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Riemann invariants for nonhomogeneous systems of first-order 
partial quasi-linear differential equations - algebraic aspects. 
Examples from gasdynamics 

A. GRUNDLAND (WARSZAWA) 

IN THIS paper, systems of partial differential equations of the form (1.1) are considered from the 
point of view of integral elements defined by the Eqs. (1.2). In particular the connections between 
the structure of the set of integral elements and the possibility of a construction of special clas­
ses of solutions are studied. These classes consist of what are called simple waves, simple states 
and solutions describing interactions among them. We deal with them in Chapter I. A classification 
of the set of all integral elements is introduced. It is a generalization of that given in [7]. 
A couple of theorems useful for this classification are given in the Chapter Ill. The final part of 
the work contains analysis of nonhomogeneous gasdynamic equations from the point of view 
of the method described above. 

Praca niniejsza dotyczy uklad6w r6wnan r6i:niczkowych c1.<4stkowych postaci (1.1), kt6re 
rozpatrywane S<l z punktu widzenia element6w calkowych zdefiniowanych przez r6wnania (1.2). 
W szczeg6lnosci rozwai:a si~ zwiClzki mi~dzy struktur'l element6w calkowych i moi:liwosci'l 
konstrukcji pewnych specjalnych klas rozwi~n. Klasy te skladaj'l si~ z tzw. fa) prostych, stan6w 
prostych oraz rozwi'lzan opisujClcych ich wzajemne oddzialywania. Zajmiemy si~ nimi w rozdzia­
le I. Nast~pnie wprowadza si~ klasyfikacj~ wszystkich element6w calkowych, kt6ra stanowi 
uog6lnienie klasyfikacji zaproponowanej w pracy [7]. W ostatnim rozdziale przedstawiono 
kilka twierdzen ui:ytecznych z punktu widzenia tej klasyfikacji. Druga cz~sc pracy zawiera 
analiz~ niejednorodnych r6wnan gazodynamiki z punktu widzenia omawianej metody. 

B pa6oTe paccMaTpHBaiOTCH I<Ba3HJIHHeHHbie ypaaHeHHH BH,rta (1.1.) c TOtJI<H 3peHHH HHTe­
rpa.TihHhiX :meMeHTOB onpe,rteJieHHhiX ypaBHeHHHMH ( 1 .2). AHaJIH3HpyiOTCH CBH3H Me>I<,rty 
crpyi<TypOH HHTerpa.JibHbiX 3JieMeHTOB H B03MO>I<HOCThlO I<OHCTpyi<I..\HH Hei<OTOpbiX cnei..\HaJib­
HbiX I<JiaCCOB peweHHH, I<OTOpbie COCTOHT H3 Tal< Ha3bmaeMbiX npoCTbiX BOJIH, npOCTbiX 
COCTOHHHH H peWeHHH, OllHCbiBaiOI.I..\HX B3aHMO,rteHCTBHH Me>I<,rty HHMH. 3aTeM, BBO,QHTCH 
KJiaCCH!I>HI<ai..\HH BCeX HHTerpa.JibHbiX 3JieMeHTOB, o6o61.1..\aiOI.I..\aH I<JiaCCH!I>HI<ai..\HIO, npe,QJIO­
>I<eHHYIQ B pa6oTe [7]. Heci<OJihi<O TeopeM noJie3HhiX AJIH 3TOH I<JiaccH!I>HI<ai..\HH npe,rtcraB­
JieHo B noCJie,rtHeii rnaae. BropaH tJaCTb pa6oThi co,ll;ep>I<HT aHa.JIH3 HeO,ll;Hopo,ll;HhiX ypaBHeHHii 
ra30,ll;HHaMHI<H C TOtJI<H 3peHHH OllHCaHHOrO MeTO,ll;a. 

I. Introduction 

1. Integral elements 

Let us consider systems of first order partial differential equations which, according 
to the summation convention, may be written as follows: 

(I. I) 

where 
s = 1, ... , m is the number of equations, 
v = 1, ... , n is the number of independent variables, 
j = 1 , ... , I is the number of unknown functions. 
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272 A. GRUNDLAND 

The system (1.1) is nonhomogeneous with coefficients dependent on the unknown 
functions (even when m ~ /). The space 9t" of independent variables x = (x1, ... , x") 
will be denoted by E and called physical space E c Pll". The space P/l1 of dependent variables 
u = (ut, ... , u1

) is denoted by Yf and is called the hodograph space Yf c 9t1
• At each 

point (x0 , u0 ) of the Cartesian product Ex Yf, we define the hyperplane ft' (x0 , u0 ) in the 
linear space 9tnxl consisting of all matrices (integral elements) {L~} satisfying the following 
algebraic equations: 

(1.2) 

where max rank liLt 11 = min(n, /). If L is any solution of the system (1.2), then: 
N 

(1.3) ft' = % + L, 
N 

where % = { K E Bl" x 
1 

: aj" Kt == · 0} is the vector space of solutions of the homogeneous 
system (1.2). The dimension of the space %(x0 , u0) of the homogeneous integral elements 
is given by 

(1.4) dim%(x0 , u0 ) = n · l-m(x0 , u0 ), 

where m is the number of independent Eqs. (1.2) or the number of linearly independent 
matrices as = {ay(u0 )}. 

By the definitions given above, for each L 1 , ••• , LP e ft', their linear combination 
p,1 L 1 + ... + p,P LP belongs to ft', provided that 

p 

{1.5) .2; fls = 1. 
S=) 

If there exists at least one solution of the non homogeneous system (I .2), then 

(1.6) 

2. Simple elements 

An element LE ft'(x0 , u0 ) is called simple (or decomposable) if there exists ). E 9t" 
and y E 9t1 such that L may be written in the form: 

(2.1) 

-i.e., 

(2.2) 

It is convenient to consider A. as an element of E*. Here E* denotes the space of 1 in ear 
forms: E* E A.: E --+ 9t, or in other words, if x e E is a contra variant vector, then A. e E* 
is a covariant one. In this terminology, Lis an element of the tensor product space Yf Q9 E* 
of the form: 

(2.3) L = y Q9 A. E Yf ® E*. 

Simple elements of a homogeneous system are denoted by y ® A. and of a nonhomo­
geneous system by y ® A.. Homogeneous elements are connected directly with the existence 

N N 

of characteristic vectors. Namely: 
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STATEMENT I. If y Q9 A is a simple element of a homogeneous system, then A is a char­
acteristic vector. 

Indeed, aj"yi Av = 0 implies rank 11 ar Av 11 < I, or if I = m then det 11 ar Av 11 = 0. 
DEFINITION 1. If r Q9 A is a simple element, then r will be called the characteristic 

victor in hodograph space Jf and A will be called a characteristic covector in the dual 
E* of the physical space. 

Now we introduce the notion of simple waves and simple states. (These notions will 
provide us with a tool for an extraction of simple integral elements from the set of all 
integral elements). Let the mapping u: D--+ Jt, D c E be a solution of the system (1.1). 
This solution is called a simple wave for a homogeneous system (or a simple state in the 
case of a nonhomogeneous system) if the tangent mappinge) du, which is a linear mapping 
E --+ Jf defined by 

(2.4} 

is a simple element at each point x 0 E D. In other words, the derived mapping (tangent 
mapping du) of a simple wave, is a simple element. 

