
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 15, 6, pp. 883-894, Warszawa 1973 

Finite, axially symmetric deformation of plastic fibre-reinforced 
materials 

M. ARCISZ (WARSZAWA) 

IN THIS paper we consider an axially symmetric deformation [defined by (1.2)] of an ideal 
rigid-plastic material reinforced by inextensible fibres parallel to the symmetry axis. We derive 
the system of five differential equations for five functions: three functions J, g, h, describing 
the motion of the medium, and two functions p, q, characterizing the mean pressure and the 
normal stress in the direction of the fibres. A particular case of motion (1.2) is considered by 
assuming that q; = tP. This assumption enables us to determine the functions of motion inde­
pendently of the equations of motion. The equations of motion (one of them is, in this case, 
identicaly satisfied) constitute a system of two linear equations for the functions p and q. 

W pracy rozpatruje si~ osiowo-symetrycznll, deformacj~ [zdefiniowanll, wzorami (1.2)] materialu 
sztywno idealnie-plastycznego, wzmocnionego nierozcill,gliwymi wl6knami r6wnoleglymi do 
osi symetrii. Wyprowadzono uklad pi~iu r6wnan na pi~ poszukiwanych funkcji: trzy funkcje 
J, g, h, opisujll,ce ruch osrodka, oraz dwie funkcje p i q charakteryzujll,ce cisnienie srednie i na­
pr~:ienie normalne w kierunku uloi:enia wl6kien. Zbadano szczeg6lny przypadek ruchu (1.2) przy 
zalo:ieniu q; = tl>. Zalo:ienie to pozwala na znalezienie funkcji opisujll,cych ruch osrod.ka nie­
zalei:nie od r6wnan ruchu. R6wnania ruchu, z kt6rych jedno jest w tym przypadku spelnione 
toi:samosciowo, stanowill, uklad r6wnan liniowych na funkcje p i q. 

B pa6oTe uccne.o;osaHa ocecHMMeTpHtrnaH .o;e<t>opMal.UfH meCTI<o-HJJ;eam.Ho rmacr.Ktieci<oro 

MaTepHaJia, apMHpOBaHHOrO HepaCTH>KHMbiMH HHTHMH, paCIIOJIO>KeHHbiMH napaJLTieJILHO OCH 

CHMMeTpHH. BbiBe.D;eHa CHCTeMa IIHTH ypaBHeHHH JJ;J1H IIHTH HCI<OMbiX <f>yHI<I.UIH, H3 I<OTO­

pbiX TpH <i>YHI<~HH j, g, h OIIHCbiBaiOT JJ;BH>KeHHe MaTepHana, a JJ;Be OCTaJibHble p H q xapaJ<Te­

pH3YJOT Cpe.D;Hee JJ;aBJieHHe H HOpMaJILHbie HallpH>KeHHH B HanpaBJieHHH paCIIOJIO>KeHHH HHTeH. 

Mccne.o;osaH tiaCTHbiH CJIYtiaH: .D;BH>KeHHH (1.2), I<or.o;a q; = <P. 3To npe.D;IIOJIO>KeHHe no3BOJIHeT 

Ollpe.o;eJIHTb <i>yHI<~HH, OIIHCbiBaiOII.\He JJ;BH>KeHHe MaTepHaJia He3aBHCHMO OT ypaBHeHHH JJ;BH­

>KeHHH, I<OTOpbie B 3TOM CJiyqae o6pa3yroT CHCTeMY JIHHeHHbiX ypaBHeHHH OTHOCHTeJILHO <PYHI<­
~HH p H q, 11pHtieM 01UIO H3 HHX TO>K.D:eCTBeHHO Y.D:OBJieTBOp.R:eTCH. 

J. F. MULHERN, T. G. RoGERS and A. J. M. SPENCER proposed a continuum model for 
fibr~reinforced materials [1]. Within the framework of this model, in the present paper 
we consider an axially symmetric deformation of a material reinforced by one family of 
fibres, parallel to the symmetry axis. Following the authors of paper [1], we assume that the 
material is incompressible, ideal rigid-plastic and locally transversely isotropic. It is further 
assumed that the direction of fibres is defined at each point of the medium (the continuum 
model of fibre-reinforced materials) and the material is inextensible in this direction. 

We consider finite deformations using the material description. 
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884 M. ARCISZ 

1. Kinematics 

Let us introduce two cylindrical coordinate systems: material xx and spatial x". Hereaf­
ter we use the notation 

(1.1) 
x1 = r, x 2 = qy, x 3 = z. 

