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Mixtures of fluids and isotropic solids

J. J. CROSS (MELBOURNE)

NOLL’s isotropy group is generalized to cover second grade materials. The particular cases of
fluids and isotropic solids are covered in detail, for both single materials and mixtures.

Uogdlniono grupe izotropii Nolla w celu uwzglednienia materiatow drugiego rzedu. Dokladniej
oméwiono przypadki szczegblne dotyczace cieczy i izotropowych ciat statych zaréwno w przy-
padku materialéw prostych jak i mieszanin.

IHaxo 0GobLeHne NOHATHA IPYINEI H30TPONKMH, BBeaeHHoro Hosom. Lensio atoro obobie-
HUSA FABIAETCA Y4YeT CBOJCTE MaTepHATIOB BTOPOro Iopsika. Bosee mogpobHO oBGCy»OeHBI
YacTHBIE CITYYaH, OTHOCALMECS K JKUOKOCTAM K M30TPOITHBIM TBEPJLIM TEJIaM, KaK B ciydae
MPOCTBIX MaTepHalioB, TaK H CMeceii.

1. Introduction

NoLL’s [1] fundamental definition of the isotropy group of a simple material has been
adapted in a variety of ways to apply to rigid heat conductors [4], to materials of second
grade [7], to thermodynamic materials [2], and to mixtures [3, 6, 8, 9].

ToupIN [7] dealt with materials of second grade, using as independent variables a pair
(F,VF) of first and second deformation gradients, but for the symmetry group he considered
only rigid deformations [7, Eqgs. (8.10), (10.24), (10.25), and § 13]. In a series of papers
[3, 6, 8, 9], BoweN, BoweN & WIESE, and BOWEN & GARCIA adapted the idea of symmetry
groups to mixtures, for mixtures of materials of second grade. While the symmetry group
is not restricted to the orthogonal group in these papers, it is restricted to linear trans-
formations.

It seems that possible elements in the isotropy group should be of the same type as
those considered in the constitutive relation. Since the response function R of a material
of second grade depends on the pair (F,VF), where F is the deformation gradient and
VF the second gradient, its isotropy group(*) should be formed by pairs (H, G), H cor-
responding to the deformation gradient and G to the second gradient, such that

(1.1 R(F,VF) = R((F,VF)(H, G)),

where the composition rule is induced by the chain rule for first and second gradients.
This approach is consistent with the work of NoLL [1] and of GURTIN & WILLIAMS [2].

(*) The isotropy group defined by the condition (1.1) has been considered recently by MORGAN in as
yet unpublished paper on material bodies of second and higher grade. The results of the present work concern
constitutive relations for materials and mixtures of materials of second grade and are independent of the
work of MoORGAN.
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The isotropy group of [3,6, 7, 8, 9] would be only a subgroup of the present group,
expressed as elements of the form (H, 0).

The condition (1.1) for the isotropy group is not only more natural for materials of
second-grade, but it also leads to more explicit forms of the response function in some
cases. In § 5, we prove that the forms of constitutive relations assumed by MULLER [10]
and DunNwooby [11] are necessary from material symmetry if suitable isotropy groups
defined by (1.1) are used. In § 6, we prove that the constitutive relations assumed by
GURTIN & VARGAS [12] and GURTIN [13] are necessary from material symmetry in a similar
way. The key section is § 4 and its apparent simplicity owes much to C.-C. WANG. The
results of §§ 4-6 are prepared by the basic sections, § 2-3, which introduce second-order
classes and isotropy groups.

We do not treat the effect of frame indifference on the constitutive relations for two
reasons: first, conditions on several different types of functions and variables are involved;
some of these conditions have already been solved in general and it only takes an easy
application of these general results to obtain the corresponding special forms [12, 13, 14].
The other reason is that no polar decomposition is known for the third-order tensors
which appear at vital places in the theory of second-grade materials.

Notation. The notation ¢,,, by itself would suggest that this quantity is intrinsic to
the body manifold. It is obvious that it is not intrinsic, and that it varies in a non-tensorial
way under coordinate transformations. The pair (¢y,, @4,,), however, is intrinsic; the
notation adopted is used in lieu of the “jet theory” notation, where this pair is a second-
order jet. A formulation of a theory of materials in jet theory language may be seen in the
reports of MORGAN referred to in the footnote; we intend to frame a theory of membranes
and shells in this language in a further paper, using the idea of the isotropy group developed
here.

