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Finite, axially symmetric deformation of plastic fibre-reinforced
materials

M. ARCISZ (WARSZAWA)

IN THIS paper we consider an axially symmetric deformation [defined by (1.2)] of an ideal
rigid-plastic material reinforced by inextensible fibres parallel to the symmetry axis. We derive
the system of five differential equations for five functions: three functions f, g, k, describing
the motion of the medium, and two functions p, g, characterizing the mean pressure and the
normal stress in the direction of the fibres. A particular case of motion (1.2) is considered by
assuming that ¢ = @, This assumption enables us to determine the functions of motion inde-
pendently of the equations of motion. The equations of motion (one of them is, in this case,
identicaly satisfied) constitute a system of two linear equations for the functions p and gq.

W pracy rozpatruje sig osiowo-symetryczna deformacje [zdefiniowang wzorami (1.2)] materialu
sztywno idealnie-plastycznego, wzmocnionego nierozciggliwymi wioknami réwnoleglymi do
osi symetrii. Wyprowadzono uklad pigciu réwnan na pie¢ poszukiwanych funkcji: trzy funkcje
/. &, h, opisujace ruch oérodka, oraz dwie funkcje p i g charakteryzujace ciénienie §rednie i na-
prezenie normalne w kierunku utozenia wiékien. Zbadano szczegélny przypadek ruchu (1.2) przy
zalozeniu @ = @. ZaloZenie to pozwala na znalezienie funkcji opisujacych ruch oérodka nie-
zaleznie od réwnan ruchu. Réwnania ruchu, z ktérych jedno jest w tym przypadku spetnione
tozsamosciowo, stanowia uklad réwnan liniowych na funkcje p i g.

B pabore mccnemopana ocecummerpHuHas gepopMalA HECTKO-MACAIBHO IUIACTHYECKOTO
MaTepHalia, apMHPOBaHHOIO HEPACTAMKHMMBIMH HHTAMH, PAaCHOJIOXKEHHBIMH MapajUule/IbHO OCH
cummeTpHH. BbIBefleHa cucTeMa NATH YpaBHeHMH I NATH MCKOMBIX yHKmMit, B3 KOTO-
puix Tpu GyHKUHM f, g, h OMHCEIBAIOT ABIDKEHHE MaTepHasa, a ABe OCTAIBHBIE P M g XapaKTe-
PH3YIOT CpeJiHee JaBJIcHHE M HOpMAJIbHbIE HANPAYKEHHA B HAIIPABJICHAN PACIIOJIOMEHNA HUTEH.
Hccnepopan yacTHbI ciryuaii aemwxenns (1.2), koraa ¢ = O. 310 NpeanoIoyKeHNE TO3BOJIAET
onpeAenHTh HYHKIMH, OMHCHIBAIOIHE NBHMEHHE MaTepHana He3aBHCHMO OT YPaBHEHMH JBH-
MHEHHUS, KOTOPbIE B 3TOM CiIyyae o6pasyloT CHCTEMY JIMHEHHBIX YPaBHEHUH OTHOCHTENBHO (YHK-
UMt p M g, IpHYEM OJHO M3 HHX TOXKAECTBEHHO YIOBIETBOPACTCH.

J. F. MuLHERN, T. G. RoGers and A.J. M. SPENCER proposed a continuum model for
fibre-reinforced materials [1]. Within the framework of this model, in the present paper
we consider an axially symmetric deformation of a material reinforced by one family of
fibres, parallel to the symmetry axis. Following the authors of paper [1], we assume that the
material is incompressible, ideal rigid-plastic and locally transversely isotropic. It is further
assumed that the direction of fibres is defined at each point of the medium (the continuum
model of fibre-reinforced materials) and the material is inextensible in this direction.

We consider finite deformations using the material description.
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1. Kinematics

Let us introduce two cylindrical coordinate systems: material X* and spatial x*. Hereaf-
ter we use the notation

(1.1)

The coordinate reference system X* is chosen in such a way that the Z-axis coincides with
the symmetry axis. Therefore fibres are material lines Z.