THEOREM 1. The hodograph of a simple wave (or a simple state) u(D) for homogeneous 
(nonhomogeneous) systems is given by the curve in the hodograph space Jf, such that at each 
point of this curve the vector y is tangent to it. 

P r o o f. The tangent mapping 

(2.5) du1(x) = yi(x) A11(x)dx" 

is of rank one, hence the image of the mapping u: E --+ Jf is a curve in the hodograph 
space Jf. Let this curve be determined by u = u(R), then u(x) may be represented by 
u(R(x)). Hence 

(2.6) du = u,R(R(x))dR(x). 

Thus 

(2.7) u,R(x) ~ y(x) and dR(x) ~ A(x). 

The solution u(x) is constant on the (n -1 )-dimensional hyperplane perpendicular to 
the field A(x) satisfying: 

(2.8) Av(x)dx" = 0. 

Such a surface exists if the Frobenius condition is satisfied 

(2.9) A A dA = 0. 

By the definition of integral elements we have: 

STATEMENT 2. The mapping E => D _!!__. Jf is a solution iff 

(2. JO) duE .P. 

e) Denoted also by Tx
0
u. 

We have in our case the isomorphisms Tx0 E ~ E, Tuff ~ Jf; therefore we can regard A. as a vector 
from E* and y as a vector from .Jl'. 
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274 A. GRUNDLAND 

Thus if n c !l', then we may seek solutions such that du e n. For example, if we have 
a family of integral elements depending on any parameters ~~, ... , ~~: L(u, x, ~~, .. . , ~') e 
e !l'(u, x), then the solutions 

(2.11) du = L(u, x, ~1 , ... , ~1) 

exist itf the integrability conditions: 

(2.12) 0 = d(du) = dL modulo (2.11), 

are satisfied. This imposes certain conditions on a class of elements L(u, x, ~~, ... , ~1). 

We shall consider these conditions in what follows. In particular, we can choose: 

(2.13) L(u,x,~1 , •.• ,~',flt, .. . ,fl") = ~1 y 1 ® A.1 + ... +~'y,® A.' 

+ fl 1Y1 ® J.l + ... + fl"r,® l", 
N N N N 

p 

where .J; tJ5 = 1 and ')'q ® A.q are simple elements of a homogeneous system and 'Ys ~ ;.s 
s=l N N 

are simple elements of a nonhomogeneous system. 
The physical meanings of these two sets of elements y ® A. and y ® A. are different. 

N N 

While the homogeneous elements are usually connected with certain waves, which may 
propagate in the medium, the nonhomogeneous elements lead to certain special solutions 
which will be called simple states and which, in general, may be not attributed to waves(2). 
But we may seek solutions of the form (2.13), where the tangent mapping du is the sum 
of homogeneous and nonhomogeneous elements. Correct choice of the element of the 
form (2.13) leaves considerable freedom and compels us to study the structure of its com­
ponents as well as a solution, in which the integral conditions are satisfied. The physical 
sense of solutions of this type may be regarded as an interaction of waves with medium 
in a certain state. 

3. Simple waves and simple states 

It has been shown in [l-4, 7-9) that simple elements for homogeneous systems of the 
form (1.1) (i.e., such that b5 = 0) are connected with a certain rich family of solutions 
of what are called simple wavese). Let us consider a curve F:u = f(R) in the hodograph 
space £ 1, where R is a parameter. Let us assume r is such that the tangent vector: 

(3.1) 
0 

- - - f(R) = y(f(R)) oR 

e) In the literature [6, 10], solutions u of rank u = 1 (i.e., rank llu!xvll = 1 are actually called simple 
waves. We use the word "wave" for solutions which are interpreted as physical waves. E.g. elliptic non­
homogeneous systems also have solutions of rank one, but we cannot call them "waves". That is why we 
have chosen to call solutions such that du = y® .A. "simple states". 

N N 

e) In those papers are considered systems with coefficients independent of X, and only such systems 
are considered in this ~ection. 
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is the characteristic vector. Then there exists a field of the characteristic covector A(u) 
dual to y(f(R)), defined on the curve F: A = A(f(R)) (4

). 

THEOREM 2. If the curve r c: :/f satisfies (3.1) and if q; (.) is any differentiable function 
with one variable, then the function u = u(x) given by: 

u = f(R), 
(3.2) 

R = q;( A,(f(R) )x") 

is a solution of the system: aj(u)u!, = 0. 
This solution is called simple wave. Each curve r satisfying (3.1) is called characteristic 

curve in the hodograph space :/f. Theorem 2 holds that if a mapping E ....!!_. :/f is a simple 
wave, then the image of u is a characteristic curve in :/f. The parameter R is called Rie­
mann's invariant. 

The form of solution (3.2) suggests that the covector A should be treated as an analogue 
of the wave vector (w, f), which determines the velocity and direction of the propagation 
of the wave. By contrast with the case of linear equations, here (w, k) depends also 
on the value of the solution; therefore the profile of the wave is changed during 
propagation. It is due to the form of the expression (3.2). The solution (3.2) is constant 
on (n-1)-dimensional hyperplanes perpendicular to A. By differentation of 

R = g;( A.,(R)x"), 

we obtain: 

(3.3) R,, = tP 
1-. A (R) X"' A.,(R), 

(/J 'I' ,R 
f'=l, ... ,n. 

It follows that on hypersurface 9Jl, which is given by the two relations: 

(3.4) 
R = g;( Av(R)x"), 

tjJ(A,(R)xv)Ap(R),RX"' = 1, 

the gradient of the function R becomes infinite and this situation is called the gradient 
catastrophe. Our solution does not make sense on the hypersurface 9Jl. In this case, certain 
discontinuities can arise- e.g., shock waves. It was mentioned above that the function 
R(x) determined by (3.2) is constant on hyperplanes orthogonal to the covector A. (For 
each of these hyperplanes there is determined a certain value of the parameter R). Hence 
in general (except for a few cases -e.g., if planes are parallel) there exists a developable 
surface, which is an envelope of this family of planes. This surface is exactly the place 
of gradient catastrophe. 

It is easy to check that, in the case of simple wave, du is a simple element. In other 
words, simple waves are just solutions of the system: 

(3.5) du = ~y(u) ® A(u), 

(
4

) It may happen that there exists more than one characteristic covector A. for given y. Then the set 
of simple waves is richer [8, 9]. 

7 Arch. Mech. Stos. nr 2/74 
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276 A. GRUNDLAND 

where y(u) ® J.(u) is the field of simple elements over the space :K ® E*. This system 
always has solutions. Indeed, if u = J(R) is a solution of the system dufdR = y(u) of 
ordinary equations, then the relations: 

(3.6) 
u = f(R), 

R = qy(J..(f(R))x") 

represent a simple wave. 
Following analogy with simple wave, we introduce the notions of simple state. A map­

ping u(x) is called a simple state iff 

(3.7) du = y(u) ® J.(u), y = J.(u), A= A(u). 
N N N N N N 

By contrast with the case of simple waves for homogeneous systems, the formula (3.7) 
of du has no free parameter ~' and the integral conditions are not automatically satisfied 
as in (3.5). 

