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Energy method of analysis of dynamic stability of a cylindrical
shell subjected to torsion

J. LEYKO and S. SPRYSZYNSKI (£6DZ)

IN THIS paper is presented an approximate energy method of analysis in a non-linear approach
as regards dynamic stability of a thin elastic cylindrical shell subjected to torsion. The particular
case in which the torque applied increases proportionally to the time is considered in detail.
Also given are the results of numerical calculations.

W pracy przedstawiono przyblizona metode energetyczna analizy statecznosci dynamicznej —
w ujeciu nieliniowym — cienkosciennej sprezystej powloki walcowej, poddanej skrecaniu. Roz-
wiazano szczegblowo przypadek, gdy moment skrecajacy powloke wzrasta proporcjonalnie do
czasu. Przedstawiono wyniki przyktadéw liczbowych, dotyczacych tego ostatniego przypadku.

B pabote npencraBieH npHOIIDKEHHBIH , SHEPreTHUYECKHI METO/T aHATH3a JTHHAMMYECKOM yCToM-
YHBOCTH — B HEJIMHEHHOH TPaKTOBKE — TOHKOCTEHHOH yHpyroif ImHapHUecKoH obonouxu
MONBEPrHYTOH CKpyuHBaHMIO. PelleH YacTHBIH CTydaif, KOrga MOMEHT CKpyYHMBawOIMHA obo-
JIOYKY BO3PACTaeT MPONOPLHOHANEHO BpeMeHH. [IpefcTaBiieHbl pe3yMbTaThl YHC/IOBBIX TNpH-
MEpOB KacaloIIMXCH 3TOr0 MOCHEQHEro CiIydas.

1. Introduction

WE SHALL consider the dynamic stability of a thin elastic isotropic shell subjected to the
action of rapidly growing torque applied at the ends of the shell (Fig. 1). The analysis
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T

of the stability will be carried out on the ground of non-linear shallow shell theory, and
small initial displacements of the middle surface of the shell from the ideal cylindrical
surface will be taken into account. In such a case, when the longitudinal and the tangen-
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14 J. LEYKO AND S. SPRYSZYNSKI

tial components of inertial forces are disregarded, we obtain two non-linear partial dif-
ferential equations for the deflection of the middle surface and sectional forces function

1 *D *w
(1.1) DV*Vi(w—w,) = L(w, D)+ — T 9 —»g};?,
1 1 3*(w—wo)
(1.2) Eh Vivigp = — [L(w w)— L(w,, wo)] — — _wz_o

In these equations the followmg notations are used:

w(x,y,t) total normal deflection measured from ideal cylindrical surface,
wo(x,y) initial normal deflection,
x,y coordinates defining the position of the point in the middle surface, as shown
in Fig. 1,
t time,

@(x,y,t) sectional forces function,
radius of ideal cylindrical surface,
thickness of the shell,
density,

= -—— — flexural rigidity of the shell,

Young modulus,
Poisson’s ratio,
a* a*
vV = 5ot > — Laplace operator.
The symbol L(,) means a non-linear operator defined as follows:
’w *P w *D P w PP
.3 Lw,P) =77 57+ 57 a7 2o dp oxdy
The sectional forces in the middle surface of the shell and the sectional moments are

expressed by the following formulae:

ety O o>l
2

i el ® _ P¢ ., o
(1.4) Ny =o:h = oy’ N, h‘?’ Nyy = Teyh = Wa
_ P(w—wo) | 9*(w—wo) a P (w—wo) 0*(w—wp)
(1.5) M, = —D[ 2 +» %7 , M,=-D 57 +v %2 §
_ 9*(w—wo)
Mx, — D(l _1’) W -

The differential Eq. (1.1) was obtained from the conditions of dynamic equilibrium of
an element cut from the shell, and the Eq. (1.2) from the condition of compatibility for
the components of strain of the middle surface

o [( ) (awo) ] v w—w, i 1 [(aw) (&wo) ]
o R T2\ )
L.6) y y 'y
_u v Owiw Ow, dwo
Vo= e Y ax T ax ey ox ay
In these formulae, u is the longitudinal and v the circumferential component of displacement
of the middle surface.
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2. The method of solution

In order to obtain an approximate solution of the title problem, we take for normal
deflection w of the shell, a function fulfilling the kinematic boundary conditions, and
having the form of the series
(21) EI‘J(X, Vs f) =fl(r) Wl(x: y)+f2(t) Wz(x:y)'f'
in which W, (x, »), Wa(x, ), ... are functions fulfilling the condition

Wi(x,y) = Wilx,y+2nR), i=1,2,..
and f;(t),f2(t), ... are unknown functions of the time . These functions will be taken
as generalized coordinates for which Lagrangean equations of motion will be established.

