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Study on the internal forces of container ships 

J. WII~CKOWSKI (GDANSK) 

THIS PAPER gives the results of a study on the influence of the heterogeneity of cargo and oblique 
waves on such internal forces as torsional and bending moments. Fot the sake of simplicity 
a core of the hold cross-section was introduced (as the domain of possible positions of gravity 
centres of cargo) and calculated. Torsional moment acting on the ship due to yawing, vertical 
motion and possible positions of the centre of gravity in the core was considered in general 
and in the simple case of rectangular waterplane of the slip. External forces due to heterogenous 
cargo were also considered as sets of equimeasurable functions. Some theorems enabling to 
calculate extreme values of internal forces functional in these sets are established and illustrated 
on simple examples. 

W pracy podano wyniki badan nad zagadnieniem wplywu niejednorodnoS<:i ladunku oraz fali 
skosnej na wielkosc sil wewne(trznych, takich jak momenty skre(caj~ce i zginaj~. Dla uprosz­
czenia analizy wprowadzono poj~ie rdzenia przekroju ladowni, zdefiniowanego jako obszar 
moi:liwych poloi:efl srodk6w ci((i:koSci ladunk.u. Przedyskutowano og61nie zalei:nosc momentu 
skre(caj~ego kadlub statku od jego myszkowania, kolysania pionowego oraz poloi:enia srodka 
ciC(i:koSci ladunk.u; przeanalizowano taki:e prosty przypadek szczeg6lny wodnicy prostok~tnej. 
Uwzgle(dniono taki:e sily zewne(trzne, wynikaj~ce z niejednorodnoSci ladunku, traktujl!c je jako 
zbiory jednakowo mierzalnych funkcji. Przedstawiono szereg twierdzefl pozwal~~cych oblicza.C 
ekstremalne wartoSci funkcjonalu sil wewnC(trznych w tych zbiorach ilustruj~ je prostymi 
przykladami. 

B pa6oTe ~aiOTCH: pe3yJI&TaTbi HCCJie~oBaHHH npo6neMbi BJIIDIHWI Heo~opo~oCTH rpy3a 
H I<OCOH BOJIHbl Ha BeJIHqHHy BHYTIJeHHHX CHJI, Tai<HX 1<31< CI<pyqHBaiOIIl;He H H3rOOaiOIIl;He 
MOMeHTbi . ,U.Jm ynpow;eHHH aHaJIH3a sse~eHo noHHTHe cep,IUJ;eBHHbi ceqeHIDI rpy30soro 
noMa, onpe~eJieHHoro I<ai< o6naCT& B03MO>f<HbiX nono>KeHHH ~eHTpoB TH>KeCTH rpy3a. 06-
cym~eHa B o6ru;eM 33BHCHMOCTb MOMeHTa CI<pyqHBaiOIIl;ero I<Opnyc cy~a OT ero pbiCI<aHHH, 
BepTHI<aJibHOH I<a qJ<H H llOJIO)f{eHHH ~eHTpa TH>KeCTH rpy3a; npOaHa.JIH3HpoBaH TO>Ke npoCTOii 
qaCTHbiH cnyqaii npH:MoyroJibHOH sarepJIHHHH. YqTeHbi TaiOKe BHeWHHe CHJlbi BbiTei<arow;He 
H3 HeO~OpO~HOCTH rpy3a, TpaJ<TYH: HX l<ai< MHO>KeCTBO O~ai<OBOH Mepbl <l>~HH. Ilpe~­
CTaBJieH pH:~ TeopeM ll03BOJimOIIl;HX BblqHCJIHTb 3I<CTpeMaJibHbie 3HaqeHHH: <l>YHI<~HOHaJia 
BHYTIJeHHHX CHJI Ha 3THX MHOmeCTBax, HJIJUOCTpHpyH: HX npOCTbiMH npHMCpaMH. 

1. Introduction 

MoDERN progress in automation of the process of transport of various types of loads, 
general cargo in particular -i.e. loads of variable shape and specific weight- resulted 
in the last decade in the development of special types of ships adapted for container trans­
portation. Ships of this type are characterized by special construction. In order to ensure 
prompt and effective stevedoring, the hatchways must be sufficiently large, which results 
in shifting the centers of shear under the keel and in reduction of the overall torsional 
rigidity of the cross-sections of the bull. At the same time, the action of waves leads to 
a non-linear problem of cooperation between the hull (subject to torsion and bending) 
and the hatches under the assumption that all the clearances are filled by packing material. 