A motion of the medium is described by the functions x' = x'(X%, f), and we assume
that they satisfy the following conditions of axial symmetry:

X'=R X*=0, X3=2

Xt=r, x2=¢ x3=z

r=f(R,Z,1),
(1.2) ¢ =P+g(R, Z,1),
z=hR,Z,1).
Hence the deformation gradient has the form:
_ fr 0 fz
(1.3) xl=|gr 1 gzl
hg 0 hgz
The functions (1.2) describing the motion must satisfy the incompressibility condition:
R
1.4 f.Rk,z—h,R,f:Z = T s
the condition of inextensibility in the material, fibre direction — Z
(1.5) (f2*+(fg2)* +(h2)? = 1,
and the initial conditions:
(1.6) fIR,Z,0) =R, §g(R,Z,00=0, h(R,Z,0)=2Z
The rate of deformation tensor d;; is determined by the relation:
1.7 duy = X%, X" Exe,

1 . . .
where Fx, = —j-(g,- jx' g x!  — Ggy) is the Green strain tensor, Gk, g are metric tensors

of the coordinate systems (X* and x*, respectively), and dot denotes material time deri-
vative. From (1.7), taking into account (1.3), we obtain:

(18)  [du] =
—;;(b,zf,a:—k.xﬂzr) %(k,:g.n.—h,w,zo —2%[(&,2)’(:—:)‘_0.3)1(%).’]
-|  Renhasa . L G rsafasm)
% ["'-z" ( f?f ) -2 -;;R) ] %U_m. ~f28.80 {-U,xh,zf ~f.zhRo)

The rate of deformation tensor is then determined by three arbitrary functions f(R, Z, t),
g(R,Z,1), (R, Z, t) which are connected by the relations (1.4), (1.5).
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2. Constitutive relations

Following the authors of paper [1] we introduce the locally rectangular Cartesian
coordinate system e,, where the e;-axis is tangent to the material line Z (to the fibre direction)
at each point x* and at each instant of time 7. The e, , e,-axes can be chosen arbitrarily;
we choose them so that e, is normal to the current surface R = const, and e, = e; xe, .
The decomposition of so chosen unit vectors in the cylindrical reference system has the
form:

1 1
?h.z *?fg,zf.z fz

(2.1) [e'a] = 0 nlf gz |
1

1
—‘;.ﬁz "?fg.zh.z hz

where

(2.2) n = (f2)*+(h2)>

Hereinafter, the dash above a component of a tensor (e.g. a.3) denotes a component
of this tensor referred to the reference system e,. Relations between components of an
arbitrary tensor in the reference system e, (a.5) and components of this tensor in a cylin-
drical system (a;;) are:
(23) E’mﬁ = e‘aejﬁau, a;; = e",e"jﬁw.

The e;-direction defines at each point x* and at each instant of time ¢, the direction of
transvers isotropy of the material. Therefore the yield condition must be invariant with
respect to a rotation about the e;-axis, and in general it is a function of five common in-
variants of the Cauchy stress tensor o,z and es-vector. In the paper [1], it was shown that
bearing in mind the associated flow rule it is possible to reduce the number of invariants
to three, taking into acount the incompressibility and the inextensibility in the Z-direction.
Under these assumptions, the general form of the yield condition is

(2.9 F(l3, I, 15) =0,
where
— _ , 1 _ e -
I3 = o3+03;, I4=T(“11—022)2+2512-
(2.5

; 1 _ . -
15=—é—(ﬁn—023)(5%3—0'33)+20'330‘130,2.

Furthermore, we may require the yield condition to be a quadratic function of the stress
tensor components and to be independent of I5. In particular, it may take the form pro-
posed by HiLL [2]

I 1 I
]

where k,, k, are material constants.

(2.6) F = -1=0,
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We assume the constitutive relations in the form of the associated flow rule:

= oF
@7 dog = 3—;37;; ,

and the yield condition in the form (2.6), and hence
1 e 111 o 2o
(2.8) 7&‘6’%3+“§3)+E‘I:T(&u_o'zz)z"'ofz]_l =0.
On the basis of (2.7) and (2.8), we obtain:

1 % - @ -
—(0,,—0,,) = Ady,, 0,3 = x‘/ld”,

29 2 _ )
0y, = Ady;, 033 = szdzs,
where
_ K _ ki
Am=—, wmp.

