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On the calculation of buckling loads by means of hybrid Ritz equations
H. H. E. LEIPHOLZ ((WATERLOO)

UsING the solution of the given problem and its adjoint problem, a functional H* is defined
which is a kind of generalized Hamiltonian. This functional is found to be stationary. Applying
a direct method to the variational equation involving H*, a system of hybrid Ritz equations is
obtained which is used for the calculation of the bucklingload.

Postugujac sig¢ rozwigzaniem danego problemu i problemu z nim sprzezonego okre§lono funk-
cjonat H*, bedacy pewnym uogélnieniem hamiltonianu. Stosujgc do réwnania wariacyjnego,
zawierajacego H* metode bezpodrednia, otrzymano uklad hybrydowych réwnan Ritza, ktére
uzyto nastepnie do obliczania obciazen flatterowych.

ITonb3ysAck pelEHHSIMH PACCMATPUBAEMON M CONMPSMKEHHOH C Hell 3373y MOYKHO IIOCTPOHTE
dbyrxuponan H*, apnaroumitica HexoTopbiM o0oblieHHeM ramMuiisToHHaHa. M3 BapuaumoH-
HOr0 ypaBHEHHMA, cofepykauiero H*, monydeHa cucrema rHOpHAOHBIX ypaBHeHuil PHTna, KO-
TOpas 3aTeM HCIONB3YeTCA ONA pacyera (IaTTEPHBIX HArPY30K.

1. Introduction

ConsIDER the rod shown in Fig. 1 subjected to nonconservative follower forces. The small
vibrations of the rod about its equilibrium position are mathematically described by the
boundary-eigenvalue problem

(11) Dlw] = i“é‘-"+mwxxxx +[g(l—x)wele +qw, = 0,

(1.2) w(0, 1) = wx(0, 1) = werll, ) = wea(, 1) = 0.

In (1.1), (1.2), w(x, t) is the lateral deflection of the rod, wx its linear mass density, « its
flexural rigidity, / its length, and g is a uniformly distributed compressive load.

W(X, f) V(x: t)
FiG. 1. Fi1G. 2.

Consider also the rod shown in Fig. 2. In this case, the uniformly distributed load ¢
remains in its original line of action regardless of the deformation of the rod. Everything
else is the same as in the example. Whether a system like this can be realized physically
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shall not matter. It has above all been taken into consideration because the boundary-
eigenvalue problem

1.3) D*[0] = pd + aWsxxx +[q(— X)0 )]s —que = 0,

(1.4 2(0,1) = 0.0, 1) = 0l 1) = VeI, )— " qu(l, 1) = 0,

describing the small vibrations of the system in Fig. 2, is the adjoint problem of (1.1). (1.2).
In the following it will be shown that the combination of these two systems, — the
given one (1.1), (1.2), and its adjoint one (1.3), (1.4), — can be used to formulate a varia-
tional principle for the calculation of the buckling load g, of the first system (1.1), (1.2).
The adjointness of the two systems is characterized by the following fact. Let y be
an admissible function satisfying the boundary conditions (1.2) and ¢ be another admissible
function satisfying boundary conditions (1.4). Then

1z ! 131

(1.5) [ [ pwigaxdr = [ [ D*(glypdxar,
no 1 0

if

(1.6) [96—ydliz = 0.

2. A variational principle for nonconservative adjoint systems

A generalized Lagrangian L* may be defined as

1
@n L* = [ #rax

0
having the generalized Lagrangian density
(2.2) L = PO — 0Wex Vex + (1~ X) W20, — quo, 0.

As has been shown in [1], the generalized Lagrangian (2.1), (2.2) can be used to formulate
a generalized system of Lagrange’s equations of the second order which yields the differ-
ential equations (1.1) and (1.3) as follows:

d 6L* éL*

d 8L* oL* ...
(2-4) —EW—W—D(@]—O.

In (2.3) and (2.4), variational (functional) derivatives of L* have been used, for example,
@.5) OL*  9%* OL*  o%*  d oL* +_61_33’*
) ow  ow > 0w 0w  0Xx 0w, = 0X* Oy

Since (1.1) holds, the following is an identity:

1
(2.6) 8 [ Dlwlvdxdr = 0.

no
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Carrying out the variation in (2.6),
1l
2.7 [ [ {D[bw]v +Dlw]dv) dxdt = 0

nHo

is obtained. Under the assumption that the variations de satisfy (1.2), and the variations
dv satisfy (1.4), the adjointness condition (1.5) can be applied to (2.7) which yields

l’z!

2.8) [ [ {D*R)6w +Dlw)dv}dxdt = 0.

Ho
Using (2.3) and (2.4) in (2.8) results in

(2.9) ffi[;; fﬁiﬁ 2 ]6w +[di;% é(g( :Iﬁﬂ}dxdr =0.

This is obviously equivalent to

(2.10) 6}2L*dr =0.

Hence a generalized Hamilton’s principle, i.e., a variational principle is valid for the two

nonconservative adjoint systems under consideration.
Taking (2.1) and (2.2) into account, (2.10) leads after some calculation to

1 1 1z 1
@11) | [ (ubtiod + piodo)at | dx +8 [ [ [~ ator0e+ qll— ¥ .0, — quo 0] dxdt =
0 n no

In (2.11), the first integral on the left side can be changed into

1 1

@.12) f [ f (ubivt + piod%)dt | dxe = f f [— 6w — b dv)dx dt
no

This is possible by means of integration by parts using the fact that

(2.13) [6w]iz =0, [dov]2 =

This is a basic assumption of Hamilton’s theory which is not affected by the system being
conservative or nonconservative. Therefore it is valid here.
Using (2.12) in (2.11), we have
13 1

(2.14) f f [— o0 — pib 0] dx e + & f f [~ s Vs + G~ X) 0,0, — quo 0] dx it =

1o
Assuming solutions of the form
(2.15) w = ey (x), v =e“2(x),
the variables are separated, and adjointness condition (1.6) is automatically satisfied. Now,
(2.16) podw = —e* ' uw?zdy,
(2.17) uibdv = —e* ' uw?ydz.