2. Second-grade classes

Let & be a body [5]: a connected, orientable, three-dimensional, differentiable manifold
which can be covered by a single coordinate neighbourhood; i.e., there exist C*® —
diffeomorphisms ¢, x, A, ..., called (global) configurations, which map & into %#°,

¢ - R
We define a second-grade equivalence class of configuration at a point p € o by saying
that @, x: o — R are second-grade equivalent at p, if there is a coordinate system
(x', x2, x®) for of such that
@1 odt| _ ot il il
' axtl, ~ axt|, oxtoxi|, ~ oaxiox’ |,
for all i,/, k =1,2,3, where ¢*, »* are the coordinate representations of ¢ and x.

LemMmA 1. The second-grade equivalence classes are well-defined, i.e., they are independent
of the choice of coordinate system.

Proof. Incoordinate form, let ¢ : o/ — #° be written as

o(p) = (¢'(x*, x2, x3), 2(x*, x2, x*), $*(x*, x2, x%))

and
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for all p e o, and similarly »: o/ — &3 be written as
x(p) = (0 (x*, x2, x3), w2 (x*, x2, %), 2 (x*, %, 2%)).
Under any change of coordinates from (x‘) to (X*) on &, we have
= (XL XL XY, k=1,2,3.

Hence we have two new coordinate representations for the maps ¢ and x:

¢(p) = (D' (X', X%, X3), DX (X', X2, X?), (X', X%, X?))
and

x(p) = (K(X', X%, X?), K}(X', X*, X?), K*(X", X%, X3)).
Then, by the chain rule for functions of several variables,

0P| o¢t| ox!| _ o] ox) _ ot

oxt, T axTl,oxi, T oxi,0xt, T oxt,’

since, for example,
DX, X2, X3) = (> (X', X2, XP), x2(X', X2, X°), X (X', X2, X?)),
and similarly for x. The expression for the second gradient transforms is as follows:
| ?,if?’_"_ |
oXioxi,  ax'| oxi |,
ézqﬁ"{ax-ax’ q&"' 52"
dx*ox' |, 0X*|, 0X'|, 5x" 3X‘6XJ

Ot oxt| oxt| | owt| o'
xaxt |, X1, ox7', T oxt |,0X1 X7,

02 K*
= Xioxd|,
on using (2.1). Hence the lemma is proved. The transformation of the second gradient
uses the equality of the first gradients as an essential step when the coordinate change
is non-linear.
We denote a typical second-grade equivalence class at p € by (@yp, Pusp)- Note
that ¢,,, is symmetric, and that ¢,, is a linear isomorphism,

@2) Guni oty B,

where &/, is the tangent space of & at p. A second-grade equivalence class is also called
a (second-grade) local configuration of p. Clearly, a configuration ¢ induces a field of local
configuration on &, but a field of local configurations on & generally need not be an
induced field.

LEMMA 2. Every local configuration (K, M) at p € &/ can be regarded as the induced
local configuration at p of a configuration %.

Proof. Choose some coordinate system (X*) ncar p; choose x(p) to be the origin
of #°. Let K'; and M be the components of K and M relative to (X™). Since the matrix

L]
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[K';] is nonsingular, the inverse function theorem guarantees a neighbourhood A~ of p
on which the equation

2.3) xi(q) = K‘J-Xj+%M‘j,‘X"X", i=1,2,3; gqed,

defines a diffeomorphism x with the desired properties. Outside A, % is arbitrary.

We define a local reference configuration of p to be a distinguished local configuration
of p, say (K, M). Relative to such a local configuration, we may define a local deformation
(F, VF) by using the following lemma.