Substituting (2.9) into the yield condition (2.8), we are able to determine the function
A= Mdy):
(2.10) 3* = K3[*(d}s +d3s) +(dy +d})).

Using (2.3), we now can write the above relations in the reference system (r, ¢, 2).
Thus on the basis of (2.3),, substituting (1.8), we have:

d_n = ""0722 = %“)i,
dy3 =0,
& fn? _ 1
(2.11) d12 = _iT(g,ﬂ ?‘Eg.Z).‘ ’
313 = *1!“[02§R32+§) +—(rg,z) :(8R—LES z)],
2R A * s il
- 1
dy3 = W(fzg.z).n
where
(2.12) E E,f,kj:Z"'h,Rh,Z'

Furthermore, substituting (2.9) into (2.3),, we finally obtain:

of = p+(f2)*q+AF},

0} = p+(fg2)*q+AF3,
(2.13) 03 = p+(h2)’q+AF3,

0} =f?g2fzq+AF;,

03 = fzhz+AF},

0 =f*gzhzq+AF3,
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where
1 2 217 2 Ty
Fi= -y [(3,2)*—(fz/2.2)*]d11— ?'fg.lf:zh.zdu
2 2 2.3 2 2 7
—% 'Efg.z(f.z) dy3+x "?'f.Zk.ZdIS’
F? = —n?dy, +%*2fg 2d,s,
1 - 2 =
F= ?[U.z)z—(fg.zh.z)z] dyy +T?z—f§,zﬂzh.zdu
2 _ p _
(2.14) '—?‘z?fg.z(h.z)zdzs—xzf—}f,zk,zdx3,

— — 1 1 ~
F} =f%g2fzd,,+fhzd,,+%* ?‘[,ﬁz[q"’— (f2,2)*14,3 +"2?f28.zh.zd| 3
1 — 1
F3 =~ Ef,zh,zll +(fg.2)%d,, + ;:fg.z [(f2)?—(h2)")d,.,
. - 1 -
- xz';}—fg.zf.z hzdy3— "z? [(f2)*—(h2))d,3,

— — 1 - 1 —
F= fzg.z hzdy,—ffzd,, +x* —th.z{‘fiz = (fg.z)z]dza ik xz—;?*fzg.zf.zdi 3

and 4, zf;ﬂ are determined by the formulae (2.10) and (2.11), respectively. Thus we have
expressed the state of stress by functions of motion and two arbitrary functions p, g,
which have to be found from the equations of motion.

3. Equations of motion

The equations of motion written in the material, cylindrical system (R, @, Z), disre-
garding dynamical terms and mutual forces, take the form:

'{r [hzol,r+(hrgz—8rhz2)0t 0 —hrol,z—f20 R+ (f28r—fR82)0} .0

1
+f.RU?.ZI+U§.m+?‘(U}_0§) =0,

“}J—;- [hzolr+(hrgz—8rh2)0s,0—h R0} 2—F 203 r+((28 R —fR8.2)03.0

1
@3.1) +fr032]1 4030 t— a; =0,

% [hza3r+(hrgz—8rh2)030—hr03z—f203r+(f28r—frE€2)T30

1
+fr03,z1+ 030+ 7«% = 0.
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Substituting (2.13) into (3.1) and assuming that p, = p,, = 0, we have:
—';— (hzp,r —hrp2) +f 292+ [f22—f(g2)*)g+4, =0,
(32 f’8242+(f’82)29+4: =0,

‘{;- (=fzpr+frp2)+hz,qz+hzz2q+A; =0,

where
4, = A[“ﬁr(k,zf'f.n—h,an’.z—f.zF?.n +f,fo'.z)+-'-lf-(F%— §):|
+ AR haFi~f 2P~ 42 o Fi~f FY),
4, = A[”%(k.zel,x—h,kF:}.z—f:zea,n +f.aF3.z)+-/1;Fi]
(33) |

+A'R%(k‘zF§ —-f_ng)-—szﬁ—(h‘RFi ~frF3),
1
4; = AI:%(",ZF;.R_'}‘,RF;.Z—f:ZFg,R +f:RF§’Z)+TF;:|

+A_R-§;— (hzF—f2F3) -A,ZJR- (hx Fi—frF3).