The coordinate reference system XK is chosen in such a way that the Z-axis coincides with 
the symmetry axis. Therefore fibres are material lines Z. 

A motion of the medium is described by the functions xi = xi(XK, t), and we assume 
that they satisfy the following conditions of axial symmetry: 

(1.2) 

r = f(R, Z, t), 

qy = c!>+g(R, Z, t), 

z = h(R, Z, t). 

Hence the deformation gradient has the form: 

r
f.R 0 f.zl 

[xi,x] = g,R I g,z · 
h,R 0 h,z 

(1.3) 

The functions (1.2) describing the motion must satisfy the incompressibility condition: 

(1.4) 
R 

f.Rh,z-h,R .f.Z = 7, 
the condition of inextensibility in the material, fibre direction- Z 

(I.5) (f.z)2 + (fg,z) 2 + (h,z) 2 = I, 

and the initial conditions: 

(1.6) f(R, Z, 0) = R, g(R, Z, 0) = 0, h(R, Z, 0) = Z. 

The rate of deformation tensor du is determined by the relation: 

K L • 
(1.7) dk, = x ,kx .zExL, 

where ExL = ~ (giixi,K xi,L- GxL) is the Green strain tensor, GxL, gk, are metric tensors 

of the coordinate systems (XK and x", respectively), and dot denotes material time deri­
vative. From (1. 7), taking into account (1.3), we obtain: 

(1.8) [dk,] = 

f R (h,zf,Rt- h,Rf,zt) 

/3 
ZR(h,zK,Rt-h,RK,zt) 

; [<h.z)z ( :·R) _ (f,z)z (f,R) ] 
,z ,t f.z ,t 

/3 

2
R (h,zK,Rt-h,RK,zt) 

f!,t 

!_ [(h,z)2(h,R) - (f,z>2('f,R) ] 
2R h,z r f,z ,t 

/3 

2
R (f,RK,zt- f.zK,Rt) 

f 
R(f,Rh,zt-f.z h,Rt) 

The rate of deformation tensor is then determined by three arbitrary functions f(R, Z, t), 
g(R, Z, t), h(R, Z, t) which are connected by the relations (1.4), (1.5). 
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2. Constitutive relations 

Following the authors of paper (1] we introduce the locally rectangular Cartesian 
coordinate system e«, where the e3-axis is tangent to the material line Z (to the fibre direction) 
at each point xk and at each instant of time t. The e1 , e2-axes can be chosen arbitrarily; 
we choose them so that e1 is normal to the current surfaceR = const, and e2 = e3 x e1 • 

The decomposition of so chosen unit vectors in the cylindrical reference system has the 
form: 

(2.1) 

where 

(2.2) 

1 
-hz 

'Y} ' 

0 

1 
--f.z 

'Y} "' 

1 
--:;} fg,zf.z f.z 

'YJ/f g,z , 

1 
--fgzhz h,z 

'Y} ' ' 

Hereinafter, the dash above a component of a tensor (e.g. a«p) denotes a component 
of this tensor referred to the reference system e«. Relations between components of an 
arbitrary tensor in the reference system eo: (iiap) and components of this tensor in a cylin­
drical system (aiJ) are: 

(2.3) 

The e3 -direction defines at each point x!' and at each instant of timet, the direction of 
transvers isotropy of the material. Therefore the yield condition must be invariant with 
respect to a rotation about the e3-axis, and in general it is a function of five common in­
variants of the Cauchy stress tensor (ia.fJ and e3-vector. In the paper [1], it was shown that 
bearing in mind the associated flow rule it is possible to reduce the number of invariants 
to three, taking into acount the incompressibility and the inextensibility in the Z-direction. 
Under these assumptions, the general form of the yield condition is 

(2.4) 

where 

(2.5) 

F(/3, /~, /~) = 0, 

11 1 (- - )2 2-
4 =2 <111-<122 + <112, 

Furthermore, we may require the yield condition to be a quadratic function of the stress 
tensor components and to be independent of/~. In particular, it may take the form pro­
posed by HILL [2] 

(2.6) /3 1 /~ 
F= -- +----1 =0 

kf 2 k~ ' 

where k 1 , k 2 are material constants. 
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We assume the constitutive relations in the form of the associated flow rule: 

- oF 
(2.7) dr%/J =A~, 

(l(]a.{J 

and the yield condition in the form (2.6), and hence 

) 1 (rl2 -2 ) 1 [ 1 '- - )2 -2 J 1 0 (2.8 k~ \(]13 +0'23 + k~ 4'0'11 -(]22 + (]12 - = . 