By exterior differentiation (3. 7), we obtain: 

(3.8) dy" .1.+ J.dJ. = 0, 
N N N N 

where 

dy = y:;. l N N'YN 

d). = AN;. modulo (3.7). 

N N'JJN 

From the Eq. (3.8), we obtain (5): 

AA A,~= 0 modulo (3.7) 
N NN 

modulo (3.7) 

dy " J. = y J. " J. = 0. 
N N NjJN N 

because 

From this we see that the system (3.7) has a solution iff: A "A = 0- i.e., 
N'JJ N 

(3.9) A ~ J.. 
N'N N 

This means that the direction of covector A does not change in the direction y. The image 
N N 

of simple state is also a curve tangent to y. Let this image be given by u = f(R0 ). Then 
N 

the condition (3.9) becomes 

A" A,R 11 = 0, where A = J.(f(R0 )) 
N N 

or 

A,Ro ~A. 
N N 

This means that the direction of A does not depend on R0 ; hence it is constant in the physical 
N 

space E. Thus solution is constant on hyperplanes which are disjoint- i.e., there is no 
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gradient catastrophe. By so choosing the length of A that A,Ro = 0, we may represent our 
N N 

simple state in the form: 

(3.10) [u = f(Ro), Ro = A.vx". 
N 

In the case of nonhomogeneous systems, simple waves attributed to homogeneous 
elements are not solutions of the (nonhomogeneous) systems we have started. We may 
seek slightly more general solutions, which would correspond to an interaction of simple 
wave with simple state and which would be "good solutions": 

(3.11) du = ~y(u)®A(u)+y(u)®A(u). 
N N 

As in the case of simple state, the existence of solutions of (3.11) needs certain con­
ditions, called involutivity conditions. Namely, closing (3.11) (by exterior differentiation), 
we obtain: 

(3.12) y®d~ 1\ A+~dy 1\ A+~y®dA+ dy 1\ A+y®dA = 0. 
N N N N 

Let (/> be the set of (/-2) covectors r in the space Jf*, such that 

(3.13) (r,y) = 0 and (r,y) = 0. 
N 

The scalar multiplication of the Eq. (3.2) with the vector r yields: 

(3.14) ~(r, dy) 1\ A+(r, dy) A A = 0, (rE$), 
N N 

where by (3.11) we have: 

Hence, 

(3.15) 

dy = y,,idui. = ~J'.yA+y ~~ } 
modulo (3.11). 

dy = Y,uidu' = ~J'.yA+y A 
N N N N~N 

But ~ being an undetermined parameter, we require the coefficients of powers of ~ to be 
zero. Hence, 

(3.16) ((r, /',y)-(r, /',y))AA A= 0. 
N N N 

If we assume A A A ::/: 0, we obtain 
N 

(r, (y,,-y,y)) = 0. 
N N 

But the expression in brackets is the commutator of the fields y, y; hence we have 
N 

(3.17) (r, [y, y]) = 0, 
N 

where [y, y] denotes the commutator of the fields y, y. It follows from the form of vectors 
N N 

r, that the Eq. (3.17) is equivalent to the following condition: 

(3.18) [y, y] E {y, y} = linear space spanned by y, y. 
N N N 

7" 
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278 A. GRUNDLAND 

This means that the Frobenius theorem is satisfied; hence there exist surfaces tangent 
to vector y, y. Let covectors w, we ff* be such that: 

N N 

(3.19) (w, r> = 1' (w, r> = 0. 
N 

and 

(3.20) (w, r> = 0, (w, r> = 1. 
N N N 

By multiplication of the Eq. (3.12) by wand w respectively, we obtain: 

(3.21) 

(3.22) 

N 

d~ A A+ ~(w, dy) A A+ ~dA+(w, dy) A A = 0, 
N N 

~(w, dy) 1\ A+(w, dy) 1\ A+dA = 0, 
N N N N N 

where, using the Eq. (3.11), we have: 

(3.23) 

(3.24) 

Substituting the form (3.23), (3.24) and (3.14) into (3.21), (3.22), we obtain 

(3.25) 

(3.26) 

By means of exterior multiplication of (3.25) by .A and using Cartan's lemma, we obtain 

(3.27) AA AA A,y = 0. 
N N 

But coefficients of appropriate powers of~ in the Eq. (3.26) are assumed to be zero; hence 
by the Frobenius theorem and because of the form of the covector w, we have the following 

N 

conditions: 

(3.28) 

(3.29) AI\ (A,,+ (w, [y ,y]) A) = 0. 
N N N N 

The conditions (3.18) and (3.27)-(3.29), called involutivity conditions, ensure the existence 
of solutions of the system we have started with (3.11). They ensure (this will be shown 
in another papel') that the set of solutions of the system (3.11) depends on one arbitrary 
function with one variable. The physical interpretation of this fact is that the profile of 
a simple wave connected with the element y® A may be chosen in any manner, but the 
profile of a simple state connected with the element y® A is somewhat determined. The 

N N 
solution describes a certain (non-linear) superposition of a simple wave and simple state. 
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D. Classification of systems of quasi-linear first-order differential equations _ 

The classification (6
) introduced in [7] seems to be useful in the construction of special 

classes of solutions mentioned here. The idea of this classification is to distinguish the 
following subspaces in the space of homogeneous integral elements :1{'. 

4. Tbe space Ql 

By Q 1 we denote the linear space generated by all simple elements belonging to 
:l{'(x0 , u0)- i.e., 

(4.1) 

where { } denotes linear subspace generated on elements yk® )..k. Obviously, the inclusion 

(4.2) Ql c :/{' 

holds. 

5. The space Qm 

We define Q,. to be the vector space generated by the set 

(5.1) {q(xo, u0 ) e:l{': (as, q) = 0 and rankllq(x0 , u0)11 ~m}. 

Thus Qm(x0 , u0 ) is the linear space generated by integral homogeneous elements of rank 
at most m. 

Obviously we have 

(5.2) 

6. A theorem for hyperbolic system 

Now we show the role of simple integral elements in the theory of first-order hyperbolic 
systems of differential equations. Let us consider systems of the form: 

(6.1) aju!x• = 0. 

We consider the following polynomial (called a characteristic polynomial) of variable 
~ e 9t. Namely, let: 'YJ, {} e E*, then 

(6.2) w(~) = aj"(~'YJ,+IJ,). 

Obviously, if for ~o e 9t we have w(~0) = 0, then A.= ~o'YJ+{} is a characteristic covector. 
Thus there exist, dual to it, characteristic vectors y, where ex = I, ... , r 0 ; r0 -is the 

multiplicity of the root ~o. 
0,« 

(
6

) This classification, and also the entire study in this Chapter deal with systems with coefficients 
dependent on (x, u) only. 
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DEFINIT ON 2. We say that the system (6.1) at the point (x0 , u0 ) is hyperbolic in the 
direction a E E if! for each 1\ such that 

(6.3) 

and 'YJ such that 

(6.4) 

0:/-fleE• 

the characteristic polynomial (6.2) has: 

({}, u) = 0 

(rJ, a) ¥= 0 

1. k ~ I real roots ~1 ~ .•• ~ ~k multiplicities of which do not depend of the choice 
ofO. 