The equations of motion (3.2) together with (1.4) and (1.5) constitute the set of five
differential equations with five unknown functions

(3.4) & hipg

of three variables R, Z, ¢.

It is possible to eliminate the functions p, g from the Egs. (3.2) and hence to obtain the
third equation (together with (1.4), (1.5)) for the functions of motion f, g, &. Multiplying
the Eqgs. (3.2) by fz, gz, hz, respectively, and summing, subsequently multiplying by
f.r: &r> b r and summing, we obtain the following system of two equations:

Pztqz+fzA,+gz,A2+hzA3 =0,

3.5

3-3) PrYVYzHvzq+frA; +grA2+hrAs = 0("),
where
(3.6) v = fofz+f g r8z, +hrhz-

Further, using the Eq. (3.2),, we eliminate from the above equations ¢,z. Differentiating
the first with respect to R, the second with respect to Z and substracting, we arrive at
the equation containing the derivative gz and ¢, only. This equation, together with (3.2),,
constitute the system of two linear equations for ¢:

3.7 gr+o,q+f, =0, gz+a,q+p =0,

(*) This equation has been derived assuming g g# 0 (we multiplied the second equation by g,g). For
&,r = 0 it is still valid and can be obtained directly from the first and third equations.
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where we use the notation:

(f’g.2).2 A,
oy =~ 2mnl — s
YT gz P gz

1
(3.8) %= —— (zz— 2wz o, g—va, z+val),
1

1
B, = a—(—z".zﬁl +B1.r—VB1.z+va, By +frA1z—fz A
1
+grA2z—8zA2r+hRrA32—hzA3R),

and we have assumed that a, # 0.
The integrability condition for the Eqs. (3.11) has the form:

(3.9) (ty,r—2,2) +(B1,r—B2z— 2 B2+, 8,) = 0.

The requirement that (3.9) be identity for each g leads to two equations (the vanishing
of the two parentheses) for functions f, g, . Together with (1.4), (1.5), we would have
four equations for three unknown functions, which in general cannot be satisfied. Therefore,
we do not require the Eq. (3.9) to be an identity, and we find from it g. This value g is
the necessary condition of integrability of the Eqs. (3.1). The sufficient condition is obtained
by substituting ¢ from (3.9) into the Egs. (3.7) and equating the results:

(3.10) [ﬁ""hﬁﬁ-z""‘lﬁﬂ““zﬁ:_] _[51,x—ﬁz.z—a1ﬁz+rx2ﬁl]
R z

Gy p— U2,z Oy r— U2z

Bir—Brz—o Br+a,B,

Oy, R— %2,z

+(°52—°51)[ ]+(ﬁl—ﬁz) = 0.

The Eq. (3.10), together with (1.4), (1.5), constitute the system of three equations
for three functions of motion f, g, h. If these equations are solved, the function g is de-
termined by the Eq. (3.9) and p can be found from (3.2) or (3.5). However, this pro-
cedure is rather cumbersome because of the extremely complicated form of the Eq. (3.10).

4. A particular case

Now, we consider a particular case of motion (2.1), assuming that

4.1) g=0 and hence ¢ = Q.

4.1. Kinematics

A motion is now described by two functions f(R, Z, t) and h(R, Z, t), which can be
found from the system of equations:

4.2) Sfrhz=hgfz =

~| =

(4.3) (f2)*+(h2)* = 1.
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We are seecking a solution of this system with the initial conditions (1.6) and the following
boundary conditions:

4.9 on R=Ry: [f=a(Z,0), h=p(Z,1),

4.5) onZ=2Z,: f=9R,1), h=08R,1).