On the basis of (2.7) and (2.8), we obtain: 

1 - -
2@11-a22) = Ad11, G13 = x 2Ad13' 

(2.9) 
a12 = A~2' a23 = x2Ad~ 3 , 

where 

Substituting (2.9) into the yield condition (2.8), we are able to determine the function 
A= A(t4p): 

(2.10) 

Using (2.3), we now can write the above relations in the reference system (r, cp, z). 
Thus on the basis of (2.3) 1 , substituting (1.8), we have: 

- - (f'f]),t 
dll = -d22 = --, 

frJ 

J33 = 0, 

(2.11) 
- f2rJ2 ( 1 ) 
du = 2R K,R- - 2 ~K.z , 

rJ ,t 

ii13 = 2"£. [ (f2K,RK,zH),,-(f2g,z),,(c.R- :. ~c.z)J. 

where 

(2.12) 

Furthermore, substituting (2.9) into (2.3h, we finally obtain: 

af = p+(f,z)2q+AFf, 

0'~ = P + (fg,z) 2q + AFi, 
(2.13) a~ = p+(h,z)2q+AF:, 

a1 = / 2g,zJ;zq+AFl, 

0'~ = f.z h,z + AFL 

a~ = / 2g,zh.zq +AF~, 
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where 

-"
2 ~/K,z(/.z) 2{h3 +x2 -~/.zh.zd;.3, 

Fi = -'Y]2du +"22'Y]fg.zd23• 

Fi = ~[(f,z)2 -([g,zh,z)2]~1 +4 Jg,zf.zh,zd12 
'YJ 'YJ 

(2.14) 
2 -- ? -

- " 2-/g,z(h,z) 2d23 - "
2

_::__ f.z h,z dt3, 
'YJ rJ 

Fl =f2g,zf.zd;.1 + Jh,zii;.2 +x2 !_ ff.z['YJ 2
- (fg,z)2]d23 +"2 _!_.f 2g,zh.zd~ 3, 

'YJ 'YJ 

F~ = - -1
-f.zh,z[1 +(fg,z)2]~t + -1-Jg,z[(f.z)2 -(h,z)2]~2 

'YJ2 'Y/2 

- "
2 _3_-rg zfzh zd23 -"2 _!_ [(f.z)2

- (h z) 2]dt3• 'YJ J~, , ' 'YJ , , 

F~ = f 2g zh z"J;.1- f!zii;.2 +"2 _!_~h z['Yl2- (l:g z)2]t/;3-" 2_!_/2g zf.zd13, ' , , 'YJ J4 , ., J~ ' 'YJ , , 

and A, d;,p are determined by the formulae (2.1 0) and (2.11 ), respectively. Thus we have 
expressed the state of stress by functions of motion and two arbitrary functions p, q, 
which have to be found from the equations of motion. 

3. Equations of motion 

The equations of motion written in the material, cylindrical system (R, t/J, Z), disre-­
garding dynamical terms and mutual forces, take the form: 

(3.1) 

~ [h,zuLR +(h,Rg,z-g,Rh,z)aL4)-h,R af.z-f.zatR +(f.zg,R-f.RK,z)at4) 

+ f.R atz] + af.4) + ~ (a} - an = 0, 

~ [h,z atR + (h,R K,z- K,R h,z)a1,4)- h,R atz-f.z atR + ( ~z K,R-f.Rg ,z)at4) 

3 2 1 1 0 +f.Ru2,z]+a2,4)+7a2 = , 

~ [h,z atR + (h,Rg,z- K,Rh,z)at4)- h,R atz - f.z atR + (f.zK,R-/.RK,z)a~,4) 

http://rcin.org.pl
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Substituting (2.13) into (3.1) and assuming that P,tp = P.~ = 0, we have: 

~ (h,zP,R- h,RP,z) +f.zq,z + [f.zz-f(g,z)1]q+At = 0, 

(3.2) 

where 

(3.3) 