2. The characteristic vectors: y, y, ... , y, y, ...... y corresponding to A 1, ••• , Ak ge-
l,l 1,2 l,r1 2,1 k,rk 

nerate the hodograph space (Jt')('). 
DEFINITION 3. The system is strongly hyperbolic in the direction a E E for each {}sat­

isfying (6.3) iff its characteristic polynomial (6.2) has exactly 1 different real roots. 
When k = 1, and roots ~i are different, then vectors y, p = 1, ... , 1 which are associated 

p 

with all eigenvalues generate the whole hodograph space Jt'1 - i.e., 

(6.5) {yp,p:l, ... ,l} = JF'. 
DEFINITION 4. The system is hyperbolic (resp. strongly hyperbolic) iff there exists 

u E E such that the system is hyperbolic (resp. strongly hyperbolic) in the direction a. 
There is a connection between Q1 and hyperbolicity, because of: 

THEOREM 3 [7]. Jf the system (6.1) is hyperbolic, then all its integral elements may be 
written as a sum of simple elements- i.e., 

(6.6) 

It follows that the entire space of integral elements is generated by simple elements -i.e., 
every integral element is a linear combination of q- simple elements: 

% = Y1®A1+ ... +yq®Aq, 
where q ~ n ·1-m. 

The systems for which %(x0 , u0 ) = Q1 (x0 , u0 ) will be called Qrsystems. 

ID. Classification of nonhomogeneous systems 

Having introduced nonhomogeneous elements, let us extend this classification to 
nonhomogeneous elements. Following the former procedure, let us define the following 
hyperplanes in the hyperplane !£. 

7. Hyperplane f£1 

Hyperplane !£ 1 is the plane which contains all the elements L1 of the form: 

(7.1) L1 = y® A, 
N N 

where yE 9l1
, A E f?,ln* 

N N 

C> The vectors y introduced here are called usually the right-side characteristic vectors. Also introduced, 
corresponding to A., may be the left-side characteristic vectors " = (x1 , •.• , xz) defined by the relation 
xs0jv A.v = 0. The right-side vectors appearing in the definition 2 may be replaced by left-side characteristic 
vectors. The two definitions so obtained are equivalent. 
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and (8
) 

(as, yQ9A) = bs 
N N 

-i.e., all the elements of !l' 1 are of the form: 
p 

!l' 1 = }; ftsYs ® AS, 
S=l N N 

(7.2) 

p 

where .2: p,s = l and y 1 Q9 A 1, ••• , y P Q9 AP are linearly independent simple non homogeneous 
S=l N N N N 

elements, which generate !l' 1• Of course, 

(7.3) 

The systems for which !l'(x0, u0) = !l' 1 (x0, u0) will be called !l' rsystems. 

8. Hyperplane !l'k 

We continue this procedure. Let us denote !l'k(x0, u0) the linear subspace generated 
by all L E !l', such that 

(8.1) rankiiL(xo, Uo)ll ~ k. 

Obviously, we have: 

(8.2) 

For k = 1, we have a hyperspace generated by simple elements. The dimensions of 
the appropriate hyperplanes are closely allied to the richness of the sets of elements with 
given properties. Let 

(8.3) 

Multi-index e = {e1 , ..• , ek}, which is a function of a point, is called the index of classi­
fication for system (1.1). (Remark: if !l'k is an empty set, then we define dim !l'k = -1). 
If e1 = -1, then the system (1.1) has no solution built from simple elements (there are 
no simple states). If e1 -::/: -1, then we may seek solutions of the system (1.1) built from 
simple elements (i.e., rankiiL~II = 1) and in some cases we may obtain solutions which 
are the interactions of simple waves and simple states. 

The study of the structure of elements of hyperplane !l' 1 (x0, u0) enables us to find 
physical properties of solutions which are simple states or superpositions of a simple state 
with simple wave. 

9. Theorems on type !l'1 system 

Now, we shall demonstrate several theorems exhibiting the structure of !l'. They 
enable us to decide whether a given system is of type !l' 1 (x0, u0), (i.e. !l'(x0, u0) = 

= !l' 1 (x0 , u0 ) or not. Let us consider a system of the form: 

(9.1) U,x0 +Au,x1 = b, where A = {Al(x, u)) E (91 2 x 911
). 
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It follows from the form of the Eq. (9.1) that the covector (1,0) is noncharacteristic. 
Let us consider any fixed point (x0 , u0 ) e Ex :If. The set of noncharacteristic covectors 
is open in E* for fixed (x0 , u0 ). (This fact is a consequence of the Darboux property applied 
to the function 1p().) = det 11 aj" J.,ll). If for some ). det 11 ajv J.,ll =I= 0, then there exists a neigh­
bourhood of). such that in this neighbourhood we have det 11 aj" J.~ll =I= 0- i.e., all vectors 
in this neighbourhood are noncharacteristic. Without loss of generality, we may assume 
that also the covector (0, I) is noncharacteristic, since we may obtain it by linear trans­
formation of independent variables. Consequently on the remark above, the set of nonchar­
acteristic vectors is open; hence, there exists e > 0 such that for llol < e all covectors 
( J.0 , I) are noncharacteristic. But we also assumed that the covector (0, 1) is nonchar­
acteristic; hence the matrix A in the Eq. (9.1) has an inverse. Hence the equation for simple 
elements is of the form: 

(9.2) (Jlo+A)y =b. 

THEOREM 4. Let us consider the system (9.1). If the vector b does not belong to any 
invariant (9) spaceN c :lf(N =1= :If) of the matrix A, then we have 

(9.3) 

Proof. We may assume that the covector (0, 1) is noncharacteristic, and then: 

(9.4) y = (/J.0 + A)- 1 b for llol < e, 

where e > 0. Since y = y(A0 ) is an analytic function in the neighbourhood of zero for 
J.0 e (- e, +e) = /2 , we may write (9.4) as a von Neumann series for small values of A0 , 

such that A.0 < IIAII· Thus we have: 

(9.5) (/J.0 +A)- 1 = A- 1 (1-J.0A- 1 +A.~A- 2 -J.gA- 3 + ... +(-J.0)nA-n+ ... ). 

The tensor product y(J.0)®J.(J.0 ) is also an analytic function; hence: 

(9.6) y().o)®A.(J.o) = A- 1 0-A.oA- 1 + ... +(-A.0 )nA-n+ ... )b®((O, l)+(l,O)A.o) = 
00 

= A-1b®(0, 1)+}; (-J.0)n(A-nb®(0, 1)-An+1b®(l, 0)). 
n=l 

By way of proof, we need only remark that first I+ 1 coefficients of different powers of 
J.0 are linearly independent in the space :If Q9 E*. These elements are: 

(9.7) {(A- 1b)®(O, 1)}, {A- 2b®(0, I)-A-1b®(l, 0)}, ... , {A-'- 1b®(0, I) 

-A-'b®(O, 1)}. 

