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Riemann invariants for nonhomogeneous systems of first-order
partial quasi-linear differential equations — algebraic aspects.
Examples from gasdynamics

A. GRUNDLAND (WARSZAWA)

In THIS paper, systems of partial differential equations of the form (1.1) are considered from the
point of view of integral elements defined by the Eqs. (1.2). In particular the connections between
the structure of the set of integral elements and the possibility of a construction of special clas-
ses of solutions are studied. These classes consist of what are called simple waves, simple states
and solutions describing interactions among them. We deal with them in Chapter I. A classification
of the set of all integral elements is introduced. It is a generalization of that given in [7].
A couple of theorems useful for this classification are given in the Chapter III. The final part of
the work contains analysis of nonhomogeneous gasdynamic equations from the point of view

of the method described above.

Praca niniejsza dotyczy ukladéw rédwnan rozniczkowych czastkowych postaci (1.1), ktore
rozpatrywane sa z punktu widzenia elementéw catkowych zdefiniowanych przez rownania (1.2).
W szczegolnosci rozwaza sie zwigzki miedzy struktura elementéw catkowych i mozliwoscig
konstrukcji pewnych specjalnych klas rozwigzan. Klasy te skladaja sie z tzw. fal prostych, stanow
prostych oraz rozwiazan opisujacych ich wzajemne oddziatywania. Zajmiemy si¢ nimi w rozdzia-
le 1. Nastepnie wprowadza sie klasyfikacje wszystkich elementéw catkowych, ktora stanowi
uogolnienie klasyfikacji zaproponowanej w pracy [7]. W ostatnim rozdziale przedstawiono
kilka twierdzen uzytecznych z punktu widzenia tej klasyfikacji. Druga cze$¢ pracy zawiera

analiz¢ niejednorodnych rownan gazodynamiki z punktu widzenia omawianej metody.

B pabote paccmarpuBaioTCA KBasWIMHeiHble ypaBHeHMA BHAa (1.1.) ¢ TOUKH 3peHMA MHTe-
rPafbHBIX 2JJIEMEHTOB ONpeNeNEHHBIX ypaBHeHMAMH (1.2). AHANH3MDYIOTCA CBA3H MEXIY
CTPYKTYPOH MHTETDPAJILHBIX 2JIEMEHTOB H BO3MOMHOCTEIO KOHCTPYKIMH HEKOTODBIX CTIELHAJb-
HBIX KJIACCOB peIleHHit, KOTOpbIe COCTOAT H3 TAK HA3BIBAEMbIX IPOCTHIX BOJH, MPOCTHIX
COCTOAHMH M DeIUCHHH, ONHCHLIBAIOLMX B3aHMOMEHCTBHA MEMXIY HUMH. 3arTeM, BBOJHMTCA
Ki1accupHKalNA BCeX HMHTErPalbHBIX 3JIEMEHTOB, obobuaiouas KiaccHGHKANMIo, Ipensyio-
yKeHHY10 B pabote [7]. Heckompko TeopeM MOJIESHBIX JUIA 9TO# KinaccHHMKAUMH NpeACTaB-
JIeHO B IocieaHeit rnape. Bropasd yacts paboThl COAEPYKHT aHAIH3 HEONHOPOIHBIX YPaBHEHHI

ra3odHHaMHKH C TOUKH 3pEHHA OIHCAaHHOI'C MeTona.

L. Introduction

1. Integral elements

Let us consider systems of first order partial differential equations which, according

to the summation convention, may be written as follows:
(1.1) ay@l, ...,y = '@, ..., u),

where

—

, ..., m is the number of equations,
v =1, ...,n is the number of independent variables,
j=1,..,1 isthe number of unknown functions.
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The system (1.1) is nonhomogeneous with coefficients dependent on the unknown
functions (even when m > I). The space #" of independent variables x = (x, ..., x")
will be denoted by E and called physical space E = #". The space #' of dependent variables
u = (4, ..., u") is denoted by # and is called the hodograph space # <= #'. At each
point (x,, up) of the Cartesian product E x 3#, we define the hyperplane % (x,, u,) in the
linear space #"*! consisting of all matrices (integral elements) {LJ} satisfying the following
algebraic equations:

(1.2) ay@, ..., W )Li = b, ..., u),
where maxrank||L{|| = min(n, /). If L is any solution of the system (1.2), then:
N
(1.3) &£ =H+L,
N

where " = {K e 2™ a}K] = 0} is the vector space of solutions of the homogeneous
system (1.2). The dimension of the space X (x,, o) of the homogeneous integral elements
is given by

(1.4) dimof (x,, tg) = n- I—m(x,y, ty),

where m is the number of independent Egs. (1.2) or the number of linearly independent
matrices @° = {a}’(uo)}.
By the definitions given above, for each L,, ..., L, €%, their linear combination

WL+ ... +pPL, belongs to &, provided that
P

(1.5) w=1.

s=1]

If there exists at least one solution of the nonhomogeneous system (1.2), then
(1.6) dimX (x,, up) = dim L (x,, tg).
2. Simple elements

An element L € #(x,, up) is called simple (or decomposable) if there exists A € #"
and y € &' such that L may be written in the form:

@1 L=y
—ie.,
22 rank || Lf(uo, Xo)|| = 1.

It is convenient to consider A as an element of E*. Here E* denotes the space of linear
forms: E* € A: E —» &, or in other words, if x € E is a contravariant vector, then 4 € E*
is a covariant one. In this terminology, L is an element of the tensor product space # ® E*
of the form:

(2.3) L=yQ® AeH Q@ E*.

Simple elements of a homogeneous system are denoted by ¥ ® A and of a nonhomo-
geneous system by y @ A. Homogeneous elements are connected directly with the existence
N N

of characteristic vectors. Namely:
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STATEMENT 1. If y ® 4 is a simple element of a homogeneous system, then A is a char-
acteristic vector.

Indeed, a§"y’A, = 0 implies rank||afA|| </, or if / = m then det||a}'4,|| = 0.

DEFINITION 1. If ¥ ® A is a simple element, then y will be called the characteristic
victor in hodograph space # and A will be called a characteristic covector in the dual
E* of the physical space.

Now we introduce the notion of simple waves and simple states. (These notions will
provide us with a tool for an extraction of simple integral elements from the set of all
integral elements). Let the mapping u: D — 3, D c E be a solution of the system (1.1).
This solution is called a simple wave for a homogeneous system (or a simple state in the
case of a nonhomogeneous system) if the tangent mapping(*) du, which is a linear mapping
E — 5 defined by

2.9) TE 3 (X0, X*) -2 (u(xo), wo(xo) X*) € T #,

is a simple element at each point x, € D. In other words, the derived mapping (tangent
mapping du) of a simple wave, is a simple element.