The existing bibliography of the problem directly concerning open ships embraces, 
in periodicals dealing with mechanics of ship structures- or more generally, with the 
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shipbuilding industry - ~bout seventy references. The most important references, together 
with those concerning the results obtained in the Gdansk Technical University Ship­
building Institute, are given at the end of the paper. 

In computing centers of Bureaus of Standard- e.g. in the Bureau Veritas [2]­
extensive computing programs are already in use which make it possible to analyze the 
influence of the geometry of structure of a ship on the torsional rigidity of the hull, local 
phenomena, stresses etc., and to evaluate the effects of boundary conditions. The work 
[2] contains an extensive description of research problems concerning ships of that type, 
their designing and exploitation. 

The most frequently used theoretical model of open ships' structures is a classical 
thin-walled beam with an open profile, or a closed-open model (double hull), closed by 
transversal deck strips between the holds [3, 4, 5], and by rigid and elastic endings of the 
hull (stern and fore body). A slightly different model is presented in [10]; it consists of 
a combination of a framework and a thin-walled, prismatic bar. 

The development of digital computers has introduced also the finite element method 
into this field of technology. The programs used in Japan [6], in which the ship is divided 
into some one thousand elements, are verified by direct measurements on actual ships 
on calm sea and loaded by suitably filled ballast tanks. The authors found satisfactory 
agreement between the theoretically predicted and experimentally measured stresses and 
strains - except for the so-called local states. Such an approach offers the possibility 
of solution of the problem of simultaneous torsion and bending outlined in [7]. 

It seems, therefore, that the main theme which should be developed within the frame­
work of existing solutions concerning open ships is the analysis of loadings, which are 
difficult to predict in the process of exploitation. A cargo consisting of containers is a typical 
example of a heterogeneous load of a sectionally constant generating function [8], deter­
mined by the so-called cryptonime for loaded containers and by the number of empty 
containers. 

In this paper we shall deal with the problem of influence of nonhomogeneity of the 
cargo on internal forces and on the algorithm of evaluation of torques acting on container 
ships placed oblique waves- under the simplest assumptions eliminating the effects of 
side-sway and pitch from the dynamic interactions. The only dynamic factors essential 
from the point of view of torque appraisal will be the so-called yawing of the ship and 
its vertical motions caused by the less than unity block coefficient. 

2. Core of the cross-section for nonhomogeneous cargo 

Let an arbitrary region~ be given on the plane x, y. Assume two materials of constant 
specific weights y 1 < y 2 , infinitely divisible and incompressible. Let the region ~ be 
divided into two arbitrary, measurable and disjoint parts ~~ and ~2 • Let the material 
with specific weight Yi be distributed in a layer of constant thickness over the region 
!'J" i = 1, 2. The loci of all positions of the mass centers in ~' within the set of sub­
divisions of the region into two measurable parts ~ 1 and !iJ 2 , will be called the core 
of the cross-section. Let us determine the contour of the core. 
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STUDY ON THE INTERNAL FORCES OF CONTAINER SHIPS 39 

Let us assume for a moment that regions !'}1 , !'}2 are obtained by dividing the region 
by means of a line perpendicular to x and at point x. Let X = Xmtn and X = Xmax be tangent 
to the region !'} and have the property that the entire region is contained between these 
straight lines. Let hx(e) denote the global length of segments lying on the line X = e and 
belonging to!'}, and let !'}1 , !'}2 denote areas of these regions into which !'J has been sub­
divided. Then the coordinate x = x 0 of the mass center is equal to 

x Xmax 

Y1 J hx(e)ede + Y2 f hx(e)ede 
(2.1) 

Xmin x 

Let us determine when the mass center position reaches an extremum -i.e., when 
x 0 = (x0 )max. Differentiation of the Eq. (2.1) leads, under the condition that x~ = 0, 
to the equation 

x Xmax 

Y1 J hx(e)ede +r2 f hxCe)ede 
X m in 

X=-------------------------
Yt !'}t +y2!'}2 

(2.2) 

whence the conclusion may be drawn [by comparison with the Eq. (2.1)] that in the 
extremal position the center of mass is located at the line dividing the region !'} into !'J 1 

and !'}2· 

It will be proved that the Eq. (2.2) determines the coordinate of the boundary point 
of the core. In fact, let !Z)~ and P}g denote an arbitrary subdivision of !'J by a line per-

pendicular to the x-axis (load Yi is placed at ~?, i = 1 , 2). Let now ~p, i = 1 , 2, denote 
an arbitrary different subdivision into regions which are measurable but such that 

mes (!'}?) = mes (~f), i = 1 , 2. 
Let us denote 

(2.3) 

and 

(2.4) 

i = 1' 2, 

P}~' = !'}?~ !Z)~, i = 1 ' 2. 