To obtain these equations, we must express the elastic energy of the shell in terms
of generalized coordinates, the kinetic energy in terms of generalized velocities, and we
must find the generalized forces corresponding to the generalized coordinates.

Introducing the expression (2.1) for w(x, y, f) into the right side of the Eq. (1.2) and
treating the function wy(x, y) as given, we obtain the linear differential equation for the
sectional forces function @. The solution of this equation must fulfil static boundary
conditions, and can be represented as follows:

(2.2) D = D—s,,xy,
where s,, is the mean value of tangential sectional force, and
(2.3) D = Do+f, B, +£2P,+ ... +1D, +f1Pos+ ... +1fiPrat ...

In this last equation @, @, , ... are functions of x and y.
According to (1.4) we have pow

2d P *d

(24) N1=W’ _r="§?"; ny=sxy—w-

The mean tangential sectional force s, , is determined from the formula
M

e Sov = 3R

in which M is the torque applied.
It is easy to note that, in this case, for an arbitrary x the following conditions must
be fulfilled:

T 26 ok
2- — - — —— .
(2.6) ; %3y dy =0, 0 77 dy =0

The elastic energy of the cylindrical shell of length / and radius R can be represented
in following form [1]:
I 2aR

L
V=g of J [(V2®)2 — (1 +9) L(®, B)|dxdy +
I 2aR
w2 ” (V@ —wo)l? = (1 —9) L{e—wo, w—wo)} dxdy.
2 0 0
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The first integral on the right side represents the elastic energy due to stretching of the
middle surface, and the second — the energy of the bending. Substituting for @ the ex-
pression (2.2) and taking into account the condition (2.6), we obtain

1 2nR

@n v= SEh f (VD)2 — (1 +¥)L(D, ¢)]dxdy+—f f {[V*(w —wo)]?

~ (1) L~ 100, 0~wg)}dedy+2 *+7 s2,mRL.

In order to find the generalized force Q; corresponding to the generalized coordinate
fi we give to this coordinate a virtual increment Jf; and we find the work done by the
torque. Denoting by 486 the corresponding virtual angle of twist of the shell, we have
(2.8) Qi 6fi = Mdb
The angle of twist of the shell is given by the formula [1],

I 2=R

_ 1 | 1 2%d 3:0 dw  dw, 3wo)

b= _2nR='ff(Gh =y Ty ax oy | TV
Taking into account (1.8) and (1,12). we obtain:

I 2aR

1 [ ow dw  dw, Ow 27RL
P N f (___._0,_0)
27R" | J h,r =3y ox dy ) Y an o

Hence

! 2aR
_ 1 _a_ff(awaw_awo 3wg) _27RL :
= - af,-L J\ &y~ T oy drdy = G S |
1 2aR

o af ow w
“T;ma—ﬁ[o 0 .E;wady]af{.

Substituting this value of 40 into the Eq. (2.8) and taking into account that, according
to (2.5), M = 2nR3s,,, we obtain:

! 2aR
a dw dw
@9 0 = sx,(r)—gﬁ—[ of iy d]

In the case under consideration, s,,(f) is a given function of the time .
The kinetic energy of the shell is given by the formula

h i
2.10) r=~7‘-’oj J (a:) dxdy = — 2 @y, f2+aaf2+ .. +2a0:f S+
in which

| 2aR

@11 i g f f W, W, dxdy.
0 0

We conclude that the generalized coordinates are not explicitly contained in the ex-
pression of kinetic energy 7.
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In the case of a “closed” cylindrical shell considered, the components of displacements
of the middle surface must be periodical functions of coordinate y. It follows from this
that for arbitrary x the tangential component v must fulfil the condition

Uix, 9 = Uix,p+27R)
which may be written in the form:
R av
—dy=0.
f ay =0

Taking into account the formulae (1.6),, (2.4) and using the generalized Hooke’s law,
we obtain

“ oo 1 (02 92 é
_ A yo¥  oT¥ Wo m Wo -
(2.12) Jé-}: dy = ![Eh (33:2 » ayz) 5 ) ( ) ]dxdy 0.