LemMMmA 3. Suppose w:sf — R* is a configuration, and let £: B> > R* be a
C® — diffeomorphism. Then we have

(2.4) Bsp = Faxy®ep 30 ()gup = Fa(p)Raser + o) Bnps %up) 5

(where the last composition is defined in coordinate form in the proof below).
Proof. Choose coordinate systems (X) on &, (3¥) on #°, and note that

V=X X%X%, k=1,23,
for all ®(p). Then, from the chain rule, we have

ah)t|  art| o]
ox' Ip 5J’j !x{p) aXi|p’

and from the product and chain rules we get

% (fx)*

| ok o | a2 f* ox™ | ox" |
e d

= —— —— + : ,
b O iy OXT0XT|, " PPOY |uipy OXF |, OX7

which establish the formulae and prove the lemma. We have used the fact that 2 is a body
in the sense of [5].

The local deformation (F, VF) from the configuration x to the configuration ¢ = fox
is defined as the pair (fyx(p)s Fexxin))-

Now, suppose that (K, M) at p corresponds to some configuration x, i.e. (K, M) =
= (X4p> Xxp).- Denote by (F, VF) the local deformation from x(#) to ¢(s#) correspond-
ing to f = ¢ o x™!, where ¢ is some configuration of &. Then, from Lemma 3,

¢¢p = FK;

o Pusr = FM+VF(K, K),

so that

(26) F= qs*? o Kil ] B ) ) )
VF = ¢ttP(K LK 1)_¢tp°K lM(K LK 1),

i.e.,

@n (F, VF) = (b, Punp) © (K, M)

F:&° — &3 is a linear isomorphism, VF is symmetric.
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If (x') are coordinates for ¢, (X*) for x, then

ox'
ox4

E
P

F iA =
2.8) il
(VF)' 45 = TXAKE| = (VF)'p4.

p

Since F is an isomorphism, F~! exists; further,

oXA |
-1)4, —
(2.9) W=

in the chosen coordinates.

Remark. Every pair of values (F, VF), where F is nonsingular and VF is symmetric,
can be taken as the value of a diffeomorphism from £2 to #2, as in (2.8).

The response function r on the body &/ is a map from the space of local configurations
to the response space (stress, entropy, heat flux, etc.), such that for the configuration ¢,
the response R at the point p e & is

(2.10) R =r(¢up; Pusps P)-

Relative to a given local configuration (K, M), we may define

(21]) R=!"(¢*P, ¢#tpsP)ER(F’ VF!P)

by

(2.12) r(Pxp; Pxsxp> P) = r(FK, FM+VF(K, K), p) = R(F, VF, p).

R is called the response function relative to (K, M). If p is equipped with a response function,
then it is called a second-grade material particle; a body composed of such particles is called
a second-grade body.

If p and g are second-grade particles, then they are said to be materially isomorphic
if there exist local reference configurations (K(p), M(p)), (K(g), M(g)) such that

(2.14) R(F,VF, p) = R(F, VF, q)
for all (F, VF).

LemMA 4. p, g are materially isomorphic if, and only if, there exist maps K(p, q) and
M(p; 9), where K is a linear isomorphism from o, to o, and M is symmetric such that

(215) r(¢tq$ ¢ltq! Q) e r(¢#g Ks ¢*qM+¢‘t¢(K9 K)! P)

for all configurations ¢.
Naturally, we call such a pair (K(p, g), M(p, ¢)) a material isomorphism from p to g.
Lemma 5. If (K(p), M(p)), (K(9), M(q)) are local reference configurations such that

(2.16) (X(p, 9), M(p, D) = (K(9), M(@) " = (K(p), M(p))

is a material isomorphism, then the corresponding relative response functions of p and q sat-
isfy (2.14). Conversely, if (2.14) holds for some (K(p), M(p)) and (K(g), M(q)), then the
mapping (K(p, 9), M(p, 9)) of (2.16) constructed above is a material isomorphism from

plogq.
The proof of Lemmas 4 and 5 is similar to that in [1, 5].

10 Arch. Mech. Stos. nr 6/73
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3. Isotropy group

Let p be a second-grade particle. Then the isotropy group g(p) of p is the group of all
material automorphisms of p, i.e., if h: &, — &, is an isomorphism and g is symmetric
then (h, g) € g(p) if, and only if,

(1) r(@Pup> Pesps P) = "((‘ﬁ*m Puxp) © (b, a)s P) = r@'nhs Pupg+ Punp(h, ), P)

for all configurations ¢. As we shall see from Lemma 6 below, g(p) is a group. Clearly,
elements of the form (h, 0)]in g(p) form a (linear) subgroup of g(p), but in general g(p)
is not a linear group. However, if r is continuous, then g(p) is a Lie group [5].