Obviously, mes (!'}~') = mes (!'}~) and 

(2.6) 1\ 1\ x' < x". 
(x'. y')e ~~' (x", y") e ~;' 

In the region !'}~' (at subdivision !Z)f) is placed the heavier material of specific weight 
Y2, and in the region f)~- the material with specific weight y 1 • By means of the Eq.(2.5) 
we may, be means of simple exchange of materials, obtain the subdivision !'}f by a line 
perpendicular to the x-axis, though, in view of y 1 < y 2 , the mass center will be displaced 
in the positive direction of x. A division by the line perpendicular to x is hence extremal 
in the set of all subdivisions of !1) into the parts !l)i of fixed areas. The solution (2.2) is 
thus also an extremal solution in the set of all perpendicular subdivisions, and determines 
the core of the cross-section. 

It is obvious that, in order to determine the boundary point of the core on the line 

tangent to an arbitrary axis directed, say by the unit vector k, a similar method may be 
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applied, and the core boundary is easily obtained by assuming the set of all unit vectors 
as a parameter. A further conclusion is the convexity of the core, since only one boundary 
point for each tangent may exist. It is valid for any measurable sets ~ on the plane (i.e. 
not only connected ones, as in most applications). Generalization to a spatial case is 
trivial. 

Also obvious is the solution of a slightly different problem of determination of the 
cross-section of the core. A sequence of specific weights y1 < y2 < ... < y,. of materials 
distributed over the region ~ is given. Let us determine the core of that region. 

The form and dimensions of the core depend exclusively on y 1 and y,.. This is by the 
method indicated for two materials. If, however, the amounts of individual materials are 
fixed, then the maximal coordinate of the core in the direction of a fixed axis t with unit 

vector k is obtained by dividing ~ by means of straight lines perpendicular to t within 
the subregions ~h i = 1, 2, ... , n; materials with specific weights Yi are consecutively 
placed in these regions, coordinate t for the subdivision is found and, as a result, we 
obtain the boundary point of the core. 

3. Examples and applications 

The core of a circle is also a circle. If the circle (region~) has radius r, and the core­
radius (!, we introduce the parameter y 2 Y1 1 = n and obtain the following system of 
transcendental equations for e: 

(3.1) e - = -COS(X 1 , 
r 

and 

(3.2) 

where (X 1 e (n/2, n). 
A rectangular cross-section important for applications is somewhat more complicated. 

Let us assume the rectangular coordinate system (z, y) at the center of the rectangle, 
with axes parallel to its sides; coordinates of the points of intersection of the core boundary 
with the axes y and z, for positive coordinate values, are 

(3.3) 

and similarly for the z-axis 

(3.4) 

Here n = y2 y! 1 • 

n vn-1 
Yo = 2 tl n+1 ' 

Since the core is known to be convex, its lower bound may be estimated by inscribing 
a quadrangle with vertices placed at the points of intersection of its contour with the 
coordinate axes. Let us estimate these differences for a square with sides a by determining 

http://rcin.org.pl



STUDY ON THE INTERNAL FORCES OF CONTAINER SHIPS 41 

the position of the boundary point of the core at the diagonal. If { 0 denotes the distance 
of the core contour from the point (0, 0) measured along the diagonal, then 

(3.5) 

3 2 2 
v y'2 u -Tu 
~0 = -4 -(n-1) n- 1 a, 

u2---+l 
2 

where u satisfies the equation 

(3.6) 

Comparison of the values ~0 a- 1 for different n with those for the simplified core (~0 a- 1 ) 

is given in Table 1. 

Table 1 

n 

0 

0 

2 

0.060 

0.064 

4 

0.166 

0.172 

16 

0.300 

0.313 

In other cases, for instance when the cross-section consists of two rectangles (a case 
of great practical importance), the formulae are more complicated and will not be analyzed 
here. 