From this equation which must be fulfilled for arbitrary x follows the relation between
the coordinate f, f, ....

(2.13) F(fy,f2, ...) = 0.

Because the coordinates f,, f;, ... are not independent we must use Lagrangian equations
with multiplier 1. In the case under consideration dT/df; = 0, and these equations have
the form:

(2.14)

i(‘”’) o wlitwg, rei

— |+ o + A
t\of,] o o
These differential equations together with the Eq. (2.13) are sufficient to determine the
coordinates f|, f3, ... and the multiplier 4.

3. An application of the proposed method
We take the expression for the deflection of the shell in the form

3.1 W= f,sm ] X sin u(yR x) +f,sin? m;c
where n is the number of waves in the circumferential direction and k is a constant. The
corresponding form of buckling has n circumferential waves which spiral along the cy-
linder. The expression (3.1) was used by several authors for non-linear analysis of static
stability of cylindrical shells subjected to torsion [2, 3].

The expression for the initial deflection w, will be taken in analogous form to (3.1),

. @ nx
(3.2) wo = fo,in T H(y R +foz sin? 7

where f;, and f,, are constant coefficients.

The expression (3.1) fulfils the kinematical boundary conditions for simply supported
edges. For x =0 and x = I, w—w, = 0, and d(w—w,)/dx is not identically equal to
zero.

2 Arch. Mech. Stos. nr 1/74
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Introducing (3.1) and (3.2) into the right side of the Eq. (1.2) and integrating this
equation, we find the function @:

s o[ 1 (i~ k)
G &= [(l+k’)2 TR +@_ ](f" o1)
Eh$? 1 n(y—b,x) 1 n(y—dsx)
2 [(1+bf)2 L A+a)? “® 7~ R
1 ﬂ(_}""alx) 1 ?3()’ b3x)
Ea (l +a%‘)z CosS R = (l +b;)2 Cos :I(flfz fOlfDZ)
Ehl? a? n(y—a,x) bt n(y nb x
* 2R ’92[(1 o e B (FT ) e |i-so0
Enl? 2nx
s [m cos T](fz—foz),
where
By PR aombab, B, ombeb e, =bed.  bo=k-50.
nl

The function @ obtained fulfils the conditions (2.6). We conclude that the static boundary
conditions are here fulfilled in an integral manner.

Introducing the expressions (3.1), (3.2), (3.3) into the formula (2.7) and performing
the integration, we find the elastic energy of the shell:

nERIR | n* 1 1 n* 1 1
35 V= 3 {161“ [(l KR +F]{‘ﬁ_ 0})"'!_4[(1 a3y + (1 +5%)2
1 * | dai
tra Tt +b2)=]“‘f’ ~foroV = 37 [(1 +al)?

4b? " at
(1 +bz)z]01fz“"fmfoz)(fl —fo1)— 2RF 19; =1 (fa=fo2) + 33 g [(l+af)z
(I _?_bz)z](fl —fo1)* + R; (fa=Sfo2)*+ 12(1 vz) R‘ {(1 +a?)? + (1 + b))/,

16h? 1+
fOI) e ik 12(1 :) I‘, (fz fl}z) }+2 Eh Sx,an

From the Eq. (2.9) we obtain the generalized forces,

/
(3.6) 0, = —nkn? = /155), @, =0.
Using the Eq. (2.10), we obtain the following expression for kinetic energy:
h :
(3.7 A fi)an.

Substituting (3.1), (3.2), (3.3) into the Eq. (2.12), we obtain, after integration, the relation
between the coordinates f; and f;:

(.8 F(fy, f2) = n’f1—4Rf, —n*fo] +4Rfy; = 0.
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In the case under consideration, we can write two Lagrangean equations of the type (2.14).
Taking into account the expressions (3.5)-(3.8), we obtain:

&7, E Y. :
W*'ﬁg?[(—mm‘z*a‘]“‘ 5+ 5 e | e * Gy

1 1 E a} b}
+ (1 +ad)? + a +bz)z](flfz"f01foz)fz 5 QRF‘[(I +a§)2 + a +b2)2]

2 E E a‘
< [(fi=fo) fa +Sf1fa=SorSodl = E:"( W (fa—fodf1 + 2R [_(I +;§)2

54 ] Eh?