Let (K, M) be a local reference configuration of p and R the corresponding relative
response function. Then (H, G) is called a material automorphism relative to (K, M) if
H: #° — #° is a linear isomorphism and G is symmetric, and for all (F, VF),

(G2 R@VF,p) = R((F, VF)« (H, G), p) = R(FH, FG +VF(H, H), p).

We denote the group of all material automorphisms relative to (K, M) by %(p).
LemMa 6. g(p) and 9(p) are groups, and

(3.3) %(p) = K, M)og(p) o (K, M),

where (K, M) is a local reference configuration for p.
Proof. Closure of each set under the product rule

(3-4) (h, g)"(hu gn) - (hhuhgl +g(h1: hl))

and its analogue for pairs (H, G) are consequences of (3.1) and (3.2), respectively. Associa-
tivity comes from the fact that the elements are transformations of a set. The identities
are (i,0) and (I, 0), where i: o/, » of,, I:®% — R* are the identity maps. The inverses
are

(h,g)™" = (b7, —h~'g(h~*, h7Y)),
(H9 G)‘l T (H-‘, -H G(H-ls H_l));

and these are elements of their respective sets, since, for example,
R((F, VF) o (H, G)™*, p) = R((F, VF) o (H, G)' = (H, G), p)
= R((F’ VF) o; (I, O)’ P) = R(F, VF’ P),

when (H, G) is an isotropy element or material isomorphism.
The relation (3.3) is proved from (3.1), (3.2) and (2.7):

B R(Bar: s © K, M), 2) = R(($4p> bxep) o (b, 0) o (K, M), p)
= R((@up> Pasp) ° (K, M)™" o (K, M) © (b, g) = (K, M)}, p).
LemmA 7. If (K., M,) and (K,, M,) are local reference configurations of p, then
(3.7 %,(p) = C%.(p)C,
where

(3.8) C = (K;, M2)o (K, M™%

(3.5)
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If c = (K(p, @), M(p,q)) is a material isomorphism of p, q, then

(3.9 g(@) = cg(p)c*.
Consequently, if (K(p), M()), (K(g), M(q)) are as in Lemma 5,

(3.10) 9(q) = 4(p),
and if C of (3.8) is a material automorphism, then

3.11) 9:(p) = 9.(p).
The proof of this lemma is obvious from (3.3), (3.6) and Lemma 5.

4. Simple fluids and isotropic solids
4.1. Second-grade fluids

To define a second-grade fluid point as a particle whose isotropy group with respect
to all reference configurations is the set?

{H,G): He%#(3), G arbitrary but symmetric}

would remove all the dependence of R on the second gradient VF (see § 6 below).

To avoid this over-simplification, we seek some restrictions on the pairs (H, G)in
the isotropy group. Let (K, M) be a given local reference configuration of p. Then (K, M)
can be regarded as the induced local configuration of a configuration », by Lemma 2.
Suppose that (H, G) is any given local deformation. Then (H, G) o (K, M) defines a new
Jocal configuration of p and can be regarded as the induced local configuration of a con-
figuration A. For the deformation f = Aox™! from %(&f) to A(&), we then have

(4.1 (f4p> fanp) = (F, VF)|, = (H, G).
We now choose the following restriction on (H, G): we require that (H, G) be an ele-
ment of ¥(p) if, and only if, the deformation f = A ox~! be second-grade volume pre-
serving, i.e.,
(4.2) |detF| =1 and V|detF|, = 0.

Two choices were made in obtaining f, so we must now show that #(p) is well-defined,

i.e., independent of the choices for x and A. Indeed, if %, is another configuration such
that

(%1 4ps ®1aap) = (K, M)
and, similarly, if A, is such that
(11 *ps Z1 ‘#F) — (Hs GJ 4 (Ks M)s
then the deformation f; = A, o %7 from »,(&/) to A,(&) also obeys the condition

(4.3) (Fy, VEF))|, = (H, G).
It remains to show that if (4.2) is valid, so too is
4.9 |detFy|, =1 and V|detF,|, =0,

(*) We denote the unimodular group over %&* by 4.#(3), and the orthogonal over &° by @ (3).