Knowledge of the cross-section core enables us to solve the following problem. A rigid, 
cylindrical hull with vertical sides is given, the x-axis being directed from the stern to 
the bow. The hull floates on calm sea, with small vertical motions and side-swaying. 
A continuous, linear load F(x) of the hull is given, as also the cross-section cores Bl(x) 
for each x. If y 1 (x) is the y-coordinate of the line of gravity centers, then the torque at 
cross-section x = x 0 is obtained in the form: 

(3.7) 

where 

(3.8) 

Ms(Xo) = f r(x)w(x' Xo)Yl (x)dx' 
h 

XE(L1 ,Xo), 

x E (x0 , L 2 ). 

Here ly is the moment of inertia of the waterplane with respect to its axis of symmetry,. 
fy,x

0 
is the moment of inertia with respect to the axis of symmetry of that part of the 

waterplane which satisfies the condition x ~ x0 , and h = (L1 , L 2 ). 

Assuming that the line of mass centers in each cross-section is contained within the 
tube generated by the core Bl(x) for x Eh, we may easily determine the extremal values 
of the torque by selecting y 1 on the corresponding wall of the tube, as depending on the 
sign of w(x, x0). The solution yields both the upper and lower bounds of the torque. 
In the next section, in discussing another one-dimensional problem, a different formula­
tion and solution of the problem of extremum internal forces will be given. 
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4. Extrema mechanical parameters in the sets of distributions of one-dimensional, non­
homogeneous loads 

Let us assume that loadf(x) of the hull represents one of all the possible configurations 
of a non-homogeneous load, provided f is a measurable function characterized by the 
measure function 

(4.1) m(y) = mes(.Qy) = mes{x,f(x) > y} = cp(f,y). 

The function f 0 (x) defined for x eh and non-increasing in that interval is called the 
generating function of a nonhomogeneous load provided it is equimeasurable with f(x). 
The set of all functions equimeasurable with / 0 constitutes an ordered set of the same 
nonhomogeneous load. The generating functions most frequently encountered in practice 
is the sectionally constant generating function which models the load consisting of 
portions of a homogeneous load [8]. 

Let the set lJI of equimeasurable functions be determined by the generating function 
f 0 (x), which is continuous and decreasing in the interval (L1 , L 2). Let the functional J 
defined on lJI by an integral, possess a continuous and decreasing influence function j{~) 
in (L1 , L 2 ). The arguments of the functional J extrema are then: 

for the maximum 

(4.2.1) 

and for the minimum 

(4.2.2) 

The proof of the Eq. (4.2.1): we should construct a decreasing function equimeasur­
able with the generating function/0 • Such a function is unique, which concludes the proof. 
In the case of the Eq. (4.2.2), an increasing function belonging to the set lJI should be 
constructed in the interval (L 1 , L 2 ) (it is also unique). From the relation 

(4.3.1) 

where 

we obtain the original thesis. 
Now, the more general case may be considered in which the function j(x) determined 

in h = (L1 , L 2 ) has the property I: The interval his represented in the form: 

k 

(4.4) U Is = h, li n lk = f/>, j =F k 
S=l 

and in each interval Is the influence functionj(x) is continuous, monotonic and bounded. 
To construct the extremum arguments of the functional J in the set lf', let us introduce 

the intervals 

(4.5) Es;y = {x; X E Is, j(x) > y}. 
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Consider now the generating function / 0 of the set 'P, and assume it to be monotonic 
decreasing. Then 

k 

(4.6) (\ V Xo- L1 = 2 ms(Es,y), 
y ~eh s=l 

where the right-hand number represents the global length of all these intervals for which 
j(x) > y. Observe, moreover, that for Es;y ::/= 0 there exists a point x0 (y) e Is at which 

.i(Xs) = Y· 
In order to construct a function equimeasurable with f 0 (x) and yielding a maximum 

of J, we should assume 

(4.7) 

where the relation between Xs and x0 is found from the composition of the functions 
x 0 = A(y) [according to the Eq. (4.6)] and y = j (x5). Disregarding the index s after the 
composition and substitution into the Eq. (4.7)- since the possible values of X:s fill up 
the interval h- we obtain the argument of the functional maximum with the influence 
functionf(x) having the property I: 

(4.8) 

A similar reasoning yields the formula for the argument of minimum q;-, 

(4.9) 

where the function x0 = B(y) is determined from the relation 

k 

(4.10) L 2 -X0 = 2mes(Es,y). 
s =I 

In practical applications, the generating function is often sectionally constant, the in­
fluence function preserving the property 1. Arguments of the extremum are then also 
sectionally constant- and it remains to determine these intervals (their ends). 