[ 2g,zq,z +(f2g,z),zq+A2 = 0, 

f R(-f.zP,R+f.RP,z)+hz,q,z+h,zzq+A 3 = 0, 

A1 "'•{ ~ (h,zFLR-h,RFl.z-f.zFf . .+f.R£tz)+ ~ (F}-Fi)J 

+A,R ~ (h,zFf-f.zF:)-A,z ~ (h,RFf-f.RF:), 

A2 "'A[~ (h,zFf.R-h,RFtz-f.zF],R +f.R£1,z)+ .~ F} J 
+ A,R ~ (h,zF~-f.zFD -Az ~ (h,RF~- f.RFD, 

A, "'A[~ (h,zF~.ch,RF}.z-f.zFh +f.RFl,z)+ .~ F~ J 
+A,R ~ (h,zF~ -f.zF~) -A,z ~ (h,RF~ -f.RF~). 

The equations of motion (3.2) together with (1.4) and (1.5) constitute the set of five 
differential equations with five unknown functions 

(3.4) f, g, h; p, g 

of three variables R, Z, t. 
It is possible to eliminate the functions p, q from the Eqs. (3.2) and hence to obtain the 

third equation (together with (1.4), (1.5)) for the functions of motion/, g, h. Multiplying 
the Eqs. (3.2) by f.z, g,z, h,z, respectively, and summing, subsequently multiplying by 
f.R, g,R, h,R and summing, we obtain the following system of two equations: 

(3.5) 

where 

(3.6) 

P.z+q,z+f.zAt +gz,A2 +h,zA 3 = 0, 

P.R+vq,z+v,zq+f.RA1 +g,RA2 +h,RAJ = oe), 

Further, using the Eq. (3.2)2 , we eliminate from the above equations q,z. Differentiating 
the first with respect to R, the second with respect to Z and substracting, we arrive at 
the equation containing the derivative q,R and q, only. This equation, together with (3.2) 1 , 

constitute the system of two linear equations for q: 

(3.7) 

e> This equation has been derived assuming g,R=F 0 (we multiplied the second equation by g,R). For 
g,R = 0 it is still valid and can be obtained directly from the first and third equations. 
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where we use the notation: 

(3.8) 

A2 
f3t = -!2 ' g,z 

I 
f12 =: a;(- 2v,zf3t +flt ,R -vflt.Z +vrxl f11 +f.RAt,Z-f.zAt,R 

889 

+g,RA2,z-g,zA2,R +h,RAJ,z-h,zAJ,R), 

and we have assumed that rx 1 =P 0. 
The integrability condition for the Eqs. (3.II) has the form: 

(3.9) 

The requirement that (3.9) be identity for each q leads to two equations (the vanishing 
of the two parentheses) for functions f, g, h. Together with (1.4), (1.5), we would have 
four equations for three unknown functions, which in general cannot be satisfied. Therefore, 
we do not require the Eq. (3.9) to be an identity, and we find from it q. This value q is 
the necessary condition of integrability of the Eqs. (3.I ). The sufficient condition is obtained 
by substituting q from (3.9) into the Eqs. (3. 7) and equating the results: 

(3.10) [ 
f11.R- f12.z- rx1 f12 + rx2 f11] _ [ f3t ,R- f12,z- rx1 f12 + rx2 Pt J 

fXt,R-fX2,Z ,R fX1,R-fX2,Z ,z 

+(rx2-rx
1
)[f3t,R-{3l.,z-rx1{32+rx2f3t J +({31-{3

2
) = O. 

fXt ,R- fX2,Z 

The Eq. (3.IO), together with (1.4), (1.5), constitute the system of three equations 
for three functions of motion _(, g, h. If these equations are solved, the function q is de­
termined by the Eq. (3.9) and p can be found from (3.2) or (3.5). However, this pro­
cedure is rather cumbersome because of the extremely complicated form of the Eq. (3.10). 

4. A particular case 

Now, we consider a particular case of motion (2.1), assuming that 

(4.1) g = 0 and hence T = f/J. 

4.1. Kinematics 

A motion is now described by two functions/(R, Z, t) and h(R, Z, t), which can be 
found from the system of equations: 

(4.2) 

(4.3) 

R 
f.Rh,z-h,Rf.z = f, 

(f.z) 2 + (h,z) 2 = I. 
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We are seecking a solution of this system with the initial conditions (1.6) and the following 
boundary conditions: 

(4.4) 

(4.5) 

on R = R0 : f = a(Z, t), h = {J(Z, t), 

on Z = Z 0 : f = y(R, t), h = ~(R, t). 