Let us denote A-nb = bn. Since b belongs to none of invariant spaces of the matrix A, 
then vectors b1 , b2, ... , b1 are linearly independents and generate the whole space :If and 
b,+l = rxibi. i = 1, ... , /. Let us denote: e0 = (I, 0), e1 = (0, 1). For (9.6) we have: 

(bt®et), (b2®et-bt®eo), ... , (br+l®et-br®eo)· 

Now we show that these elements are linearly independent. Let us consider any linear 
combination 

(9.8) Ct(bt®et)+c2(b2®e1 -b1 ®e0 )+ ... +c1+l(bl+1 ®e1-b,®eo) = 0. 

(
9

) This means that x eN=> Ax eN. 
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From this it follows that 

1+1 

.}; cibi = 0 and 
1=1 

I 

.2; C1c+1bk = 0 . 
k=1 

But b 1 , ... , b1 are linearly independent; hence, c2 , c3 , . .. , c1+I = 0, and hence also c 1 = 0. 
Therefore the vectors in (9.8) are independent. Thus the dimension of the space generated 
by simple elements of the form (9.5) is equal to: 

(9.9) dim {YO.o)® A.O.o)}J.oe/
6 
~ I+ l. 

Since there are I+ I linearly independent elements in (9.7), the dimension of the hyperplane 
generated by !l' 1 (x0 , u0 ) is at least I. 

In addition, the dimension of the linear subspace !l'(x0 , u0 ) generated by ·all the 
integral elements of the system (9.1) is dim{!l'(x0 , u0)} =I. Hence: !l'1 (X0 , u0 ) = 

= !l'(xo, u0 ). Q.E.D. 
LetNb be the smallest subspace invariant uo> under the matrix A and containing vector b. 

This means that Nb is spanned by vectors b, Ab, A2b, ... ; Nb = {b, Ab, A2b, ... } = 
= {A1b}i=o,1, .. . (11). 

By flBYP we shall denote a subspace generated by the eigenvectors of the matrix A. We 
shall consider only the real eigenvectors and eigenvalues. Obviously, flBYP is an invariant 
subspace of the matrix A. We obtain the following theorem: 

THEOREM 5. If the eigenvalues of the matrix A are distinct (provided they exist), then 

(9.10) 

P r o o f. Applying an appropriate transformation we may assume that the equations 
determining simple elements are of the form: 

(9.11) 
- [flt l]-Y

1

] [0 -
IAo+ 0 ·#,;AN -~=- = _L 

where p,1 , •• • , ftp are eigenvalues of the matrix A, B- is a matrix of dimension (/-p + 
+dimN) x (1-p+dimN) and AN is a matrix dimNx dimN. The matrix B has no eigenvec­
tor. It is easy to see that: Simple elements y( A.0)® A.{A0 ) for A.0 :/: /-tb i = 1, ... , p generate 
a hyperplane of dimension equal to dimNb (this follows from Theorem 4) or a linear sub-
space of dimension equal to dimNb+ 1. The vectors y{A.0 ) are of the form y1 = 0, ...... , 
... , yP = 0, y8 = (yP+t, ... , y') = 0, where r = 1-p+dimN. Now if we set Ao = -fti we 
shall obtain the following solution for y(- /-ti): y1 = 0, ... , y1

- 1 = 0, y1 is undetermined, 
yi+ 1 = 0, ... , yP = 0 and y8 = 0. Setting i = 1, ... , p, we shall obtain further p inde­
pendent elements, where p = dimflHYP-dim(flHYP n Nb)· Thus, dim !l'1 = dimflHYP+ 
+dimNb-dim(HHyp n Nb). Q.ED. 

eo) N is an invariant subspace of the matrix A, if N => A(N)- i.e., f\ Axe N. 
xeN 

(
11

) As there are at the most I linear independent vectors we may take I successive ones. 
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From this theorem, we obtain as a corollary: 
THEOREM 6. If the system (9.I) is strongly hyperbolic, then !l'1(x0 , u0 ) = !l'(x0 , u0 ). 

P r o o f. If the system is hyperbolic, then fiHYP = :Yf. From the assumption that our 
system is strongly hyperbolic it follows that the matrix A has exactly I = dim :Yf distinct 
eigenvalues. Applying the formula (9.10) we have then: 

(9.12) dim!l' 1 = dimJf'. 

But also dim !l' = dim :Yf and !l' 1 c !l'. Hence, 

!l'1(X0 , U 0 ) = !l'(x0 , z0) Q.E.D. 

COROLLARIES. Suppose the system (9.1) satisfies the assumptions of Theorem 5. Since 
dimQ1 = dimflHYP, we may write (9.IO) in the following form: 

(9.13) · dim!l' 1 = dimQ1 +dimNb-dim(Q1 n Nb). 

Hence, 
1. If Nb c fiH7 P, then dim!l' 1 = dimQ1. 
2. If Nb 4: fiHYP, then dim!l' 1 > dimQ1 • In fact dimNb ~ dim(flHYP n Nb). 
From this it follows that 

(9.I4) dim 2 1 ~ dimQ1. 

3. If the system is elliptic- i.e., dimflHYP = dimQ1 = 0, then 

(9.I5) dim !l' 1 = dimNb. 

Re mark. The inequality (9.I4) may not hold if a root of the matrix A has multiplicity 
greater than one. 

Ex a m p 1 e. To give an example for dim !l' 1 < dimQ1, let us consider an equation 
of the following form: 

P!t+P!x=h', j=l, ... ,l, when A=I,b1 =[l]· 
The equation for the nonhomogeneous simple elements takes the form: (I).0 +I)y =b. 

I 
A0 + I 

Hence, for A0 =I= -I the only solution is y = 0 , and for ).0 = -I there is no 

0 
solution. But for ).0 =1= -I, we have only two linearly independent solutions- e.g., [ ll ® (0, I) and [ ll ®(I, 0). They correspond to A0 = 0 and J.0 = oo. Thus 

dim!l'1 = 1. ButobviouslydimQ1 =I -i.e., dim!l'1 <dimQ1. 
Let the matrix A have eigenvalues f.li with multiplicities k(i). Also, let the number of 

linearly independent eigenvectors associated with an eigenvalue f.li be equal to its multi­
plicity k(i) for i = 1 , ... , r. By Hi we shall denote the space corresponding to the eigen-
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value f-t; of the matrix A. By virtue of above assumption, H; consists only of the eigen­
vectors corresponding to the eigenvalues f-t;. We define a function: 

_ { 0 when H; n Nb = 0, 
(9.16) x(H;)- 1 when H; n Nb # 0. 

We shall now formulate a lemma which will be helpful in the proof of the theorem. 
LEMMA 1. The invariant subspace Nb has at the most one common direction with each 

of the spaces H;- i.e., 
(9.17) dim(H; n Nb) ~ 1. 

It is essential in the proof of this lemma that the subspace Nb is generated by the vector 
b (i.e., Nb = {b, Ab, A 2b, ... }). 