Let X;, i = 1, 2, ... , R, be the internal (within the interval h) discontinuity points 
of the first kind for the generating function / 0 • The requirement of equimeasurability of 
rp + and .f0 implies the inequality to be satisfied: 

k 

(4.11) X;-L 1 = 2 mes(Es,))· 
s= 1 

The functionf(x) is sectionally monotonic, and hence 

(4.12) 

Let Xs,i denote the discontinuity points of extremum arguments within the interval Is. 
Then 

(4.13) 

where the index s denotes the inversion of the influence function in Is. 
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Combining the relations (4.12) and (4.13) we obtain a transformation of the points 
of discontinuity of the generating function into the discontinuity points of the argument 
of maximum 

(4.14) xt,; = j;1 [A- 1 (X;)], i = l, 2, ... , R. 

In an analogous manner, the solution for the argument of minimum may be obtained: 

(4.15) x;,; = j; 1 [B- 1 (x;)], i = l, 2, ... , R, 

where B- 1 is found from the Eq. (4.10). 
The criteria for selecting the values of q;+ and q;- in the neighbourhood of points 

Xs,i are: 
If 

(4.16) 

and, as has been assumed, Lli > Lit, then for j(x) / in Is 

(4.17.1) 

while for f(x) '\, in Is 

(4.17.2) 

lim q;+(x) = L1i; lim q;-(x) = At, 
x-+-xt,;+ x-+-x;.;+ 

lim q;+ (x) = L1i; lim q;- (x) ± = L'1(. 
x->-xt,;-

5. Examples and applications 

Example 1. Let h = ( -L, L),j(x) = x 2 -L2 /4, and the generating function{0 (x) = 
= 2e-x. This case of the influence function possessing the property I. 

The function A(y) determined from the Eq. (4.6) is equal to 

(5.1) A(y) = L-2yy+L2 j4, 

while the arguments of the extremum, according to the Eqs. (4.8), (4.9), are equal to 

(5.2.1) 

(5.2.2) 

q;+(x) = 2e-<L-2'xl>, 

q;-(x) = 2e-<2:xi-L>. 

Example 2. Changing the generating function in Example 1 and assuming 

(5.3) 

we consequently obtain 

(5.4.1) 

(5.4.2) 

10( ) = f/~ 
X lf~ 

XE(-L,O) 

X E (0, L) 
!~ >f~, 
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and in view of X; = 0 (discontinuity point of the generating function), also A- 1(0) = 0 
and the discontinuity points of the maximum arguments are 

(5.5) ·-t(O) L 
x2.t = }2 = 2' 

The methods of the preceding section may easily be applied to the case of bending and 
torsion of a container ship. Let, for example, eo(~), ~Eh, denote the cross-sectional 
areas of a hold filled with cargo; y0 (x) is the generating function of a three-dimensional 
load given in the form of specific weight. y 0 (x) is defined in what is called the equivalent 
hold, in the interval of length Lred (8]. 

Let the influence function j(x) possess the property 1. The extremal solution is con­
structed in the following manner: 

Let us construct the sets 

(5.6) Ey;s = {x,j(x) > y and X E Is}· 

The hold contained in the interval Ey;s should be filled with cargo showing the greatest 
specific weight, its volume being preserved. The latter requirement is written in the form 

(5.7) w 0 x 0 = J eo(~)d~ = eo0 A(y). 
k 

U Ey;s 
S=l 

For each y we must determine such points Xs E Is (provided they exist) that y = j(x:.)· 
As a result, we obtain the extremal density distribution as an argument of the extremum 
(e.g. in the case of bending) in the form: 

(5.8) 

x.,. is an arbitrary point taken from Is, and hence the index s may be disregarded in the 
expression for the extremum argument: 

(5.9) y+(x) = Yo[A(j(x))]. 

The argument of minimum is easily found to have the form 

(5.10) y-(x) = Yo[B(j(x))], 

where the function 

(5.11) B(y) = Lred-A(y). 

Example 3. Assuming the influence function as in Example I, and the distribution of 
cross-sections of the hold as 

(5.12) eo(~) = a(L2 --x2
) x E (- L, L), 

dimensions of the equivalent hold being 

(5.13.1) 

(5.13.2) Lred = 2L, 
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we obtain from the Eq. (5.7): 

(5.14) 3 -. ~--L2 [ 1 ( £2 )] 
A(y) = 2L-L Jl y+4 L2-3 y+T . 