THEOREM 1. The hodograph of a simple wave (or a simple state) u(D) for homogeneous
(nonhomogeneous) systems is given by the curve in the hodograph space #, such that at each
point of this curve the vector vy is tangent to it.

P ro o f. The tangent mapping

(2.5) dul(x) = yI(x) A, (x)dx"
is of rank one, hence the image of the mapping u: E — 3 is a curve in the hodograph

space . Let this curve be determined by u = u(R), then u(x) may be represented by
u(R(x)). Hence

(2.6) du = ug(R(x))dR(x).
Thus
(2.7) ug(x) = y(x) and dR(x) = A(x).

The solution u(x) is constant on the (n— 1)-dimensional hyperplane perpendicular to
the field A(x) satisfying:
(2.8) A(x)dx” = 0.
Such a surface exists if the Frobenius condition is satisfied

2.9) Aadi=0.

By the definition of integral elements we have:
STATEMENT 2. The mapping £ > D -£- 5 is a solution iff

(2.10) due .

(*) Denoted also by Tyu.

We have in our case the isomorphisms TuocE® E, T, % H; therefore we can regard 4 as a vector
from E* and 7 as a vector from J%.
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Thus if # « &, then we may seek solutions such that du € 7. For example, if we have
a family of integral elements depending on any parameters &', ..., &: L(u, x, &, ..., &) e
€ #(u, x), then the solutions

(2.11) du = L(u, x, &, ..., &)
exist iff the integrability conditions:
(2.12) 0 = d(du) = dL modulo (2.11),

are satisfied. This imposes certain conditions on a class of elements L(u, x, &', ..., &).
We shall consider these conditions in what follows. In particular, we can choose:

213) L(u,x, &, .., & u, .., 00) =8y, Q@ P+ ... +&y, Q@ I
+u'n @A+ ... + 1Py, R4,
N N N N

P
where D 4* = 1 and V¢ ® A9 are simple elements of a homogeneous system and y, ® 4°
s=1 N N

are simple elements of a nonhomogeneous system.
The physical meanings of these two sets of elements y ® A and y @ 4 are different.
N N

While the homogeneous elements are usually connected with certain waves, which may
propagate in the medium, the nonhomogeneous elements lead to certain special solutions
which will be called simple states and which, in general, may be not attributed to waves(?).
But we may seek solutions of the form (2.13), where the tangent mapping du is the sum
of homogeneous and nonhomogeneous elements. Correct choice of the element of the
form (2.13) leaves considerable freedom and compels us to study the structure of its com-
ponents as well as a solution, in which the integral conditions are satisfied. The physical
sense of solutions of this type may be regarded as an interaction of waves with medium
in a certain state.

3. Simple waves and simple states

It has been shown in [1-4, 7-9] that simple elements for homogeneous systems of the
form (1.1) (i.e., such that * = 0) are connected with a certain rich family of solutions
of what are called simple waves(®). Let us consider a curve I":u = f(R) in the hodograph
space #', where R is a parameter. Let us assume [ is such that the tangent vector:

@) T FR) = y(f(R))

(?) In the literature [6, 10], solutions « of rank u = 1 (i.e., rank ||u’¥|| = 1 are actually called simple
waves. We use the word “wave” for solutions which are interpreted as physical waves. E.g. elliptic non-
homogeneous systems also have solutions of rank one, but we cannot call them “waves”. That is why we
have chosen to call solutions such that du = ;@ “:} “simple states”.

(*) In those papers are considered systems with coefficients indepenslent of x, and only such systems
are considered in this section.
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is the characteristic vector. Then there exists a field of the characteristic covector A(u)
dual to y(f(R)), defined on the curve I:1 = A(f(R)) ().

TuEOREM 2. If the curve I' = # satisfies (3.1) and if @ (.) is any differentiable function
with one variable, then the function u = u(x) given by:

u = f(R),
R = p(A,(f(R)x")

is a solution of the system: a5 (Wu’, = 0.

This solution is called simple wave. Each curve I" satisfying (3.1) is called characteristic
curve in the hodograph space . Theorem 2 holds that if a mapping E — 5 is a simple
wave, then the image of u is a characteristic curve in 3. The parameter R is called Rie-
mann’s invariant,

The form of solution (3.2) suggests that the covector A should be treated as an analogue
of the wave vector (w, k), which determines the velocity and direction of the propagation
of the wave. By contrast with the case of linear equations, here (w, k) depends also
on the value of the solution; therefore the profile of the wave is changed during
propagation. It is due to the form of the expression (3.2). The solution (3.2) is constant
on (n—1)-dimensional hyperplanes perpendicular to A. By differentation of

R = ¢(4,(R)X’),

3.2)

we obtain:

= » =
(3.3) Ry = IS O IS T

It follows that on hypersurface 9, which is given by the two relations:

R = ¢(A,(R)x"),
P(A4(R)x") 4, (R),g ¥ = 1,

the gradient of the function R becomes infinite and this situation is called the gradient
catastrophe. Our solution does not make sense on the hypersurface M. In this case, certain
discontinuities can arise — e.g., shock waves. It was mentioned above that the function
R(x) determined by (3.2) is constant on hyperplanes orthogonal to the covector A. (For
each of these hyperplanes there is determined a certain value of the parameter R). Hence
in general (except for a few cases —e.g., if planes are parallel) there exists a developable
surface, which is an envelope of this family of planes. This surface is exactly the place
of gradient catastrophe.

It is easy to check that, in the case of simple wave, du is a simple element. In other
words, simple waves are just solutions of the system:

(3.4)

(3.5) du = §y(u) @ Au),

(*) It may happen that there exists more than one characteristic covector A for given y. Then the set
of simple waves is richer [8, 9].