Concerning the functions a, {J, y, ~'we assume that they are sufficiently smooth, satisfy the 
initial conditions (1.6), and are compatible with the system (4.2), (4.3). The latter implies 
the condition 

(4.6) ( a')l + ({J')2 = I. 

Hereinafter, "prime" denotes the derivative with respect to Z. 
Let us transform the system of Eqs. (4.2), (4.3) by means of a change of dependent 

variables into independent variables. The derivatives of functions J, g are expressed by 
the derivatives of the functions R, Z as follows: 

(4.7) 

where 

(4.8) 

Z,h R,h 
f.R = -Lt , f.z = - T, 

Z,f 
h,R = -T, R,t 

hz=-• L1 ' 

L1 = R,f Z,h- Z,f R,h. 

After substituting (4.7), (4.8) into (4.2), (4.3), we obtain: 

(4.9) u.1z.h- u.hz,1 = J, 

(4.10) (U,f)2 + (U,h)2 = [2, 

where 

(4.11) 

Instead of the system of non-linear equations, we now have two separate equations, each 
for one unknown function. 

The Eq. (4.10) can be solved by the method of characteristics (see e.g. [3]). Introducing 
the notation 

(4.12) 

it can be written in the form: 

(4.13) 

The characteristic system for the Eq. (4.13) has the form: 

(4.14) df 
ds = 2P' 

dh 
di = 2q, dU = 21'2 

ds :I ' 
dp = 2* 
ds :I' 

dq = 0 
ds · 

e) We allow the double meaning of letters p and q in view of the customary notations. 
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Integrating, we obtain: 

f= ~ (fo+Po)e211 + ~ (fo-Po)e- 211
, h = 2qos+ho, 

(4.15) 1 (I' ) 2s 1 1 I' ) - 2s P = 2 Jo+Po e - Tvo-Po e , 

1 1 I' )2 4s 1 {I' )2 -4s 2 1 fc U, U = --gvo+Po e -8 ,o-Po e +qos- T oPo+ o, 

where / 0 , h0 ,p0 , q0 , U0 are the values of J, h,p, q, U on the lines= 0; they can be 
determined on the basis of the boundary conditions ( 4.4). Thus we have: 

(4.16) fo = cx(C, t), ho = P(C, t), 
1 2 

Uo = 2Ro. 

(We have replaced the latter Z by C in order to avoid identification of the unknown 
function Z with the parameter along the line R = R0 ). The derivatives p0 , q0 are deter­
mined from the system: 

(4.17) 

whence 

(4.18) Po = -ecxp', q0 = ecxcx', 

where e = ±1. 
Substituting (4.16) and (4.18) into (4.15), we obtain: 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

1 1 
f = f(s, C; t) = 2cx(I -eP')e211 + 

2
cx(I +eP')e- 28

, 

h = h(s, C; t) = 2ecxcx's+P, 

1 1 
P = p(s, C; t) = 

2
cx(l-ep')e211 -

2
cx(I +eP')e- 211

, 

q = q(C; t) = ecxcx', 

1 1 
U = U(s, C; t) = 8cx2(1-eP')2e4s_ 8cx2(1 +eP')2e-4s 

+ (cxcx')2s + ~ ecx2P' + ~ R~. 
Assuming that the determinant 

(4.24) 

we obtain, from (4.19) and (4.20), s = s(f, h; t), C = C(f, h; t), and substituting into 
(4.23), we arrive at the solution: 

(4.25) U = U(f, h, t). 

Let us draw attention to some limitations of the validity of our solution. It follows from 
the Eq. (4.10) that on the line/= 0 we have p = q = 0. Therefore, the assumption (4.24) 
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is not satisfied, and we have a singularity on f = 0. In particular, the boundary value 
problem formulated on this line leads to the solution/= R. In the case ex =1= 0, we should 
expect restrictions on the region of validity of the solution of the type f ~ [* =1= 0, where 
f* depends on the boundary conditions. Furthermore, boundary conditions have to be 
so chosen that 

(4.26) 

Hereinafter, we assume 

(4.27) ex =I= 0 and ex' =I= 0 

(for ex' = 0, we obtain the solution R 2
- R5 = { 2

- ex2) and from the Eq. ( 4.19) and ( 4.20) 
we obtain a relation determining C = C(f, h; t): 

(4.28) h-{J = lnl.f-t:yf2-(exex')21 
t:exex' J ex (I - t:{J') ' 

and 

(4.29) I ~.f-t:yf2-(exex')2 \ 
s = s(f, h, t) = 2 1n ex(I -t:{J') i . 