If the generating function is also taken from the Example I, the argument of maximum 
may be calculated from the Eq. (5.9) 

(5.15) y+(x) = 2exp [ -2L+3Ixl-xi:1 J. 
It will be demonstrated that the problem of static twisting due to a nonhomogeneous 

load may also be reduced to the problem described by the relations (5.9)-(5.11). 
Indeed, let us consider a hull with vertical sides, called a linear hull (e.g. [8]). Let g) 

denote the floating waterplane with the x-axis as the axis of symmetry of the waterplane 
and y-axis intersecting the x-axis at the center of gravity of g), Denote 

(5.16) g)x
0 

= {(x,y), x,y eg), x ~ x0 }. 

The torque produced by the two-dimensional load cp(x, y) at the waterplane g) may be 
written, at small (blok), in the form 

(5.17.1) Mlxo) = J J ms(~, 1}; X0)cp(~, 1J)d~d1J, 
~ 

where 

(6.17.2) 

Iy(x0) is the moment of inertia of a part g}xo of the waterplane g) with respect to y, L 2 

is the bow coordinate. Due to ly(x0 )/Iy(L2 ) for x 0 "I= L 2 it is easily seen that in order 
to find e.g. the extremal distribution of load leading to the maximal torque in the cross­
section, the load should be distributed only over the regions: 

(5.18) g}l,xo = {(x, y), X, yE g}x
0

, y > 0} 

and 

(5.18.2) 

Let us introduce the notations: 

(5.19) 

a+ (y, Xo) is length of the segment from the line x = x0 to the waterline, measured along 
the line perpendicular toy-axis, for positive y > 0 in g}1,x

0
, and for negative y < 0-

in g)2,xo· 
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The maximum torque may be obtained from the nonhomogeneous load by so distribu­
ting it that the loads at the lines y = const remain constant. The integral ( 5.17 .1) should 
then be written in the form: 

B/2 

(5.20) M,(x0 ) = J [~(I +sgn'1)-u(x0 )}a+(y, x0)<p(lj)<bj, 
-B/2 

where B denotes the waterplane width. Alternatively, introducing the height h of the 
holds at sections a+, and denoting by w(f}, x 0 ) the area of cross-section of the hold space 
made by a plane perpendicular to they-axis in the part above !!J1 ,x or !!J2 ,x, we obtain 

(5.21) 

B/2 

M.(x0 ) = J [ {o +sgn'1)-u(xo)}w(lJ, xo)Y(7J)dn; 
-B/2 

y(f}) is obviously the specific weight of the load. 
The influence functionj(1J) in the functional (5.21) is: 

(5.22) j(lj) = G (I +sgn71)-u(x0)}. 

The problem of torsion is thus reduced to the one-dimensional problem identical, in 
the general approach, with the problem of bending. If the generating function is prescribed 
in the equivalent hold of cross-section wred and length Lred, then in order to determine 
the maximum Ms(x0 ), we should use the heaviest load of the volume of holds placed above 
the region !!J 1 ,x

0 
u !!J2 ,x

0 
and apply the method described by the relations (5.6)-(5.11)~ 

6. A simplified method of determination of dynamic torque 

Let us consider a linear rigid hull on an oblique plane wave. The method is a general­
ization of that presented in [3] to the case of nonhomogeneous loads, vertical motions and 
dynamic interactions due to yawing. An extensive numerical discussion for an actual 
ship, based on results of the present paper, may be found in [10]. 

Let x, y, z denote the Cartesian coordinate system connected with the waterplane· 
(x-axis from stern to bow, z-axis perpendicular to the waterplane). The Cartesian reference 
frame ~, 1J will be twisted by angle rx with respect to x, y. The plane wave is given by the 
equation C = h(~). Due to the fact that coordinates x, y are transformed to ~, 1J by 
means of the formulae 

(6.1.1) 

(6.1.2) 

1J = xsin rx + ycos rx, 

~ = xcosrx-ysinrx, 

the wave ordinates at the sides of the hull are 

(6.2.1) 

(6.2.2) 

C1 = h(xcosrx-F(x)sinrx), 

C2 = h(xcosrx-F(x)sinrx). 
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The inequality F(x) ~ 0 yields an even contour of the floating waterplane for x eh = 
= (- L/2, L/2). Side-sways and vertical motions of the ship are assumed to be absent, 
the draught of the wave is equal to that at calm sea. 