7 Arch. Mech. Stos. nr 2/74
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where y(1) ® A(u) is the field of simple elements over the space # ® E*. This system
always has solutions. Indeed, if u = f(R) is a solution of the system du/dR = y(u) of
ordinary equations, then the relations:

u = f(R),
3.6
oy R = p(h(f(R)) )

represent a simple wave.
Following analogy with simple wave, we introduce the notions of simple state. A map-

ping u(x) is called a simple state iff
3.7) du=yu)® Aw), y=2iw), i= Auw).
N N N N N N

By contrast with the case of simple waves for homogeneous systems, the formula (3.7)
of du has no free parameter £, and the integral conditions are not automatically satisfied

as in (3.5).
By exterior differentiation (3.7), we obtain:
(3.8) dyai+idi =0,
N N NN
where
Y= i
N
dh= 2 ?A modulo (3.7).
N NRJN

From the Eq. (3.8), we obtain (*):

AA 4, = 0 modulo (3.7)
N NN

modulo (3.7)

because dynd =y Ani=0.
N N N¥N N

From this we see that the system (3.7) has a solution iff: 4 A A=0—i.e,
Ny N
3.9 A = A

(39) Ao

This means that the direction of covector 4 does not change in the direction . The image
N N

of simple state is also a curve tangent to . Let this image be given by u = f(R,). Then
N

the condition (3.9) becomes
AN Ag, = 0, where 1 = A(f(Ro))
N N

or

Af.'go & ‘ﬁ

This means that the direction of 1 does not depend on Ry ; hence it is constant in the physical
N

space E. Thus solution is constant on hyperplanes which are disjoint — i.e., there is no

(*) We denote A,y = A4 ¥
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gradient catastrophe. By so choosing the length of A that 4z, =0, we may represent our
N N

simple state in the form:
(3.10) [u = f(Ro), Ro= i..x".

In the case of nonhomogeneous systems, simple waves attributed to homogeneous
elements are not solutions of the (nonhomogeneous) systems we have started. We may

seek slightly more general solutions, which would correspond to an interaction of simple
wave with simple state and which would be “good solutions”:

(3.11) du = E?(u)®/1(u)+g(u)®i(u)-
As in the case of simple state, the existence of solutions of (3.11) needs certain con-

ditions, called involutivity conditions. Namely, closing (3.11) (by exterior differentiation),
we obtain:

(3.12) YQdEAA+Edy A A+EyRdA+dy A A+yRdA = 0.
N N N N
Let @ be the set of (/-2) covectors r in the space #*, such that
(3.13) {roy>=0 and () =0.
N
The scalar multiplication of the Eq. (3.2) with the vector r yields:
(3.14) E(r,dy) AA+{r,dyd Al =0, (red),
N N
where by (3.11) we have:
dy = yudd' = &y,A+y A
wN

n
dy = yudd = Ep ity 2 [ TOWIC D).
N W N NRN
Hence,
(3.15) Er, v AN A+Er, y AN A = 0.
N N N N

But & being an undetermined parameter, we require the coefficients of powers of & to be
zero. Hence,

(3.16) Kryyp—<rsy N Ani =0.
N N N
If we assume AA A # 0, we obtain
N
<!’, (?.y'?.?)) =0.
N N
But the expression in brackets is the commutator of the fields y, y; hence we have
N
(3.17) ry [y, x]) =0,
where [y, y] denotes the commutator of the fields y, y. It follows from the form of vectors
N N
r, that the Eq. (3.17) is equivalent to the following condition:
(3.18) [y, ¥l € {y, y} = linear space spanned by y, y.
N N N

T+
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This means that the Frobenius theorem is satisfied; hence there exist surfaces tangent
to vector y, y. Let covectors w, w € #* be such that:
N N

(3.19) {ow,y) =1, (w,ﬁ) = 0.

and

(3:20) {w, ) =0,{w, ) = 1.
N N N

By multiplication of the Eq. (3.12) by @ and w respectively, we obtain:
N

(3.21) dE A A+ Ew, dy) A A+EdA+{w, dyd AR = 0,
N N
(3.22) Ew, dy) A A+{w, dy) A A+dA = 0,
N N N N N
where, using the Eq. (3.11), we have:
(3.23) dA=diAd g = EAAA,+ANR,
NN modulo (3.11).

(3.24) dA = dui' AAj = EANA,+AAA

N N N" N NY

Substituting the form (3.23), (3.24) and (3.14) into (3.21), (3.22), we obtain
(3.25) AEANA+E @, Y, ANAHEEAAAy+ AN R )+, Ey»ANA =0,
NN N N N N

(3.26) o,y YANA+E 0, Y0 ANA+(EAA A+ AN A)=0.
N NN N N N N N N¥

By means of exterior multiplication of (3.25) by 4 and using Cartan’s lemma, we obtain

(3.27) AnAARy =0,
N

But coefficients of appropriate powers of £ in the Eq. (3.26) are assumed to be zero; hence
by the Frobenius theorem and because of the form of the covector w, we have the following

N
conditions:
(3.28) And =0,
N Ny
(3.29) AR (Ry+<o,ly gD ) = 0.
N N N N

The conditions (3.18) and (3.27)-(3.29), called involutivity conditions, ensure the existence

of solutions of the system we have started with (3.11). They ensure (this will be shown

in another papeY) that the set of solutions of the system (3.11) depends on one arbitrary

function with one variable, The physical interpretation of this fact is that the profile of

a simple wave connected with the element y® 4 may be chosen in any manner, but the

profile of a simple state connected with the element y® A is somewhat determined. The
N N

solution describes a certain (non-linear) superposition of a simple wave and simple state.
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II. Classification of systems of quasi-linear first-order differential equations

The classification (°) introduced in [7] seems to be useful in the construction of special
classes of solutions mentioned here. The idea of this classification is to distinguish the
following subspaces in the space of homogeneous integral elements X",

4. The space Q,

By Q, we denote the linear space generated by all simple elements belonging to
H (xq, Up) —ie.,

4.1 0, = (n®#},

where { } denotes linear subspace generated on elements y,® A*. Obviously, the inclusion
4.2) (N 4

holds.

5. The space Qp,

We define Q.. to be the vector space generated by the set
(5.1 {a(xo, uo) € #": {a*, g = 0 and rank||g(xo, uo)|| < m}.

Thus Qn(xo, uo) is the linear space generated by integral homogeneous elements of rank
at most m.

Obviously we have
(5.2) 0cQ cOc..cOu=4.

6. A theorem for hyperbolic system

Now we show the role of simple integral elements in the theory of first-order hyperbolic
systems of differential equations. Let us consider systems of the form:
(6.1) ayuly = 0.

We consider the following polynomial (called a characteristic polynomial) of variable
& € . Namely, let: n, # € E*, then

6.2) w(é) = a’(én,+9,).

Obviously, if for £° € Z we have w(£°) = 0, then A = &°n+# is a characteristic covector.

Thus there exist, dual to it, characteristic vectors y, where & = 1, ..., ro; ro — is the
0,a
multiplicity of the root £°.

(°) This classification, and also the entire study in this Chapter deal with systems with coefficients
dependent on (x, &) only.
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DEFINIT ON 2. We say that the system (6.1) at the point (x4, uy) is hyperbolic in the
direction o € E iff for each /\ such that

0O E*
(6.3) {(#,0o>)=0
and n such that
(6.4) {n,0) #0

the characteristic polynomial (6.2) has:
1. k < I real roots &' < ... < E* multiplicities of which do not depend of the choice
of 0.