We obtain the theorem: 
THEOREM 7. Let us assume that for the system (9.1) the matrix A has at the point (x0 , u0 ) 

r distinct eigenvalues f-tt, ... , /-lr with multiplicities k(1), ... , k(r). Let us assume moreover, 
that the number of linearly independent vectors associated with the eigenvalue f-t; is equal 
to its multiplicity k(i) for i = 1, ... , r. Then we have: 

r 

(9.18) dim !i'1 = dim Nb+ .2; k(i) (1-x(H;)) 
i=l 

,. 
(9.19) dim !i'1 =dim Nb+dimflHYP_dim(flHYP n Nb)- .2; (k(i)-1)x(H;). 

l=l 

P r o o f. It follows from the Lemma 1 that in a suitable system associated with the 
eigenvectors, the system of equations for nonhomogeneous simple elements can be expressed 
in such a form that in the section AN each eigenvalue occurs at most once: 

p 

/
}J-1~ k(~)-1 

}J1 ... 

)J.~ k(5)-~ 
).;.5\ 

fs.~.~.. . I 0 
j.J.., I 

1~0+-------(~': ~J-----
1 }J-1. 
I ·· .. 
I )J.s 
I 1-'P.~ 

0 
I 

e2
) These expressions are equivalent. 

0 

,. 
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where all the components bs, b1 , •.. , b, are different from zero, AN- a matrix of the 

dimension dim Nx dim N, B = (~1B~)- a matrix which has no eigenvector (1 3
), B1 -

s s 

a matrix of the dimension (1-( ~ (k(i)-1) + p-s+ dimN)) x (1-( ~ (k(i)-1) +p-s + 
i=l i=l 

+ dimN) ). Some of the eigenvalues appearing in the section AN may also appear 
in the section P. They may be so ordered that only p,1 , ••• , 1-ls appear in AN. The 
eigenvalues 1-ls+I, ... , /-lp do not a pear in AN. 

We notice that the simple elements y(A0)®A(A0 ) exist for A0 -1: -p,1, i = 1, ... , r, 
and they span a hyperplane of the dimension equal to dimNb (from Theorem 4) or a linear 
subspace of the dimension equal to dimNb + I. The vectors y( A0 ) are of the form (0, 0, ... , 
... , 0, YN)- i.e., the part corresponding to the section P vanishes. If A0 = - p,;, and 
p,; appears in AN then the system has no solution for y. If /-li does not appear in AN, then 
the solution exists and it has the form: 

y = (0, ... , 0, ... , 0, cx1 , •.• , cxk(i)• 0, ... , 0, YN), where cx1 , ••• , cxk<i> 
k(l) k(i) 

are arbitrary components of the vector y. Thus the dimension of the hyperplane !l' 1 is 
equal to dim !l' 1 = dimNb +the sum of multiplicities of p,; not appearing in AN: 

But 

hence, 

r 

dim !l' 1 = dim Nb + ,2 k(i)(I- x(H;)). 

r 

,2 k(i) = dimHHyp and 
i=l 

i=l 

r 

dim (Nb 11 HHYP) = 2, x(H;)' 
l=l 

r 

dim !l'1 = dimflHYP+dimNb-dim(HHyp 11 Nb)- ,2 (k(i)-l)x(H1). Q.E.D. 
i=l 

COROLLARIES. 1. If the system is hyperbolic then dimNb = dim(Nb 11 H). AsH = flHYP, 
r 

or equivalently dimNb = ~ x(Hi), thus 
l=l 

r r r 

dim !l' 1 = ,2 k(i)- ,2 k(i) x(Hi) + ,2 x(Hi); 
i=l i=l i=l 

hence: 
r 

(9.20) dim !l'1 = dimH- ,2 (k(i)-l)x(H1) for a hyperbolic system; 
i=l 

e3) If Nb is an invariant subspace of the linear mapping B: E--+- E (having no real eigenvector), and 
if elt ... , ek, ek+l, ... , e, is a basis in E such that ett ... , ek spans the subspace Nb, then the matrix B of 

the mapping takes on the form: B = (~·B~). where the matrix B of the dimension (n-k) x (n-k) and 

matrix B2 of the dimension k x k have no real eigenvectors. 
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of course, we have: 

(9.21) dim I£ 1 ~ dim Q1 = dim .Yr for a hyperbolic system. 

The inequality appears if the matrix A has roots with multiplicity greater than one. 
2. If Nb c HBYP, then dim I£ 1 ~dim Q1. 
3. If Nb n HBYP = {0}, then dim I£ 1 > dim Q1. 
Proof. We have H 1 n Nb = {0}, therefore x(Hi) = 0. Consequently, dim I£ 1 = 

= dimNb+dimHB". Moreover, dimQ1 = dimHBYP; hence, 

(9.22) 

4. If the system is elliptic- i.e., dimHBYP = dimQ1 = 0, then 

(9.23) dim I£ 1 = dimNb. 

We may also consider a more general system: 

(9.24) f.l.xo +A«P,x, = b, ex = 1, ... , n. 

In such a case it is necessary to consider in some places a matrix A, A.a:, ex = 1, ... , n instead 

of ~atrix A. Suppose Pi = p1{).), 1 = (A.1, ... , A.,.) e gj" are different real analytic func­
tions defined on 91". Assume, moreover, the number of linearly indepedent eigenvectors 
corresponding to p1 to be equal to k(i), i = 1, ... , r. Then our theorem may be generalized 
as follows: 

,. 
(9.25) dim f£1 = n{dimNb+ ~ k{i)(1-x(H1))}; 

t-1 

we may write also 
,. 

(9.26) dim .!l\ = dimQ1 +n {dimNb-dim(HBYP n Nb)-~ (k{i)-1)x(Hi)}. 
ial 

This expression is a generalization of the formula (9.10), where Nb and flBYP are computed 

for any fiJted direction 1 e 91" such that its roots Pi(1) (with multiplicities k(i)) are dif­
ferent e4). 

In particular., the assumptions are satisfied if for any 1 e 91" we have p1(1) ::f: pi1) 
for i ::f: j, the multiplicities k(i) are independent of A., and the number of corresponding 
linearly independent eigenvectors is equal to k(i), i = 1, ... , r. 

10. Examples- nonbomogeneous equations of gasdynamics 

Now we shall consider some examples to illustrate the theoretical considerations above. 
We have chosen the case of nonhomogeneous equations of gasdynamics; it is possible 
to apply them to geophysical fluid dynamics. 

Let us consider the classical equations of hydrodynamics which describe the motion 
of fluid medium when the gravitational force and Coriolis force occur. We study only the 
equations of flow of the one-component nonviscous fluid. Under these assumptions our 

e4
) For certain A, ,u,(1) = .uil) is permissible. 
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equations are of the type (9.1). The form of these equations of hydrodynamics in a non­
inertial system is : 

e{ ~~ +(Vv)V}+vp = e!i-2eWxV, 

~; +div(eV) = o, :r (:.) = o. 
(10.1) 

Here we treat the physical space E c: 9l4 as the classical space-time, each of its points 
having coordinates (t, x), and the space of unknown functions (i.e., the hodograph space) 
Jf c: 9l5 has the coordinates ((!, p, v). Let us denote by A. = (.A.0 , ~' where I e 9l3, 

the vectors which belong to E* and by y = (yQ, yP, y), where y = (yt, y2
, y 3

), elements 
of the space T .Ye, where e -+ y(/, p -+ yP, v -+ y. Algebraic equations which determine 
simple elements for the equations (I 0.1) are of the form: 

(10.2) 

e"'r+rp:X = e(g-!5 xv), 

"'rQ+eri = o, 
"'(eyP-xpyQ) = o, 

where we use the following notation: Q = 2w and 

(10.3) 

The physical sense of the function "' is the following: it describes the velocity of 
the propagation of disturbance relative to the fluid. We may consider the Eqs. (10.2) 
as a system of linear nonhomogeneous algebraic equations. By the Kronecker-Capelli 
theorem, there exists a solution y different from zero iff one of the following cases holds: 

I. "'EN 
1 

= "' = 0 and yP = 0, g-Q x v = 0, 

2. "'EN
1 

= "' = 0 and i'P =F 0, 

(10.4) 3. b-'N = b = •V x: and I· (i-t.ixV) = 0, e = ±I; 

4. bRN = b # {: V": ' £ = ± I . 