(] W +b))? (fi—fo) + m R‘ [(1+a)* + (1 +bD?1(f1 =fo1)
4n? 2kn?
(3'9) * QuR”lfl th Sx?('r)fl. ™= !

dzf:z 1 1 1 1
dr? 391‘ (1 +a?)? + (1+b2)? + (1+a2)? + (1+52) (f1f2—=forfo)fs

n* E a? b}
‘Tgmz[(na})z*(l b=)=](f‘ ~fodhi~ g7 gRPt?’ (fi=ot)

1 E 4n*h? 16
= _:’t_é-k?(fz —fo2) + W QT(fz —foz)“lm =

When s,,(¢) is given, the differential Eqs. (3.9) together with the relation (3.8) are
sufficient to determine the unknown functions of time f;(f) and f,(f). These equations
may also be used to obtain solution of the static stability problem. In this case

Sxy = § = const
and

& _ & _

darr T Tt T
Assuming that there is no initial deflection of the middle surface of the shell, and putting
in (3.8) fo; = fo. = 0, we have:

n

(3.10) h=gufi-
Taking this into account and eliminating the multiplier A from the Egs. (3.9), we obtain
the following relation between s and f, :

Eh b‘ 4 h 2
= Wk {[(1 :Li)’ * (l+b’)2] * i‘leE-Tz)(‘F) [0+t +{2 +b§)’1}
_ n*Eh b} U n’n? i)z}fz
axl? (1+a,)= (+62? ~ 81 +k32 61—\ 1) |"!

+3n‘Ehn’ 1 1 S ] 14
6aki* | (rad T +b02 T (+adr T (14002 [V

2w



20 J. LEYKO AND S. SPRYSZYNSKI

The parameters a,, a3, b, and b; are expressed in terms of k and ¥ = @R /nl by the for-
mulae (3.6). For thin shells of medium length k and & are small quantities, and the squares
of a,,a,, b, and b, can be disregarded in comparison with unity [3]. Taking this into
account and introducing the following notations:

G.11) s*=f,h§;, 6=}:,—f.

where s* is the nondimensional tangential sectional force, we obtain the equation describing

the postbuckling behaviour of the shell

19" ad 1 72
12(1 —?) 9k | 4k

6(1n— %) ﬁ’](fl ) 16 nf:'c;ﬁ: (f_l)‘

This equation corresponds to the equations obtained by T. GALKIEWICZ in his non-linear
analysis of the static stability of a cylindrical orthotropic shell subjected to torsion [3].
Putting into the Eq. (3.12) f; = 0, we obtain the solution for the linear problem:

1 P 3 196 w*é? 1

262[1? k3 +6kd*+ — + 20— %07

The minimal value of s§ is equal to the upper nondimensional critical sectional force;
hence

(3.12) s*= [ﬁ"k’ +6k0* + —

15
2;:2 5 [2&2 =9

(3.13) 53 =

SR ;
(3.14) o= = minsg.
The value k, of the parameter k, which makes s¥ minimum must fulfil the condition:
as8 1 . , 9 a1 ]

—0 SO S DC e PR )

(ak ks 2::2&2[3'9 ka+60%~ 22 — =) 126
from which we obtain:

2
(3.15 k=-/ 4 g4 LYY
) O | ]/ 3+ s 0

After introducing k, into the expression (3.13), the numbers of waves n = wR/$! which
makes s§ minimum can be established and s* can be determined.

Let us return now to the solution of the dynamical problem. We shall consider the
case in which the torque applied is proportional to the time. In this case, we have:

(3.16) Sxy = hbt,
where b is the velocity at which the mean tangential stress is increasing.

As regards the initial deflection of the middle surface of the shell, we make the assump-
tion that it is similar to that which occurs in the case of static stability loss. Therefore
the constant f,, and fp, in the expression (3.2) must fulfil and equation analogous to the
Eq. (3.10). Hence

n?
(3.17) fox = ﬁfozl .
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In the expression (3.1) for deflection w there enter two parameters: # and k. The number
of waves n is treated in our approximate solution of the dynamic problem as independent
of time, and as regards the constant £ we make the assumption that it has the same value
as in the case of static buckling, and is expressed by the formula (3.15). Using the Egs. (3.8)
and (3.17) we can eliminate from the differential Egs. (3.9) the constant f,,. the multiplier
A and the function f;(f). Treating a,, a3, b, and b; as small quantities, the squares of
which can be disregarded in comparison with unity, and introducing the nondimensional
time defined as follows

hb 5.