Concerning the functions «, j, ¥, 4, we assume that they are sufficiently smooth, satisfy the

initial conditions (1.6), and are compatible with the system (4.2), (4.3). The latter implies
the condition

(4.6) (@) +(8) = 1.

Hereinafter, “prime” denotes the derivative with respect to Z.

Let us transform the system of Eqgs. (4.2), (4.3) by means of a change of dependent
variables into independent variables. The derivatives of functions f, g are expressed by
the derivatives of the functions R, Z as follows:

Sr =—ii, fz = —%‘h‘,

o pem 28, ppuRe
) A ; Vi |

where
(4.8) A=R;Zy—Z R,
After substituting (4.7), (4.8) into (4.2), (4.3), we obtain:
4.9 UZy—UpZs=f,
(4.10) (U +(Ux)? =12
where
@.11) U=-Lre.

2
Instead of the system of non-linear equations, we now have two separate equations, each
for one unknown function.

The Eq. (4.10) can be solved by the method of characteristics (see e.g. [3]). Introducing
the notation

(4.12) p=Uy, q=Uy?),
it can be written in the form:
(4.13) Pr+g*—f*=0.

The characteristic system for the Eq. (4.13) has the form:

a _ dh _ AU _ e 9 _ 9 _
(4.14) E“ZP. -E—Z‘I: 'E;—2f, I—zf; e

(*) We allow the double meaning of letters p and g in view of the customary notations.
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Integrating, we obtain:

1 1
f= ?(fo +po)e* + ‘z_(fo —po)e~, h=2qo5+hy,
1 1
4.15) == +po)e** — ?(fo—po)e'z'. q = 4o,

1 1 1
U= T (fo+po)?e* — T (fo—po)*e **+gis— ‘;a"fopo + Uy,

where f,, Ao, Po, 4o, Uo are the values of f, h, p, q, U on the line s = 0; they can be
determined on the basis of the boundary conditions (4.4). Thus we have:

(4.16) fom a@o1), o= B0, Up= RS,

(We have replaced the latter Z by { in order to avoid identification of the unknown
function Z with the parameter along the line R = R,). The derivatives p,, g, are deter-
mined from the system:

4.17) pi+qs = o, Us = pod' +qof,
whence
(4.18) po = —eaff, go = ead,

where ¢ = +1.
Substituting (4.16) and (4.18) into (4.15), we obtain:

(4.19) f=1(,t;0)= %a(l —zgf)e** + —;—rx(l +ef)e" 2,
(4.20) h = h(s, {;1t) = 2eaa’s+p,

4.21) p=p(s,80)= %a(l —ef)e* — %a(l +gf)e2,
(4.22) qg=q(;1) = sae,

@23) U=UGst;n= %—az(l —ef)ets— %-a’(l +ef)2e

+ (ea’)?s + %acx’ﬁ' + %Rﬁ .

Assuming that the determinant

(4.24) A =_f:3h'c—h,s il = 2_ph‘—2€f:; ‘# 0,

we obtain, from (4.19) and (4.20), s = s(f, h; 1), £ = L(f, h; t), and substituting into
(4.23), we arrive at the solution:

(4.25) U = U(f, h, 1),

Let us draw attention to some limitations of the validity of our solution. It follows from
the Eq. (4.10) that on the line f = 0 we have p = g = 0. Therefore, the assumption (4.24)
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is not satisfied, and we have a singularity on f = 0. In particular, the boundary value
problem formulated on this line leads to the solution f = R. In the case a # 0, we should
expect restrictions on the region of validity of the solution of the type f = f* # 0, where
f* depends on the boundary conditions. Furthermore, boundary conditions have to be
so chosen that

(4.26) U=—~R*>0.

[

b —

Hereinafter, we assume
4.27) a#0 and o« #0

(for o’ = 0, we obtain the solution R?— R} = f?—«?) and from the Eq. (4.19) and (4.20)
we obtain a relation determining { = {(f, h;1):

h=B _  |f—eVf*—(ea)? |
(4.28) T R 111E 2(1=2F) Z
and
_ _ 1| f—eyfP=(ac)?
(4.29) s=s(f,h,t)= 5 In 2(1=2) |
The mentioned above restriction has the form:
(4.30) > ad'.