2 Arch. Mech. Stos. nr 6/73
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With (2.15)-(2.17) Eq. (2.14) changes into

) 1
@18) [ eretdr] [[po*(poz+ z0p))dx + 6 [[~ay"z" + qU~x)y'z' — qy'z)dx} = 0.
0 0

L]

This is obviously equal to

153 1
(2.19) [ et arls [[uwyz—ay"z" +qU—x)y'z' —qy'z)dx} = 0.
151 0
Since (2.19) shall hold for any interval of time ¢, —¢,, this can only be true if
!
(2.20) 6f[yco’yz~ay”z”+q(l-—x)y’z’-qy'z]dx =0.
0
Introducing the functional
I
(2.21) H* = [,
o
with the density
(2_22) x _— _m2yz+ayuzn_q(f_x)yrzf+qyrz,
(2.20) can be changed into
2.23) 6H* = 0.

This variational principle will be used in the following as a foundation for calculating the
eigenvalues of (1.1), (1.2) and (1.3), (1.4) by means of a direct method.

3. Hybrid Ritz equations

Let

(3.1) y= Z?ﬂpi’ z = Zcﬂi’i-

The coordinate functions y; and ¢; in the expansions (3.1) are supposed to be admissible
functions satisfying the boundary conditions (1.2) and (1.4), respectively.
Using (3.1) in (2.21), (2.22), condition (2.23) can be replaced by
oH*

(3.2 o 0, i=123,..

Carrying out this operation,

1
B3 v -0y +ayid) —qU-x)vid;+ayiplde = 0, ij=1,2,3, ..
i 0

is the result. (3.3) is the system of the so-called hybrid Ritz equations.
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4. Calculation of the buckling load

The system (3.3) is linear, algebraic, homogeneous, and admits a nontrivial solution
for the y; only if

@1 det(—w?4;;+ B;—qCy) = 0,
when
I l
A= :“f‘#itﬁjdxx B; = “I'f’;“p?dx’
0 0
4.2) i
Cy = [[U—2)yidj—yidjldx.
0

Restricting ourselves to i, j = 1, 2, and using the notations

G(q) = (B,1—9C,)(B22—qC12)— (B3y —4C>,)(B,2—qCy5),

(4.3) H(q) = —A;1(B22—9C23)— A2,(By1 —qCy ) +A412(B2 —qC1y) +A2,(B12—9Cy2),
K(q) = A1 Az2— A3, 4,5,

(4.1) can be rewritten as

4.4) det(—w?4;;+ By;—qC;;) = F(w?, q) = G(g)+»*H(g) +w*K(q) = 0.

g

Qcr 7N Flw?q)=0

OJZ

FiG. 3.

The geometric equivalent of equation F(w?, ¢) = 0 is the eigenvalue curve as shown in
Fig. 3. The buckling load g, is obtained from (4.4) and from

dgq oF/dw? oF
4_ —_—= —— = —— =
3 e 7 it Sake
respectively.
Using (4.4), the second condition in (4.5) yields
oF
(4.6) 7 s H(g)+20?K(q) = 0.
Hence
@.7) s T

T XK@

2¢
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Using (4.7) in (4.4) yields
4.8) 4G(9)K(q)—H?*(q) = 0.
The buckling load g, can be obtained by solving (4.8) for q.

5. Numerical example

The following set of functions

1
R - 3 R
5 L TR
' x’—l— "‘+v—3——x
¥a= I oz
5ql® + 240 3ql3 +6a
[ 3 4
- O = X =i~ T P 128

Tq1* +120a 3l +36a
e 4
2 = X = G300 * T PGP0

5

has been used for a numerical calculation. The set (5.1) satisfies the boundary conditions
(5.3 vi(0) = 90 =D =9"() =0, i=12,

corresponding to (1.2). The set (5.2) satisfies the boundary conditions

(5.4) $i0) = $1(0) = $5() = " D——pu() = 0, i=1,2,

corresponding to (1.4). Hence the functions in (5.1) and (5.2) are admissible. The rather
elementary calculation consists in determining the quantities (4.2) by means of (5.1),
(5.2), and then G, H and K according to (4.3).

Finally, (4.8) can be solved for ¢ which yields

(5.5 g = 41.51—-.

The corresponding square of the critical frequency follows from (4.7) as
o

(5.6) wfr = 128.46;;'4—.

The result (5.5) is in satisfactory agreement with the buckling load

o

q.. = 40.7 B

calculated in [2] by means of Galerkin’s method.
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6. Convergence

Integration by parts applied to (3.3) yields
!
©1) D nf {—worp+ ey +qU-x)pi) +qyi}ésdx = 0,
70

which is the system of hybrid Galerkin’s equations. Since (3.3) and (6.1) are completely
equivalent under the assumption that y; satisfies all boundary conditions in (1.2) and ¢;
likewise in (1.4), (6.1) can be used for convergence considerations in place of (3.3). This
has already been done in [3). The result was that the method is convergent.
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