2. The characteristic vectors: ¥, ¥V, ...s Vs Ps oee orn y corresponding to 2\, ..., A* ge-
11,2

a2 Ky
nerate the hodograph space (#)(7).

DEeFINITION 3. The system is strongly hyperbolic in the direction o € E for each ¥ sat-
isfying (6.3) iff its characteristic polynomial (6.2) has exactly I different real roots.

When k = I, and roots & are different, then vectors Z’ p =1, ..., I which are associated

with all eigenvalues generate the whole hodograph space #*' — i.e.,

(6.5) D=t} = #"

DEFINITION 4. The system is hyperbolic (resp. strongly hyperbolic) iff there exists
o € E such that the system is hyperbolic (resp. strongly hyperbolic) in the direction o.
There is a connection between Q, and hyperbolicity, because of:

THEOREM 3 [7]. If the system (6.1) is hyperbolic, then all its integral elements may be
written as a sum of simple elements —i.e.,

(6.6) H (xo, 1) = Qi (%o, o).
It follows that the entire space of integral elements is generated by simple elements —i.e.,
every integral element is a linear combination of g — simple elements:
H =y @M+ ... +7,Q 4,
where g < n'I—m.
The systems for which X (xo, ug) = Q,(xo, tp) Will be called Q,-systems.

II. Classification of nonhomogeneous systems

Having introduced nonhomogeneous elements, let us extend this classification to
nonhomogeneous elements. Following the former procedure, let us define the following
hyperplanes in the hyperplane #.

7. Hyperplane %,
Hyperplane %, is the plane which contains all the elements L, of the form:
.0 Li=y®4,
N N
where y € &', 1 e #™*
N N
(") The vectors y introduced here are called usually the right-side characteristic vectors. Also introduced,
corresponding to 4, may be the left-side characteristic vectors » = (%, ..., #;) defined by the relation

x,a_sg'l» = 0. The right-side vectors appearing in the definition 2 may be replaced by left-side characteristic
vectors. The two definitions so obtained are equivalent.
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and (®)
{a®, y@ 1) = b*
N N

— i.e., all the elements of #, are of the form:
P
1.2 Iy = Sy @ A,
(7.2) 1 é:#g: ® 5

where ZP: =1 and;},@]é’, ...,z,,@f are linearly independent simple nonhomogeneous
e[ermznst;,l which generate #,. Of course,
(7.3) o

The systems for which Z(xo, o) = £ (x0, o) will be called #-systems.

8. Hyperplane %,

We continue this procedure. Let us denote #;(x,, #,) the linear subspace generated
by all L € Z, such that

(8.1) rank || L(xo, uo)|| < k.
Obviously, we have:
(8.2) P el P=2.

For k = 1, we have a hyperspace generated by simple elements. The dimensions of
the appropriate hyperplanes are closely allied to the richness of the sets of elements with
given properties. Let

(8.3) fox = dim #,—dim Z,_,.

Multi-index ¢ = {g,, ..., 0«}, which is a function of a point, is called the index of classi-
fication for system (1.1). (Remark: if %, is an empty set, then we define dim %, = —1).
If ¢, = —1, then the system (1.1) has no solution built from simple elements (there are
no simple states). If o, # —1, then we may seek solutions of the system (1.1) built from
simple elements (i.e., rank||LJ|| = 1) and in some cases we may obtain solutions which
are the interactions of simple waves and simple states.

The study of the structure of elements of hyperplane &, (x,, u,) enables us to find
physical properties of solutions which are simple states or superpositions of a simple state
with simple wave.

9, Theorems on type .%, system

Now, we shall demonstrate several theorems exhibiting the structure of #. They
enable us to decide whether a given system is of type £ (x,, up), (i.e. L(xo,up) =
= &£ (xo, Ug) or not. Let us consider a system of the form:

(9.1) Ugo+Auy, =b, where A= (Ai(x,u))e(R*xR).

(®) We denote <a%, y@A> = ajpliy.
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It follows from the form of the Eq. (9.1) that the covector (1,0) is noncharacteristic.
Let us consider any fixed point (xq, 4o) € Ex 2. The set of noncharacteristic covectors
is open in E* for fixed (x,, #o). (This fact is a consequence of the Darboux property applied
to the function ¢(4) = det||a}’4,||). If for some A det||a}’4,|| # O, then there exists a neigh-
bourhood of 4 such that in this neighbourhood we have det||a}’4}|| # 0 — i.e., all vectors
in this neighbourhood are noncharacteristic. Without loss of generality, we may assume
that also the covector (0, 1) is noncharacteristic, since we may obtain it by linear trans-
formation of independent variables. Consequently on the remark above, the set of nonchar-
acteristic vectors is open; hence, there exists ¢ > 0 such that for |A,| < & all covectors
(A9, 1) are noncharacteristic. But we also assumed that the covector (0, 1) is nonchar-
acteristic; hence the matrix A4 inthe Eq. (9.1) has an inverse. Hence the equation for simple
elements is of the form:

©.2) (Ihg+A)y = b.

THEOREM 4. Let us consider the system (9.1). If the vector b does not belong to any
invariant (°) space N = (N # ) of the matrix A, then we have

9.3) &L ((xo, Uo) = Z(xo, o).
Proof. We may assume that the covector (0, 1) is noncharacteristic, and then:
(9.4) y=Ih+A)"*b for |A| <e¢,

where ¢ > 0. Since ¥ = p(4,) is an analytic function in the neighbourhood of zero for
Ao € (—&, +¢) = I,, we may write (9.4) as a von Neumann series for small values of 1,
such that i, < ||4||. Thus we have:
9.5) (TAo+A) ' = A V1 =AgA~ '+ BA- 2= 1343+ ... +(— Ay A~"+ ...).

The tensor product ¥(4,)® A(4,) is also an analytic function; hence:
9:6)  P(A)®@A(Ao) = A~ (1=2gA™ + ... +(=2)"A™"+ ..)bR((0, 1)+ (1,0) %) =

= A75®(0, 1)+ D) (= 10" (4~"6® (0, 1)— 4"+ (1, 0)).

n=1
By way of proof, we need only remark that first /+1 coefficients of different powers of
Ao are linearly independent in the space ¥ @ E*. These elements are:

9.7 {(47)®(0, 1)}, {4726R(0, N—A"'b®(1,0)}, ..., {47"1b6R(0, 1)
—-A~'b®(0, 1)}.
Let us denote 4~"b = b,. Since b belongs to none of invariant spaces of the matrix 4,
then vectors by, b,, ..., b, are linearly independents and generate the whole space # and
by, =a'b;, i=1,..,1 Let us denote: e, = (1,0), e, = (0, 1). For (9.6) we have:
(b,®ey), (b;Re;—b,®ey), ..., (b Qe —bi®es).

