. A substitution of (4.25) into (4.18)
now gives

(4.26) t= —pE+ a]/ ol = —pREGYR — l/u (Odz)
The only other irreversible thermodynamics which gives this result is that obtained by
VERHAS [7] as an application of GYARMATI’s principle [6]. However, Verhas’ derivation does
not allow the coefficients ¢ and K to depend on the temperature and the invariants of
the strain tensor.

There are numerous other yield functions which can be examined from the standpoint
of the method given above. A simpler procedure is obtained, however, by simply selecting
the dissipation function ¢ by means of the prescription

@421 ¢ = -f,—y(l/ %, VBo, 0:00;68"; 6, tr(C), tr(C?), tr(C?))

1
—— J’P(T.an_o, Ti/ﬂ_o’ Tzaiaaj&gu;.”. i:'_‘
0

where P is a nonnegative function which vanishes with a,, fo and ;6. When (4.27) is
substituted into (4.18), we obtain

1
S
A o (“_3__":1
a;/ao Vao 0V VP
This general form of the constitutive relations for a perfect plastic solid gives the desired

property that the dependence on the rate of strain tensor which is not governed by the
function y is in terms of the two forms

(4.28) t = —pE+

1

dz___ 2

i 0 P tr (,d*)E
Vir(od?) V/tr (od%)?

which are homogeneous of degree zero in the deviator of the rate of strain tensor. In
addition, since the arguments of the function y include the variables 6, tr(C), tr(C?) and
tr(C?) in addition to the argument §,00;6g", a wide class of material behavior can be
modeled with the constitutive relations (4.28) obtained from the general thermodynamic
theory given in this paper. We also note that the function y is only required to be contin-
uous in the arguments 0, tr(C), tr(C?), tr(C?), so that there is no problem with modeling
stresses which are not differentiable with respect to these arguments.
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