The Eqs. (10.4.1) and (10.4.2) determine (by (10.3)) entropic elements, which correlate 
to simple entropic states denoted by EN

1
, EN

1
, respectively. The Eq. (10.4.3) determines 

acoustic elements, which also correlate to simple acoustic states, denoted by AN· The 
Eq. (10.4.4) determines hydrodynamic elements, denoted by HN. It follows from the 
definition (10.3) above that the velocity of entropic state EN relative to the fluid is equal 
to zero-i.e., this state moves with the fluid. The velocity of propagation of acoustic state 

AN relative to the medium is equal to sound velocity: y dp I de = y xp I!!· The hydrodynamic 
state HN may move with any velocity, except entropic velocity "'EN = 0 and acoustic 

"'AN = t: yxple. The conditions (10.4) above hold that cones of simple nonhomogeneous 

elements are determined only in that part of the hodograph space where the vectors belong 
to spaces tangent to these submanifolds (1 0.4). 
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It follows from the analysis of the homogeneous system (10.2) that if there exists a non 
zero solution on the vector y = (yt!' yP, y), then the characteristic determinant of this 
system must be equal to zero- i.e., the following condition must hold: 

(10.5) d'IXI' ( d'l:ll'- ": I'} = o. 
We have solutions of two kinds, namely: 

J. bE= b = 0, en tropic velocity, 

(10.6) 
2. dA = d = ·JI ~: acoustic velocity. 

The Eq. (10.6.1) determines entropic elements, which correlate to simple entropic 
waves £, and (10.6.2) determines acoustic elements, which correlate to simple acoustic 
waves A. We shall give later the physical interpretation of these velocities and their simple 
states. 

The Eqs. (10.1) are of the Cauchy-Kowalewska form, and constitute a system of hyper­
bolic equations, the dimension of which is dimQ 1 = 15. By (10.6), these equations have 
three eigenvalues of multiplicity of root b = 0 egual to three. By the corollary to Theorem 6, 
the dimension of tensor space generated by simple nonhomogeneous elements is 

r 

dim!£ 1 = dimQ 1 -(n-l) 2 (k(i)-I)x(Hi). 
i=l 

The dimension of invariant subspace Nb is dim Nb = 3. 
Since dim(Hi r1 Nb) =1= 0, it must occur that x(HJ = 1; hence we have: 

(10.7) dim!£ 1 = 9. 

Thus the system we consider has linear elements, which are not a linear combination of 
simple elements. In other words, simple nonhomogeneous elements do not generate the 
whole space of integral elements. 

Simple states 

1. Simple entropic states EN
1 

and EN
2 

The condition (10.4.1) applied to the Eqs. (10.2) gives the following system of algebraic 
equations, which determines en tropic elements EN 

1 
: 

(10.8) Ao = -V . I, ?' p = 0' r . X = 0' g- ti X V = 0. 

The solution of this system gives simple nonhomogeneous elements EN
1 

of the form: 

(10.9) y = (y,?' 0, ax I), A= (-vA, A) g = Qxv, where ex is arbitrary vector. 

If we require the conditions of integrability (3.9) for (10.9), we have the simple state 
EN

1 
of the form: 

(10.10) (! = e(s), p = Po, V= f3(s)Q-c1A, Q. A= 0, g. Q = 0, 

where IAI = 1, {J(s)- arbitrary function. 
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The functions= S(t, X) should be treated according to the formula (3.6); this means 

that the four-vector VS(t, x) is equal to A.; then s = c1t+A · x. 
This solution (when the condition c1 = 0 is satisfied) describes the gas in the state 

of equilibrium in the field of gravitation and Coriolis force. 
Applying the condition (10.4.2) to the Eq. (10.2), we obtain the equations which describe 

the en tropic elements EN;i: 

(10.11) ypi = e(i-DxV), y · i = o, i'P :~: o, lo = -vi. 

Thus the simple nonhomogeneous entropic elements EN
2 

are of the form 

(10.12) y = (y(l, e, ax(g-Dxv)), J. = (-vg, g-Qxv), 

where i is arbitrary vector. 
If we require the conditions (3.9) for (10.12), we obtain the simple state EN

2 
of the form: 

(10.13) e =p(s), p =p(s), g ·Q = 0, A= (l+a·Q)g, v = rxxg, 

p(s) is arbitrary function, where the functions = S(t, X) is defined by s = x ·g. 
The solution above describes the gas which moves with no acceleration and friction 

in the direction perpendicular to g. The flows of this kind occurring along parallel 
rectilinear izobars are a subject of consideration in geophysics, where they are called 
geostrophic wind. 

2. Simple acoustic state AN 

Application of the condition (10.4.3) to the Eqs. (10.2) yields to the following system 
of algebraic equations, which determines the acoustic elements AN 

(10.14) 

The solution of this system is given by simple nonhomogeneous elements AN of the form: 

(10.15) 

y = ("•· ": y,, J P _ (e(g-lixV)- ": r~)·), 
se ~Ill 

e 

A= (• V": 1If-v1, 1). (g-l.lxV)· I= o. 

Applying the conditions (3.9) to (10.15), we obtain the simple acoustic state AN of the form: 

x+l 

(10.16) e =eo, p = ce~, V= p(s) X A+(sy C"!?o-2 -cl)A, Q = c2A, 
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where: eo, c, c1 , c2 , c3 denote arbitrary constants and conditions which determine coordi­

nates of the vector P(s)- namely: 

1. 

2. 

- - c2-
g·f3-2P2=c3, 

2g· fJxA 
{32 - ___,;;;;.__;___ __ 

,s - H-1' 

e y' c" eo_2_ 

where the function s = S(t, X) is given by s = c1t+Ax. 
This equation describes such a gas in the field of gravitation which is accelerated by 

the Coriolis force. 