The mentioned above restriction has the form: 

(4.30) f ~ exex'. 

It remains to solve the linear equation (4.9) with the boundary condition (4.5). Now, 
the derivatives U,1 , U,, are known functions off, hand t, and they depend on the boundary 
condition for the Eq. (4.10). 

To conclude the paper, we present an example with numerical results. Let us consider 
the domain R 1 ~ R ~ R0 , Z ~ 0, 0 ~ t ~ t 1 and the following boundary conditions: 

on R = R0 : f = cx(Z, t) = y2uZ +/l2
, 

(4.31) h = {J(Z, t) = ;a (exy ex 2 -a2--byb2 -a2 

-a2lnlex + Jl ex 2 -a2 +a2ln lb+ yb2 -a2 1), 

on Z = 0: h = ~(R , t) = 0, 

where a and b are functions of time satisfying the initial conditions (I .6); hence 

(4.32) a(O) = 0, b(O) = R 0 , a' (0) "# 0, b' (0) = 0. 

In (4.31), we assumed the form of the function ex(Z, t), {J(Z, t) was found from (4.6), 
and the integration constant from the condition on the line Z = 0 (4.3l}J. 

The Eq. (4.25) has the form: 
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Substituting p = V / 2 -a2
, q = -a into (4.9), we obtain: 

(4.34) V / 2 -a2Z,h+aZ,1 =f, 

which, after introducing the new dependent variable 

(4.35) 

takes the form: 

( 4.36) 1/j2-a2 V +aV = 0. f ,h ,J 

This is an equation of the type U,1 V,h- V,1 U,h = 0 which has solution: 

( 4.37) V= G*(U, t), 

where G* is an arbitrary function of its arguments; therefore, we have 

(4.38) 
I 

aZ = G*(U, t)+ 2'(2
• 

Solving (4.33) and (4.38) with respect to f and h, we finally obtain: 

f = j/2aZ +G2 (R, t), 

(4.39) 

893 

h = ;a (JJ!'J2-a2-a2Inlf+ J/ f2-a2j-R2-byb2-a2-+a2Inlb+ yb2-a2i+R5), 

08 08 

06 06 

04 - (M 

02 - 02 

02 04 06 to 02 04 06 08 

z-tO 

08 Q:0.25 08 
b=10308 

06 C'6 

04 04 

02 02 

a 02 04 06 08 10 12 r 02 114 06 08 10 12 'W r 

FIG. 1. 
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where the function G(R, t) is determined from the condition (4.31)3 , which has the form: 

(4.40) GyG2 -a2 -a2 lniG+ yG2 -a2 -R2 -byb2 -a2 +a2 1nlb+ yb2 -a2
1 +R~ = 0. 

It is evident that the function f(R, Z, t) satisfies the initial condition f(R, Z, 0): 
fort = 0 (a = 0, b = R0 ), we have G{R, 0) = R, and the boundary conditionf{R0 , Z, t) = 

= y2aZ+b2
, because G(R0 , t) =b. The function h(R, Z, t) fort= 0 has a singularity 

of the type 0/0, and it is easy to verify that lim h(R, Z, t) = Z. 
t-->0 

The above solution is restricted by (4.26) and (4.30). These should be regarded as 
restrictions on R1 and t 1 ; the geometric meaning of these restrictions is as follows: the 
lines Z = const become tangent to the line R = R 1 • 

Numerical results are shown in Fig. 1. These are curves (4.39) calculated for the 
following values of the parameters: 

R 0 = 1, 

a= 0.25, a= 0.5, 

b = const = 1, b = y! +a2
• 

4.2. Statics 

The relations (2.13) with (2.14) and (2.10), (2.11) determine aiJ = aii(dkz) to within 
two arbitrary functions p and q. Taking into account the assumption ( 4.1 ), we obtain: 

a~= r.r~ = 0 

and the remaining components by setting g = 0. 
The second equation of motion is, as expected, identicaly satisfied. The two remaining 

equations of motion constitute a linear system for the functions p and q. Using (3.5), we 
have: 

(p+q),z+f.zA 1 +h,zA3 = 0, 
P,R+~q,z+~.zq+.f.RAI +h,RA3 = 0, 

where ~,A 1 ,A 3 are defined by (2.12) and (3.3). 
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