Now we show that these elements are linearly independent. Let us consider any linear
combination

(9-8) c1(b:R®e))+c,(b,Qe; = b, ®e0)+ ... +c1y1 (b1 @ —bi®ep) = 0.

(°) This means that x e N=> Ax €N.
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From this it follows that

I+1

U
Debi=0 and D cuibe=0.
k=1

i=1

But b,, ..., b, are linearly independent; hence, c,, ¢3, ..., ¢;4; = 0, and hence also ¢; = 0.
Therefore the vectors in (9.8) are independent. Thus the dimension of the space generated
by simple elements of the form (9.5) is equal to:

9.9) dim {y(2o)® A(Ao)biger, = I+1.

Since there are /+ 1 linearly independent elements in (9.7), the dimension of the hyperplane
generated by £, (x,, uo) is at least /.

In addition, the dimension of the linear subspace £ (x,, u,) generated by -all the
integral elements of the system (9.1) is dim{&(x,, u)} = I Hence: £, (x,, to) =
= P(xo, o). Q.E.D.

Let N, be the smallest subspace invariant “'%? under the matrix 4 and containing vector b.
This means that N, is spanned by vectors b, Ab, A%b, ...; Ny = {b, Ab, A%b, ...} =
= {Arb}lzn,l,,.‘ul)-

By H®*® we shall denote a subspace generated by the eigenvectors of the matrix 4. We
shall consider only the real eigenvectors and eigenvalues. Obviously, H¥*? is an invariant
subspace of the matrix 4. We obtain the following theorem:

THEOREM 5. If the eigenvalues of the matrix A are distinct (provided they exist), then

(9.10) dim%, = dim H®?+dimN,—dim(H®'® N N,).

Proof. Applying an appropriate transformation we may assume that the equations
determining simple elements are of the form:

1
My y ¢
.. 0 : :
(9.11) Tl + Hp »wi|=10
0 B 0
Ay Ve 3
A LYN N _

where u,, ..., p, are eigenvalues of the matrix 4, B— is a matrix of dimension (/—p+
+dimN) x (/—p+dimN) and Ay is a matrix dimN x dimN. The matrix B has no eigenvec-
tor. It is easy to see that: Simple elements y(4,)® A(4o) for Ao # mi, i = 1, ..., p generate
a hyperplane of dimension equal to dimN, (this follows from Theorem 4) or a linear sub-
space of dimension equal to dimN,+ 1. The vectors ¥(4,) are of the form y* =0, ... ... 5
v PP =0,y5 = (", ..., 9") = 0, where r = [—p+dimN. Now if we set A, = —pu; we
shall obtain the following solution for y(—u):y* = 0, ..., 9"~ = 0, ' is undetermined,
y*1 =0,...,9P =0 and y5 = 0. Setting i = 1, ..., p, we shall obtain further p inde-
pendent elements, where p = dim H®™? —dim(H®™® n N,). Thus, dim %, = dim H*" +
+dimN,—dim(H™® A N,). Q.E.D.

(*°) N is an invariant subspace of the matrix A, if N > A(N)—i.e., /\ Ax€e N.
xeN

(*") As there are at the most / linear independent vectors we may take / successive ones.
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From this theorem, we obtain as a corollary:

THEOREM 6. If the system (9.1) is strongly hyperbolic, then % ,(xq, ug) = L(x,, up).

Proof. If the system is hyperbolic, then H®® = 5. From the assumption that our
system is strongly hyperbolic it follows that the matrix 4 has exactly / = dim # distinct
eigenvalues. Applying the formula (9.10) we have then:
(9.12) dim¥, = dim#.
But also dim & = dim # and %, < %. Hence,

£ (x0, tg) = L(x0,20) Q.E.D.

COROLLARIES. Suppose the system (9.1) satisfies the assumptions of Theorem 5. Since
dimQ, = dim H®™", we may write (9.10) in the following form:
(9.13) - dim¥; = dimQ, +dimN,—dim(Q; n N).

Hence,
1. If Ny € H9?, then dim ¥, = dimQ,.
2. If Ny & H®®, then dim %, > dimQ,. In fact dimN, = dim(H™° n N,).
From this it follows that

9.14) dim %, > dimQ,.
3. If the system is elliptic — i.e., dimH™? = dimQ, = 0, then
(9.15) dim &, = dimN;.

R e m ar k. The inequality (9.14) may not hold if a root of the matrix A has multiplicity
greater than one.
Example. To give an example for dim #;, < dimQ,, let us consider an equation
of the following form:
1

phtple =84, j=1,...,1, when A=1b = 0
0
The equation for the nonhomogeneous simple elements takes the form: (JA,+1)y =b.
| 1
Ao+ 1
Hence, for 4, # —1 the only solutionis y =| 0 |, and for A4, = —1 there is no
0
solution. But for 4, # —1, we have only two linearly independent solutions — e.g.,
1 1

{3 ®(0, 1) and 0 ®(1, 0). They correspond to 4, = 0 and A, = c0. Thus
0 0
dim &, = 1. But obviously dimQ; =1 —i.e., dim¥, < dimQ,.
Let the matrix 4 have eigenvalues u; with multiplicities k(i). Also, let the number of
linearly independent eigenvectors associated with an eigenvalue p; be equal to its multi-
plicity k(i) for i = 1, ..., r. By H; we shall denote the space corresponding to the eigen-
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value y; of the matrix 4. By virtue of above assumption, H; consists only of the eigen-
vectors corresponding to the eigenvalues g;. We define a function:
0 when H;nN,=0,

5 X(H) = { 1 when H; nN,#0.
We shall now formulate a lemma which will be helpful in the proof of the theorem.

LEMMA 1. The invariant subspace N, has at the most one common direction with each
of the spaces H; — i.e.,
(9.17) dim(H;n Ny) < 1.
It is essential in the proof of this lemma that the subspace N, is generated by the vector
b (i.e., Ny = {b, Ab, A%b, ...}).