10*
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and vice versa. (4.4), is obvious, since F(p) = H = F,(p) from (4.1) and (4.3). (4.4), then
follows from the chain rule and the fact that VF(p) = G = VF,(p). Thus %(p) is well-
defined by (4.2).

Having stated the desired restrictions on %(p), we now examine their implications for
the pair (H, G). Let (X4) and (Y®) be coordinate systems for x and A, respectively. Then,
from (4.1), we have

ay4 | B o2y4
(4.5) HAp = WL, GApc = XPaxC|,

From (4.2),, we see that
|detH| = |detdY4/oX®|, = 1,
and from (4.2),, we obtain

(4.6) a—;?metaYHaX"[, w0,

If we expand (4.6) by the chain rule and use the formula d|detK|/dK = |[detK|(K~!)T for
any invertible K, we obtain

axc| oryP
@D WWE =%
or equivalently, from (4.5),
(4.8) (H )G = 0.
We write (4.7) in the form
4.9) tr(H'G) =0

which defines the operator tr as used below.

The conditions |detH| = 1 and tr(H™* G) = 0 may now be taken as the defining con-
ditions for the isotropy group of a second-grade fluid: p is called a (second-grade) fluid
particle, if there exists a local reference configuration (K, M) relative to which the isotropy
group %(p) consists of all pairs (H, G) such that

(a) H is unimodular, and
(b) tr(H"1 G) = 0.

Note that if (a) is satisfied relative to one local reference configuration, it is satisfied for
all [1]. But (b) is not independent of the choice of local reference configuration. We call
a local reference configuration in which (b) is satisfied an undistorted reference.

Remark. Pairs (H, G) satisfying (a) and (b) do form a group. We need only check
the product of two elements (H, G) » (P, S) for condition (b), and

{(HP) ' }4; {HS+ G(P, P)}24c = (P~ 1) x(H ")E5(HPRS® 4o+ GPrr PR 4 PT¢)
= (H Y)EGPer PTc+ (P )4 S%4c =0,
since each part is separately zero.
We have now come to the first of our basic results.



MIXTURES OF FLUIDS AND ISOTROPIC SOLIDS 1033

PROPOSITION 8. The response function R(F, VK, p) relative to an undistorted reference
of a fluid particle p can be represented by a function of |detF| and grad|detF|; i.e., (F, VF)
and (F, VF) satisfy

(4.10) |det F| = |det F|
and
(4.11) grad |detF| = grad|det F|

if, and only if, the local deformation (H, G) connecting them, viz.,
@.12) (H, G) = (F, VF)™ o (F, VF),
belongs to the isotropy group %(p).

Proof of necessity. We must show that the pair (H, G) of (4.12) satisfies
(a) and (b).

Lemmas 2 and 3 guarantee that there are configurations x, A, ¢, and ¢ such that the
diffeomorphisms f = ¢ o A~!, f = pox~!,and h = A o ! give rise to (F, VF), (F, VF),
and (H, G) when their gradients are evaluated at p. We omit this evaluation in what now
follows.

From (4.12), H = F~'F and so (4.10) obviously implies that (a) holds. Then, since
the chain rule gives

(4.13) grad|detF|; = |detF|(VF) ;p(F~ )4, (F~1)5,
together with a similar formula for grad|detF| ;> (4.10) and (4.11) combine to give
(4.14) (VE) ws(F-)A(F )% = (VE) ap(F)4F P,

We now use the formulae for inverse and product of second-grade isotropy elements to
obtain

(4.15)  (H )4G%,c = {(F~1F)~*}45{ —F'VF(F~'F, F-'F)+F'VF}%
= { = (VY sun(F~ ) (F~ )Y, + (VE) un(F-)M,(F~)¥,}Fc = 0,  from (4.14).
Hence (b) holds also.

Proof of sufficiency. If (a) and (b) hold for (H, G), then (4.10) and (4.11)
are trivial consequences of the reverse algebra via (4.12), (4.14) and (4.15). Hence the
proposition is proved.

From balance of mass it is well known that the densities p, and p in the local reference

configuration (K, M) and in the present configuration (F, VF)o (K, M), respectively,
are related by

(4.16) Po = oldetF|,
which implies also
(4.17) grad p, = |det F)|grad p+ p grad|det F|.