3. The simple hydrodynamic state HN 

The solution of the system (10.2) under the condition (10.4.4) leads to the following 
simple nonhomogeneous elements: 

If we require the conditions of involutivity, (3.9) to (10.I7), we obtain the simpJe state 
HN of the form: 

(10.18) e=e(s), p=ce", v=fixA+q;(s)A 

and the conditions: 

de -e(g · A+P· ii) 
ds = (et +q;)2-c"e"-t ' 

dq; I _ - - -
-d = -- (g·A+f3 · Q-cxo"- 2e s), 

S Ct +q; - ' 

d- - I -- --- - -
-({3xA) = --(g-g·A A-{3 Q.A-q;fJxA). 
ds et +q; 

Thus the problem is now to solve the system of four nonlinear usual equations on functions 

e, q;, if. 
Now we shall consider the special case of the Eqs. (10.I) when the Coriolis force does 

not occur (i.e., when Q = 0). Simple elements for this case are now: 
1. Simple nonhomogeneous entropic elements EN: 

(10.19) 
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2. Simple nonhomogeneous acoustic element AN 

(10.20) 

( 

-xp . 1 [ _ up _ -J) 
YAN = y~,-y,l' V eg--y,p.xg ' 

f! Ef! up la xgl f! 
(} 

AAN = (.V": r<XxKI-V ·<Xxg, IXxg). 

3. Simple nonhomogeneous hydrodynamic element HN 

(10.21) 

YHN = (-d-2~---f!---!:-· -~-2 , d2-:~· ;2 '-f!
1-d r eH d2~:y12 1 ]) , 

;.sN = (d-vf, i), 

where d ,< {:V":. 
Simple homogeneous elements are of the same form as before (10.6). The dimension 

of the tensor space generated by simple nonhomogeneous elements is also dim !l' 1 = 9, 
since nonhomogeneity occurs in the the Euler's equation, exactly as before. 

Simple states 

1. Simple entropic state EN 

Using the Eqs. (10.19), we obtain the state EN of the form: 

(10.22) (} = p(s), p = p(s), - - - g v = cxxg-c1 -=r-, 
g 

where the function s = S( t, X) is given by s = c 1 t + ~fx. This solution describes the gas 
in the state of equilibrium in the field of gravitation when flows in the direction perpendic­
ular to g occur. Especially for the stationary case (i.e., when c1 = 0) and when we put 
a = 0 (we can always do it, since the vector a forces no change either of other physical 
values or of the functions), the solution we obtain may be interpreted as the description 
of the atmosphere in the state of statical equilibrium. 

2. Simple acoustic state AN 

The Eqs. (10.20) yield to the state AN of the form: 

(10.23) 
H-1 

where v ·A-= e 1/ cu f!-2- -c1 , lA I = 1. The function s = S(t, :X) is given here by 
s = clt+xg. 

This solution describes free fall of the gas in the field of gravitation; this is seen when 
we choose such a system of coordinates., that v0 = 0: 

(10.24) e =eo, p = ce0, g· A= o, v = gt. 
Thus these solutions are not interesting from the physical point of view. 
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3. Simple hydrodynamic state HN 

For a study of the behaviour of H N, we must distinguish two cases: 

1. The direction of propagation of the state A is parallel to the direction of the field 

g (i .e., giiA); then we have: 

(10.25) 

and the conditions: 

1 dlJ2 - (c2 -cxe"-2)(lJ2 -cxe"-1) 
T d(! = Cl(! 

H-1 H-1 

0 < lJ < e y ex l?-2- or e }/ex e """"2 < 6, 

where the function s = S(t, x) is given by s = c 1 t + x g. 

2. The direction of propagation of A is not perpendicular to the direction of g(i.e., 
g ·A =F 0); then we have: 

(10.26) 

where ~(s) = -J (s)fcxe"- 2 and the conditions: 

de llg·A-
dlJ = cxe"- 3 ( lJ2 - cxe"-1) ' 

H-1 H-1 

0 < lJ < e y ex e - 2- or e y ex e - 2- < lJ' 

where the functions= S(t,X)isgiven bys = c1t+gx. 
In both these cases, we obtain a dependence of the function lJ on €?· The condition 

H-1 

0 < lJ < e y ex e-2- permits the state to move relative to the medium only with infrasound 
H-1 

velocities, and .the condition e y ex e 2 < lJ permits the state to move only with supersonic 
velocities. In both cases, when x = 2 we may give an analytic formula which defines 
the function lJ = lJ(e ). Let us illustrate this with an example when x = 2 for the second 
case. The solutions now are of the form: 

where 

v0 · A= 0, 

and the conditions : 

o < l1 < e v2c e1
'
2 or e v2c e1

'
2 < ll, 

where the functions= S(t, x) is given by s = Ctt+gx. 

8* 
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Interaction of simple waves with simple states 

Interaction of simple waves with simple states may be illustrated by Table I, 

Table 1. 

Simple '\ Simple EN AN HN 
wave state 

E + + 
X> 0? 

A + x=l-

where + denotes that interaction occurs, - denotes that interaction does not occur, 
? denotes the case which is not determined. 

Studies of interaction of entropic state with entropic wave, have led us to the existence 
of Riemann invariants. They give the following solutions: 

(10.28) g = p (r), p = p(r), ( 
c3 -c4{3 ) v = {3, , -ctf'g2 

• 
c2 

The equations on parameters s, r are of the form: 

where C(, {3- arbitrary function of parameters s, r. 

This solution describes the gas in the state of equilibrium in the field of gravitation 
in which occurs the outflow of flux of the gas in the direction perpendicular to the field g. 
If we assume that C( = C((s) and c1 = 0, c3 = 0, then 

(10.29) 

We have then the stationary case. The state interacts with the wave, since the wave 
does not influence the state and, conversely, they interact independently [9]. 

The interaction of entropic waves or acoustic waves with acoustic state describes free 
fall of fluid in the field of gravitation in which the given wave propagates. 

The considerations above lead to the following results: the simple state may be in­
terpreted physically as a one-dimensional solution constant on the planes parallel one to 
another (since the direction A. does not depend on parameter R0 ), which may move with 

N 

constant velocity in the · physical space £ 3 • As was illustrated above, these simple states 
may serve also to search for more general solutions, which may be interpreted . as 
interactions of waves with medium in certain determined states. 

I should like to express may great indebtedness to Prof. Dr. R. ZELAZNY and 
Dr. Z. PERADZYNSKI for their help during the study of this theme. 

http://rcin.org.pl



RIEMANN INVARIANTS FOR NONHOMOGENEOUS SYSTEMS OF FIRST-ORDER PARTIAL QUASI-LINEAR . . . 295 

Symbols 
E physical space, 

Jf hodograph space, 
:f{ vector space of solutions of the homogeneous system, 
!i' hyperplane of solutions of the nonhomogeneous system, 
Q linear subspace, 
N invariant subspace, 

flHyp subspace generated by the eigenvectors of matrix A, 
Hi space corresponding to the eigenvalue Pt of matrix A, 

R, s, r Riemann invariants, 
Pi eigenvalues, 

k(r) multiplicities of the root, 
u coordinates of Jr, 
i. characterisitic covector from E, 
J. noncharacteristic covector from E, 

N 

y characteristic vector from Jr, 
y noncharacteristic vector from Jf, 

N 

x = (t, x) coordinates of E, 

fJ = (.Ao+v· I) velocity of wave and state regard to a moving media, 
e density of fluid, 
p pressure of fluid, 
v velocity of fluid, 
g gravitation field, 
r. adiabetic exponent, 

A direction of propagation of a state, 

ti angular velocity of fluid. 
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