It is additionally assumed that the extra pressure produced by the waves is calculated 
according to hydrostatic laws, with additional reduction coefficients k 8 for the bottom 
and ks for the sides. The methods of calculations of ks and k8 are outlined, e.g., in [3]. 

It may be shown by elementary methods that only two of all hydrodynamic inter­
actions do not vanish. The vertical buoyancy force applied to the center of the floating 
waterline: 

(6.3) 

and the yawing moment: 

L/2 

P., = 2ksYw f F(x)(C1 +C2)dx 
0 

L/2 

+ywks f x(C2IC2j- Ct IC11)dx; 
0 

Lis ship's length, Yw- specific weight of water, d- calm sea draught of the ship. 
The forces are equilibrated by instantaneous inertia forces of the masses of the hull 

and of the associated water. Omitting the detailed considerations of all the load components, 
let us list only those which contribute to the torque. 

Continuous vertical load due to cargo 

(6.5) 

acting along the line given by the parametric equations: 

(6.6.1) 

(6.6.2) 

z = z2(x), 

Y = Y2(x). 

Continuous vertical load due to hydrodynamic forces acting on the bottom: 

(6.7) 

Coordinate y(x) of the line of action of that load satisfies the equation: 

(6.8) 

Continuous horizontal load due to hydrodynamic pressure acting on the sides 
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Ph > 0 when its direction agrees with that of the y-axis. Coordinate z (x) of the line of 
action of the load P, satisfies the equation 

where 

(6.11.1) i = 1' 2, 

(6.11.2) 

Continuous vertical load due to inertia forces of vertical accelerations: 

(6.12) .. ( ) 1 P.,, 2 = -zq2 x -, 
g 

where 
L/2 

2kBYwf F(x) (Ct +C2)dx 
z = ------::-:::---0------=-:-::-----

L/2 L/2 1 • 
2j m.,(x)dx+ J -q(x)dx 

0 -L/2 g 

(6.13) 

In the formula, m.,(x) is the linear density of mass of the associated water during the vertical 
motion of the hull, q(x)- the total linear weight of the hull (cargo and structure). 

Coordinate y of the line of action of the load is 

(6.14) 

as for the statical load due to cargo. 
Dynamic loads due to yawing. Load due to inertia of water (horizontal) 

(6.15) 

where 

(6.16) 
•• A{% 
'l.fJ = L/2 L/2 1 

2 J m"'(x)x2dx + J -q(x)x2dx 
0 -L/2 g 

Mz is the yawing moment, 1p- yawing acceleration, m.,(x)- mass density of associated 
water at yawing. 

Such a problem has not so far been solved in hydrodynamics ,for heavy sea conditions 
in particular. The point of application of the resultant force remaining unknown, let us 
assume for an approximation, that z = zh = const and equals one half of the draught d. 
This assumption may be justified by certain solutions obtained in the literature (by a­
nalogue method) in which the distributions of masses of the associated water at the sides 
of rectangular cross-sections were determined (almost constant). 

4 Arch. Mech. Stos. nr 1/74 
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The last load is the horizontal load due to the inertia of the hull when yawing: 

(6.17) Ph,2 = -ipx q(x) . 
g 

coordinate of its line of application being z = :Z(x), where z is coordinate z of the line 
of mass centers for the entire ship, together with the cargo. 

In calculating the torque intensity due to the vertical loads, e.g. Ph, applied to the 
line z(x), it should be noted that the line of shear centers c(x) constitutes a "crankshaft", 
and hence 

Xo 

(6.18) M 11(X1) = J P~a[c(x0)-z(x)]dx. 
L1 

The torque intensity, after differentiation of both sides of Eq. ( 6.18) with respect to 
x0 , yields: 

(6.19) 

where ~(x- x 1) denotes the Dirac delta applied to the point of discontinuity of the line 
of shear centers, the corresponding jump being equal to 

(6.20) L1cx, = c(xt)-c(Xf). 

In the example it is assumed that C(x0 ) = const and then the torque intensity is cal­
culated from the formula 

(6.21) ms(x) = q2(x)y2(x)- Po(x)y(x) + Ph(x)[c- z(x)]- Po,2Y2(x) 

+ P~a,t (x)(c- zh) + Ph,2 [c- z(x)]. 