We obtain the theorem:

THEOREM 7. Let us assume that for the system (9.1) the matrix A has at the point (x,, o)
r distinct eigenvalues u,, ..., g, with multiplicities k(1), ..., k(r). Let us assume moreover,
that the number of linearly independent vectors associated with the eigenvalue p; is equal
to its multiplicity k(i) for i = 1, ..., r. Then we have:

(9.18) dim £, = dim Ny+ ) k() (1—x (H))
i=1
or [1 2)

;
9.19)  dim &, = dim Ny+dim H®* —dim(H™®  Np)— Y, (k()—1) x(H).
=1
Proof. It follows from the Lemma 1 that in a suitable system associated with the
eigenvectors, the system of equations for nonhomogeneous simple elements can be expressed
in such a form that in the section 4y each eigenvalue occurs at most once:

P
[ A Y
l ! 0
M.}_“ k(1)-1 | §k(l}-t :
B AR
i ’\"f"}"‘ 1 ¥ ¥ w0
P 0 £
"Pr | 3P
B{l 0 B8, 0
el a7 e —
° C | Bg HB‘ bﬂz
K ¥ i
Ms i bg
O : Mpo gP bp4
| Fr 8",. bl’
A Y
An

(*?) These expressions are equivalent.
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where all the components bg, by, ..., b, are different from zero, Ay — a matrix of the

dimension dimn Nxdim N, B = ng{:) — a matrix which has no eigenvector (**), B, —

a matrix of the dimension (’_(,21 (k()—1) +p—s+dimN)) x(l-—(izl' (k()=1) +p—s+

+dimN)). Some of the eigenvalues appearing in the section Ay may also appear
in the section P. They may be so ordered that only g, ..., us appear in Ay. The
eigenvalues ., ..., 4, do not apear in Ay.

We notice that the simple elements y(4o)® A(4,) exist for g # —yy, i=1,...,r,
and they span a hyperplane of the dimension equal to dim¥, (from Theorem 4) or a linear
subspace of the dimension equal to dim¥N, + 1. The vectors y(4,) are of the form (0,0, ...,
..., 0, Py) —i.e., the part corresponding to the section P vanishes. If 4, = —py;, and
i appears in Ay then the system has no solution for y. If u; does not appear in 4y, then
the solution exists and it has the form:

y= (0! seny 0: reey 0’ Oyy e ak{i)! 0’ reey 0! ;N)a where Opy veny Uiy
K1) k(i)
are arbitrary components of the vector y. Thus the dimension of the hyperplane %, is
equal to dim &, = dimN,+the sum of multiplicities of x; not appearing in Ay:

dim £, = dim N, + ), k()(1—x(H)).
i=1
But

r

D'k(i) = dmH™ and  dim(N, 0 H™) = Y y(H),
iI=1

i=1

hence,

dim &, = dim H®*4dim N, —dim (H™® n N;)— Y, (k()—1)3(H). QE.D.

i=]

COROLLARIES. 1. If the system is hyperbolic then dimN, = dim(N, n H). As H = H™",
or equivalently dimN, = > y(H,), thus
i=1

dim £, = X k()= X k@) x(H)+ D) y(H);

i=1 i=1

hence:

(9.20) dim &, = dimH— ) (k()—1)3(H) for a hyperbolic system;
i=1

(**) If N, is an invariant subspace of the linear mapping B: E — E (having no real eigenvector), and
if €, ..., €k, €441, ..., €n is @ basis in E such that e,, ..., & spans the subspace N, then the matrix B of

the mapping takes on the form: B = (g‘ B':)’ where the matrix B of the dimension (n—k)x (n—k) and

matrix B, of the dimension k x k have no real eigenvectors.
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of course, we have:
9.21) dim %, < dim Q, = dim X" for a hyperbolic system.

The inequality appears if the matrix A has roots with multiplicity greater than one.

2. If Ny c H®, then dim ¥, < dim Q,.

3. If Nyn H®® = {0}, then dim &, > dim Q,.

Proof. We have H; n N, = {0}, therefore y(H;) = 0. Consequently, dim &, =
= dimN,+dim H®®, Moreover, dimQ,; = dim H®"®; hence,

(9.22) dim &, = dimN,+dimQ,.

4. If the system is elliptic — i.e., dim H® = dimQ, = 0, then
(9.23) dim &, = dimN,.

We may also consider a more general system:
(9.24) Bt Ap ., = b, a=1,..,n.

In such a case it is necessary to consider in some places a matrix 4%4,, « = 1, ..., ninstead
of matrix 4. Suppose y; = m(ﬁ), A= (Agy vy Ay) € R" are different real analytic func-
tions defined on #". Assume, moreover, the number of linearly indepedent eigenvectors

corresponding to g, to be equal to k(i), i =1, ..., r. Then our theorem may be generalized
as follows:

(9.25) dim 2, = n{dimNy+ D kG)(1-x(H))};
i=1
we may write also

(926)  dim 2, = dimQ, +n{dimN,~dim(H™® ~ Np)— > (k(i)—1)z(H)}.

i=1
This expression is a generalization of the formula (9.10), where N, and H® are computed
for any fited direction 4 € #" such that its roots u(4) (with multiplicities k(i)) are dif-
ferent (14).
In particular, the assumptions are satisfied if for any 1 € %" we have (%) # u;(2)
for i # j, the multiplicities k(i) are independent of A, and the number of corresponding
linearly independent eigenvectors is equal to k(i),i =1, ..., r.

10. Examples — nonhomogeneous equations of gasdynamics

Now we shall consider some examples to illustrate the theoretical considerations above.
We have chosen the case of nonhomogeneous equations of gasdynamics; it is possible
to apply them to geophysical fluid dynamics.

Let us consider the classical equations of hydrodynamics which describe the motion
of fluid medium when the gravitational force and Coriolis force occur. We study only the
equations of flow of the one-component nonviscous fluid. Under these assumptions our

(**) For certain 4, ui() = ﬂj(i) is permissible.
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equations are of the type (9.1). The form of these equations of hydrodynamics in a non-
inertial system is:

e{%ﬂﬁvﬁ'} +Vp = 0g—200x 7,
(10.1)

dp W d [P
¥ +div(g?) = 0, E(?) =0

Here we treat the physical space E ¢ #* as the classical space-time, each of its points
having coordinates (¢, X), and the space of unknown functions (i.e., the_hodograph_space)
H < &3 has the coordinates (g, p, 7). Let us denote by 4 = (45, 1), where 4 e R3,
the vectors which belong to E* and by y = (¥,, ¥, ¥), Where 3 = (', ¥%, %), elements
of the space T'2#, where ¢ — ¥,,p = ¥,, v = 7. Algebraic equations which determine
simple elements for the equations (10.1) are of the form:

087 +y,1 = o(g— 2 x7),
(10.2) oy, +oyA =0,
0(evp—npye) = 0,

where we use the following notation: 2 = 2@ and

(10.3) A = Ao+T- A
The physical sense of the function & is the following: it describes the velocity of
the propagation of disturbance relative to the fluid. We may consider the Egs. (10.2)
as a system of linear nonhomogeneous algebraic equations. By the Kronecker-Capelli
theorem, there exists a solution y different from zero iff one of the following cases holds:
l. gy =8=0 and y,= 0,2-02x% =0,

2.0gy =8=0 and y,#0,

]