% _ Oxy
(3.18) *= S“r "
and using the notations

(f)—'ll(r) CO fOI
3.19
(1) , _h , A% _ gR“bz
TERT T Tg o T s

we obtain the following non-linear differential equation:

2 2
Ejé + _3‘7? [Cz‘?}_f: +¢ (d!*) ]+2 17%ko(E~=Co)

G20 gety

482 4 2
+Ta [’ L 3(?’3:)]@243)5— “Tf(n’é +kan®) (40° =302 - 3)

+ gy WO~ 10 2 2 ket = 0

in which k, is given by the formula (3.15), s¥ is the nondimensional upper critical sectional
force and g3 is the value of s§ for k = k,, where 5§ is defined by the formula (3.13). Hence
we have

05 nt 82 1
(3.21) qg = (Sg)k-:ko = 2:’;262 [ﬂzk +6k019 + 12(1 _vz) k 32 }

1 5, 67%0 n* 62 1 7t
T 267 [k 7 ko+ 7*ko * 12(1—%) K]

Solving the differential Eq. (3.19), we find the nondimensional generalized coordinate
{ = fi/h as the function of time, and we can perform the analysis of the dynamic buckling
of the shell.

4. Results of numerical calculations

The differential Eq. (3.20) was solved numerically by the Runge-Kutta method
with the following initial conditions for t*= 0:

C=C0: &:=0-
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Some results of these calculations concerning brass cylindrical shells for which:

E =0.981-10° MN/m?, o =85-10"*kg/m3, R/l=1/4 and R/h= 100
will now be presented.

The variation of nondimensional deflection £ of the shell with nondimensional time ¢*
is represented in Fig. 2, for the case in which the mean tangential stress is increasing at
velocity b = 0.4905 MN/m? s, and the parameter (o = fo;/h characterising the initial
deflection is equal to 0.01. The curves shown in the figure by the full lines are obtained
for three different values of the number of waves n in the circumference of the initial
deflection surface of the shell (n = 5; 6 and 7). We note that the most rapid growth

b2
| b=04909-10°
- [MN/m?s] I %
: Lz001 T \
] [11

5 \ l
\ I /
\ /] /
\ /
\ N
/ ~
A ey
as 1 15 2 t*
7107 307 e 507 tfs]
Fic. 2.

of the deflection in time occurs for n = 6. This number of waves corresponds also
to the static upper critical torque for the shell considered here.

It follows from the relation (3.18) that the mean tangential sectional force s,,(f), and
thereby the torque applied, is proportional to the nondimensional time r*. Hence the
curves in Fig. 2 represent also the relation between the dynamic deflection of the shell
and the torque applied. The curve shown in the figure by the dotted line corresponds to
the solution of the static problem for » = 6. This solution was obtained from the Eq.
(3.20) in which in this case all terms with derivatives of { with respect to * were disregarded.
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The load corresponding to the first inflexion point of the deflection-time diagram is
defined usually as the dynamic critical load [1], because it occurs at the moment when the
snap-trough action of the shell attains its greatest velocity. This inflection point of the
curve obtained for n = 6 is denoted in Fig. 1 by 4, and it follows from this figure, that
in the case considered, the dynamic critical load is about fifty per cent higher than the upper
static critical load.

In Fig. 3 are presented the results of the solution concerning the case in which the
mean tangential stress is increasing at velocity b = 0.981 MN/m?s (i.e., at double the
previous velocity).

In this case, the dynamic critical load (for n = 6) is about seventy five per cent higher
than the upper static critical load. Also analyzed was the infleunce of the magnitude of
initial deflection of the shell on its dynamic stability. The results of the solutions obtained
for three different values of the parameter ¢, are given in Fig. 4. The curves shown in full
lines correspond to the solution of the dynamic problem, and the curves shown in the
dotted lines — to the solution of the static problem.

A more detailed analysis of the numerical results obtained and some experimental
data will be presented in a separate paper.
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