The criterion for uncoupling with the side-sway is reduced to the requirement that the 
horizontal load Ph, 2 , possessing a non-vanishing horizontal component, should not give 
rise to a non-vanishing moment with respect to an arbitrary straight line parallel to x. 
This requirement is easily reduced to the condition: 

(6.22) J q(x)z(x)xdx = 0. 
h 

The method of selection of initial parameters in control computations which yielded 
the order of magnitude of the torque and which constituted a control test for a program 
elaborated in [10] was as follows: 

Case A. Assuming the load nonhomogeneity and calculating the point of intersection 
of the core with the axes z~1 > and %~2>, the states of loading are assumed to be symmetric, 
i.e. such that Y2(x) = 0. The ship is then not twisted in calm sea. 

The condition of vanishing of heels is now satisfied identically. The condition of un­
coupling with the side-sways (6.22) is now written in a particular form, by assuming that 
the line of gravity centers of cargo coincides with the boundary points of the core and has 
only one discontinuity- point of the first kind for a certain value of x = xi. 

Equation (6.22) then takes the form: 
XI L/2 

(6.23) J ql (x):Z1 (x)d.x+z~i> J q2(x)xdx+zV> J q2(x)xdx = 0, 
fL -L/2 XI 
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containing the unknown xi to be determined. The limits of integration in the Eq. (6.23) 
describe the intervals in which z2 (x) are equal to the coefficient standing before the in­
tegrals. z1 (x) is the coordinate of the centers of gravity of the structure. Two separate 
cases are distinguished here, A i, i = 1 , 2, according to the choice of the index i in the 
Eq. (6.23). 

Case B. In the case in which the static torque is influenced by nonhomogeneity, the 
core is approximated by a rectangle inscribed within the actual core, it being assumed 
that the line of mass centers of the load runs through the vertices of the core, and that 
each of the coordinates in the parametric equation of the mass center line possesses at 
most one point of discontinuity. The condition of uncoupling with side-sways remains 
identical with the Eq. (6.23), while the condition of absence of heels assumes the form: 

xo L/2 

(6.24) J q2 (x)dx- J q2 (x)dx = 0. 
-L/2 Xo 

This equation serves to determine the point of discontinuity of the coordinate ji2 (x) which 
may assume two values ±ji2 obtained from the estimation of the core. Thus we have to 
deal here with the case Cl, when y2 (x) = ji2 for x e ( -L/2, x0 ) and -y2 in the remain­
ing part of the interval, and with the case C2 when the signs of ji2 (x) are changed. In 
numerical calculations the computer evaluated the torques in four cases Bh i = I, 2, 3, 4, 
shown in Table 2 according to the combinations of A and C. 

Table 2. 

Cl 
C2 

Al A2 

Bl 
B2 

B3 
B4 

The mass of associated water is determined by means of the generally known method 
of TAYLOR or DoREFEJUK. That is, however, the weakest point of the present paper. In 
the author's opinion, studies should be initiated on the problem of detrmination of the 
associated water mass for curved free surfaces. This problem will be dealt with in a separate 
paper. 

An extensive program written in Algol 1204 for the Odra 1204 digital computer was 
applied to an actual structure and contained not only the determination of internal forces 
but also other structural problems. 

Results of the test calculations of the torque for square waterplanes are shown in 
Figs. I, 2, together with the corresponding input data. 

The next important step in the investigation of internal forces should be an exact 
formulation of the hydrodynamic problem, and examination of internal forces treated 
as stochastic functionals of wave processes and cargo loading. Within the framework 
of strength problems involving container ship structures, other problems also seem to be 
of interest, as for instance, non-linear torsion of a hull with hatches in elastic-plastic 
range. 

4* 
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FIG. 1. Torque intensity 

A1,A2 
81-84 

L = 180 m, IX= nf3, Yw = 1 Tm-3, ks = k 11 = 1, c = 11 m, 

Y2 = 5m, :Z~1> = -2m, :z~Z) = 4m, F= 10m,:Z1 = 3 m,q2 = 50Tm-1
, 

{
160 Tm-1 x e( -50.50,) 

q= 
0 x eh"'-( -50.50). 

Ms {Tm} 

FIG. 2. Torques 
L = 180 m, a.= n/3, Yw = 1 Tm-3

, ks = k 11 = 1, c = 11 m, 

Y2 = 5 m, :Z~1>= 2 m, z~2>= 4 m, F = 10 m, Zt = 3 m, q2 = 50 Tm- 1 

{
160 Tm-1 x e(- 50.50) 

q= 
0 x eh"'-(- 50.50). 

[52] 
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