It remains to solve the linear equation (4.9) with the boundary condition (4.5). Now,
the derivatives U ;, U, are known functions of f, 4 and #, and they depend on the boundary
condition for the Eq. (4.10).

To conclude the paper, we present an example with numerical results. Let us consider
the domain R, S R Ry, Z>0,0< 1< t, and the following boundary conditions:

on R=Ry: f=aZ,1)=y2uZ+h?,

(4.31) h=pZ, 0= %(a Va2—a*—byb*—a?
—a*Inja+ Y o2 —a?+a*In|b+ Ybr—a?|),
on Z=0: h=46(R,1)=0,
where a and b are functions of time satisfying the initial conditions (1.6); hence
(4.32) a0)=0, b(0)=R,, a'(©#0 b(0)=0
In (4.31), we assumed the form of the function «(Z, t), f(Z, t) was found from (4.6),
and the integration constant from the condition on the line Z = 0 (4.31)..
The Eq. (4.25) has the form:

1 T e O

(433 U= Sfo‘—a‘—-;—a"‘]n]fz + ]/f’—a’i—ah—-;—b Y b>—a?

+ —;—azlnlb+ Vb2 —a?| +-},2—R§.



FINITE, AXIALLY SYMMETRIC DEFORMATION OF PLASTIC FIBRE-REINFORCED MATERIALS 893

Substituting p = J/f2—a?,q = —a into (4.9), we obtain:

(4.349)

VI ~-aZ,+azZ, = f,

which, after introducing the new dependent variable

(4.35)

takes the form:
(4.36)

. 12
V=az Ef$

VI i—a?V,+aV, = 0.

This is an equation of the type U ,V,,—V U, = 0 which has solution:

(4.37)

V= GXU, 1),

where G* is an arbitrary function of its arguments; therefore, we have

(4.38)

aZ = G*(U, t)+%f2.

Solving (4.33) and (4.38) with respect to f and A, we finally obtain:

f=V2aZ+G*R,1),
(4.39)

h = -21-5 (fVfP—a>—a*In|f +y f—a?| - R*=b )/ b*—a* +a*In|b+ |/ b*—a®| + R}),

4

(B y

a6

ozt

as

a8

04|

oz

z

o8

a5

o4

az

a=as50
b=100

az
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where the function G(R, t) is determined from the condition (4.31);, which has the form:
(440) G)YG*-a*—a*In|G+ Y G*—a*—R*—by/b*—a®> +a*In|b+ }/b*—a?| +R3 = 0.

It is evident that the function f(R, Z,t) satisfies the initial condition f(R, Z, 0):
fort = 0(a = 0,b = R,), we have G(R, 0) = R, and the boundary conditionf(R,, Z, f) =

e |/2aZ+bz, because G(Ry, t) = b. The function h(R, Z, t) for t = 0 has a singularity
of the type 0/0, and it is easy to verify that lim A(R, Z,1) = Z.

-0
The above solution is restricted by (4.26) and (4.30). These should be regarded as
restrictions on R, and ¢, ; the geometric meaning of these restrictions is as follows: the
lines Z = const become tangent to the line R = R,.
Numerical results are shown in Fig. 1. These are curves (4.39) calculated for the
following values of the parameters:

.Ro = 1,
a=0.25 a=0.J5,
const =1, b= 1+a>.

Il

4.2. Statics
The relations (2.13) with (2.14) and (2.10), (2.11) determine o;; = 0y;(dy;) to within
two arbitrary functions p and ¢. Taking into account the assumption (4.1), we obtain:
oy =03=0
and the remaining components by setting g = 0.
The second equation of motion is, as expected, identicaly satisfied. The two remaining

equations of motion constitute a linear system for the functions p and ¢. Using (3.5), we
have:

(p+9,z+fzA, +hz4; =0,
Pr+6qz+Ez9+frA; +hprAds =0,

where &, A,, A, are defined by (2.12) and (3.3).
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