(104) 3.6, =0=¢]/ Land 1 (E-2xv)=0,¢e=+1;

e
0
—,e==+1.
4. Omy =6;6|£l/1p_
0

The Egs. (10.4.1) and (10.4.2) determine (by (10.3)) entropic elements, which correlate
to simple entropic states denoted by Ey,, Ey,, respectively. The Eq. (10.4.3) determines
acoustic elements, which also correlate to simple acoustic states, denoted by Ay. The
Eq. (10.4.4) determines hydrodynamic elements, denoted by Hy. It follows from the
definition (10.3) above that the velocity of entropic state Ey relative to the fluid is equal
to zero—i.e., this state moves with the fluid. The velocity of propagation of acoustic state
A relative to the medium is equal to sound velocity: /dp/do = J/ #p/o. The hydrodynamic
state Hy may move with any velocity, except entropic velocity dg, = 0 and acoustic

04y = & }/ %plo. The conditions (10.4) above hold that cones of simple nonhomogeneous

elements are determined only in that part of the hodograph space where the vectors belong
to spaces tangent to these submanifolds (10.4).
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It follows from the analysis of the homogeneous system (10.2) that if there exists a non
zero solution on the vector y = (y,, ¥,, ¥), then the characteristic determinant of this
system must be equal to zero — i.e., the following condition must hold:

(10.5) 8%12® (52I}'E’—%‘f~ i’) = 0.

We have solutions of two kinds, namely:

. dg=8=0, entropic velocity,

10.6
g 2.0,=0= sl/—’;f- acoustic velocity.

The Eq. (10.6.1) determines entropic elements, which correlate to simple entropic
waves E, and (10.6.2) determines acoustic elements, which correlate to simple acoustic
waves 4. We shall give later the physical interpretation of these velocities and their simple
states.

The Egs. (10.1) are of the Cauchy-Kowalewska form, and constitute a system of hyper-
bolic equations, the dimension of which is dimQ, = 15. By (10.6), these equations have
three eigenvalues of multiplicity of root 6 = 0 egual to three. By the corollary to Theorem 6,
the dimension of tensor space generated by simple nonhomogeneous elements is

dim %, = dimQ,—(n—l)Z(k(i)—l)x(Hi).
i=1
The dimension of invariant subspace N, is dim N, = 3.
Since dim(H; n N,) # 0, it must occur that y(H;) = 1; hence we have:
(10.7) dim &, = 9.
Thus the system we consider has linear elements, which are not a linear combination of

simple elements. In other words, simple nonhomogeneous elements do not generate the
whole space of integral elements.

Simple states

1. Simple entropic states Ey, and Ey,

The condition (10.4.1) applied to the Eqs. (10.2) gives the following system of algebraic
equations, which determines entropic elements Ey, :

(10.8) do=—-0:1, y,=0, y:1=0, g—0x0v=0.
The solution of this system gives simple nonhomogeneous elements Ey of the form:
(10.9) 9 = (¥,,0,ax7), = (=04, ) & = Qx0, where & is arbitrary vector.

If we require the conditions of integrability (3.9) for (10.9), we have the simple state
Ey, of the form:

(10.10) ¢=o(s), P=Po, T=p)R-c4, 2-4=0, 2g-2=0,

where |4| = 1, B(s) — arbitrary function.
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The function s = S(z, x) should be treated according to the formula (3.6); this means
that the four-vector VS(z, X) is equal to 4; then s = ¢,t+4 * X.

This solution (when the condition ¢; = 0 is satisfied) describes the gas in the state
of equilibrium in the field of gravitation and Coriolis force.

Applying the condition (10.4.2) to the Eq. (10.2), we obtain the equations which describe
the entropic elements Ey;:

(10.11) yoh = 0@—-02%x%), yA=0, 9,#0, 1= —0i
Thus the simple nonhomogeneous entropic elements Ey, are of the form
(10.12) 7= (Ve 0, %X E—2x7)), A= (-0g, §-2x9),

where @ is arbitrary vector.
If we require the conditions (3.9) for (10.12), we obtain the simple state Ey, of the form:

(10.13) e=p@), p=p(), g-R=0, A=(1+a g, V=uxg,
p(s) is arbitrary function, where the function s = S(¢, X) is defined by s = X - g.

The solution above describes the gas which moves with no acceleration and friction
in the direction perpendicular to g. The flows of this kind occurring along parallel
rectilinear izobars are a subject of consideration in geophysics, where they are called
geostrophic wind.

2. Simple acoustic state Ay

Application of the condition (10.4.3) to the Egs. (10.2) yields to the following system
of algebraic equations, which determines the acoustic elements Ay

e ]/ 22 A7+7,d = o€~ 2x3),
(10.14)

xp = - xP
& ?P Mh’e'l' 97')' =0, yp= "9_'}’0-

The solution of this system is given by simple nonhomogeneous elements Ay of the form:

, ~ .
y= ?e,ﬂre»———_(e@—ﬂx%)—ﬁm) ;
¢ ]/-’f—lil )
(10.15) 0

2= (s '/% |‘f|_<ai,i), E-2x9)-1=0.
Applying the conditions (3.9) to (10.15), we obtain the simple acoustic state Ay of the form:

_ _ w41 o _
(10.16) o =900, p=cos, T=P()xA+(e |/cx90 2 —c))A, 2 =c,A,

gA4=0, f-d=, |4 =1,
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where: g,, ¢, ¢;, €;, ¢3 denote arbitrary constants and conditions which determine coordi-
nates of the vector f(s) — namely:

= Cy —.
L. g‘ﬁ__—zz'-ﬁzzc.’i!

2. B =2_§£3‘_£,
eVengo *

where the function s = S(z, X) is given by s = ¢, + AX.
This equation describes such a gas in the field of gravitation which is accelerated by
the Coriolis force.

3. The simple hydrodynamic state Hy

The solution of the system (10.2) under the condition (10.4.4) leads to the following
simple nonhomogeneous elements:

—0(8—02x7)- 1 ~xp@-§xa)-7,$[g@_§xa+ m,a(g-ﬁxa)—z7L )

y= )
8- 8227 -2
3 0 0
(10.17) o —
A= (6-%-%,4), where & #{2 2,

If we require the conditions of involutivity, (3.9) to (10.17), we obtain the simple state
Hy of the form:

(10.18) e=00), p=cg, T=PfxA+p@)A4

and the conditions:

—0(@-4+6-9Q)
(cy +@)*—cxg**’

Thus the problem is now to solve the system of four nonlinear usual equations on functions

e, ¢, p.
Now we shall consider the special case of the Egs. (10.1) when the Coriolis force does

not occur (i.e., when 2 = 0). Simple elements for this case are now:
1. Simple nonhomogeneous entropic elements Ey:

(1019) YE = (yqs Q,EXg), AEN = (—EE! _)'

8 Arch. Mech. Stos. nr 2/74
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2. Simple nonhomogeneous acoustic element 4y

®p 1

yA.N = ygu??p’ o
Ep ._p_iaxgrl

. I e
Ay = (s]/ﬁ;—wxa—a-axg, axrg).

3. Simple nonhomogeneous hydrodynamic element Hy

(10.20) [eé—"—jnﬁx‘g‘] ,

(10.21) _ —08 4 —upg- A L xpg- A _
N 32_P 7 ,az_ﬁiz " 0 62__";&12 ’
4 (4 [
Ay = (8—74, 3),
0
where § # %p -
8 ey

e
Simple homogeneous elements are of the same form as before (10.6). The dimension
of the tensor space generated by simple nonhomogeneous elements is also dim %, = 9,
since nonhomogeneity occurs in the the Euler’s equation, exactly as before.

Simple states
1. Simple entropic state Ey

Using the Eqgs. (10.19), we obtain the state Ey of the form:
(10.22) e=p0), p=pb), T=uaxg-c Z
where the function s = S(z, X) is given by s = ¢;#+gXx. This solution describes the gas
in the state of equilibrium in the field of gravitation when flows in the direction perpendic-
ular to g occur. Especially for the stationary case (i.e., when ¢; = 0) and when we put
@ = 0 (we can always do it, since the vector o forces no change either of other physical
values or of the function s), the solution we obtain may be interpreted as the description
of the atmosphere in the state of statical equilibrium.

2. Simple acoustic state Ay
The Eqgs. (10.20) yield to the state Ay of the form:
(1023) g@=g, p=cds, 2 A=0, o= [elcngs )" *s+c,]8+7o,

-1

— _ » —_—
where 9 4 = e)/cxo ? —¢y, |A| = 1. The function s = S(t, X) is given here by
s = cyt+Xxg.
This solution describes free fall of the gas in the field of gravitation; this is seen when
we choose such a system of coordinates, that 7, = 0:
(1024) €2 = Qo, P=c€‘3: §Z=0’ E=§t'
Thus these solutions are not interesting from the physical point of view.



RIEMANN INVARIANTS FOR NONHOMOGENEOUS SYSTEMS OF FIRST-ORDER PARTIAL QUASI-LINEAR ... 293

3. Simple hydrodynamic state Hy

For a study of the behaviour of Hy, we must distinguish two cases:
1. The direction of propagation of the state A is parallel to the direction of the field
g (i.e., g||]4); then we have:

(1025 g@=o0(), p=cg, E=cd4, V= (8—c)A+T,, |4 =1,
and the conditions:

1 a8 _ — (3 —cx0""2) (8> —cxg“~Y)
2 do €0 .

~

®—1 #—1

0<d<eyexp® or e)exg? <34,

where the function s = S(¢, x) is given by s = ¢, 7+ Xxg.

2. The direction of propagation of 4 is not perpendicular to the direction of Z(i.e.,
g+ A # 0); then we have:

(10.26) e=0(), p=cg T=as)g+(d-c)A+7,,
where 6(s) = —& (s)/cxo*? and the conditions:
do og-A

ds cxg*"3(8% —cnp*™Y) ’

! .

0<d<eyexp? or elfexo? <8,
where the function s = S(¢, X) is given by s = ¢, +gX.

In both these cases, we obtain a dependence of the function 8 on p. The condition

-1

0 <6 < e)exp * permits the state to move relative to the medium only with infrasound

x-1
velocities, and the condition e )/ exp 2 < & permits the state to move only with supersonic

velocities. In both cases, when x = 2 we may give an analytic formula which defines
the function é = d(g). Let us illustrate this with an example when » = 2 for the second
case. The solutions now are of the form:

_ 1 _ Gne _
(10.27) po=op(s), p=co", U= e (0+c3)g+(0—c))A+v,, g-A#0,

where

and the conditions:
0<d<ey2p' or e)20'? <8,
where the function s = S(z, X) is given by s = ¢, 1+gX.

8
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Interaction of simple waves with simple states

Interaction of simple waves with simple states may be illustrated by Table 1,

Table 1.
Simple \ Simple Ey Ay iy
wave state
E + + —
x>07
A — + x=1—

where + denotes that interaction occurs, — denotes that interaction does not occur,
? denotes the case which is not determined.

Studies of interaction of entropic state with entropic wave, have led us to the existence
of Riemann invariants. They give the following solutions:

(10.28) e=50, P=p0), ©v= (ﬁ"%ﬁ , —c,/?).

The equations on parameters s, r are of the form:
E= clt+§‘ia vs“(—C3+Cla, C4, Ca, a),

where a, § — arbitrary function of parameters s, r.

This solution describes the gas in the state of equilibrium in the field of gravitation
in which occurs the outflow of flux of the gas in the direction perpendicular to the field g.
If we assume that o = a(s) and ¢; = 0, ¢; = 0, then

(10.29) s = g(cax+cyytaz), r=]|gz.

We have then the stationary case. The state interacts with the wave, since the wave
does not influence the state and, conversely, they interact independently [9].

The interaction of entropic waves or acoustic waves with acoustic state describes free
fall of fluid in the field of gravitation in which the given wave propagates.

The considerations above lead to the following results: the simple state may be in-
terpreted physically as a one-dimensional solution constant on the planes parallel one to
another (since the direction 1\% does not depend on parameter Ry), which may move with

constant velocity in the physical space E3. As was illustrated above, these simple states
may serve also to search for more general solutions, which may be interpreted as
interactions of waves with medium in certain determined states.

I should like to express may great indebtedness to Prof. Dr. R. ZeLAzNY and
Dr. Z. PeraDZYNSKI for their help during the study of this theme.
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Symbols
E physical space,
¥ hodograph space,
A" vector space of solutions of the homogeneous system,
% hyperplane of solutions of the nonhomogeneous system,
Q linear subspace,
N invariant subspace,
H#uyp subspace generated by the eigenvectors of matrix A4,
H; space corresponding to the eigenvalue p; of matrix A,
R,s,r Riemann invariants,
i eigenvalues,
k(r) multiplicities of the root,
u coordinates of %,
% characterisitic covector from E,
:; noncharacteristic covector from E,
p characteristic vector from %,
;\}: noncharacteristic vector from %,
x = (1,x) coordinates of E,
8 = (Ro+u-4) velocity of wave and state regard to a moving media,
o density of fluid,
p pressure of fluid,
v velocity of fluid,
g gravitation field,
» adiabetic exponent,
A direction of propagation of a state,
2 angular velocity of fluid.
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