Hence |detF| and grad|detF| are determined by p and grad.p and vice versa, at any point
P, since a full specification of a second grade particle requires that p, and grad p, (or Vp,)
be given in the local reference configuration. From this simple remark we see that the
preceding proposition is equivalent to:
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COROLLARY 9. The response function R(F, VF, p) relative to an undistorted reference
of a fluid particle p can be represented by a function R (p, grad p, p) of p and grad p, i.e.

(4.18) R(F, VF, p) = R(p, gradp, p).

4.2. Second-grade solids

To obtain suitable restriction on pairs (H, G) for solid particles, let us look at the
local reference configuration induced by % and A once again. Then as above, we have

(F, V)|, = (H, G).

But we now choose the following restriction on (H, G): we require that (H, G) be an
element of %(p) if, and only if, the deformation A c%x~! be second-grade inner-product
preserving at p, i.e., that

(4.19) (F"F),=1 and V(F'F),=0.
As before, we can show that %(p) is well defined by this restriction. Further, if (X*) and

(Y®) are coordinate systems corresponding to x and A as before, then the restriction (4.19)
has the coordinate form

or*| or®| _
x4\, oxc|, — "¢
and
i2yB B B 2yEB
@19) o*Y® | oy ot oyt | _ o

aXtaxA|, ox<|, ¥ ax4|, aXFoxc,
This last equation, after cyclic interchanges of the indices 4, C, E and a suitable combina-
tion, gives

ey |l
OX49XE|, oxC|, ~
or
e
4.20 e -
(4.20) aXAoxXE|, 0.

(4.19), implies that [0Y?/dX%|,] is orthogonal. So the restrictions imply that
() HPg = 0Y®|aX*®|, is orthogonal, and
(d) G®45 = *Y®/0X40X*|, = 0.
So we define a second-grade solid particle to be a particle p whose isotropy group ¥(p),

relative to some local reference configuration, is a linear group, a subgroup of the
orthogonal group @(3) under the identification

(H,0) » H.

Notice that both (c) and (d) depend on the choice of local reference configuration. As
before, we call a local reference configuration an undistorted reference if it satisfies these
conditions. An isotropic solid particle is a particle p for which #(p) is the orthogonal
group @(3) for some local reference configuration.
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ProPOSITION 10. Relative to an undistorted reference, the response function R(F, VF, p)
of an isotropic solid particle p can be represented by a funcriorf_ o-_[ _{ke left Cauchy-Green
tensor B = FFT and of grad B = grad (FF"), i.e., (F, VF) and (F, VF) are such that

@21 B = B,
(4.22) gradB = grad B

if, and only if, the second-grade local deformation (H, G) defined by
(4.23) (H, G) = (F, VE)™ o (F, VF)

belongs to the isotropy group 4(p).
Proof of necessity. We must show that (H, G) satisfies (c) and (d). (4.23)
gives H = F~'F, and (4.21) implies that

(4.24) HH” = F-'FF (FT)"! =1,
so (c) holds. We have

(4.25) BY = F,F,,

and

(4.26)  (grad B)Yy = (VF)'4pF' s (F ")+ (VFY (o F'y(F~ )% = My, B™ + M’ B™,

where

(4.27) My = (VF) a(F~)4(F %, M = VFF L F)
From differentiation of

(4.28) B Y Bt = &,

we get

429) 280 - @, 2,

and hence from (4.26), we get

(4.30) B™(grad(B™"))um = —B™(B™")is M’y — B™ (B~ )is M.
Now form

(4.31) (B™");s0B% [0x*+ (B™"),, 0B |0x' = 2M;, — B™ d(B~");,/0x™,

using (4.26), (4.27) and (4.29).
Now, evaluate these expressions at p. Then (4.21) gives

(4.32) B(p) =B(p), and B '(p) =B'(p),
while (4.22), (4.29) and (4.32) give

(4.33) {grad(B")}(p) = {grad(B~")}(p),

as well as

(4.34) grad B(p) = gradB(p).

Hence (4.31), (4.32) and (4.33) give
(4.35) M =M.
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But (4.23) and (4.27) give
(4.36) FGF',F")=M-M=0.
Therefore, since F and F are invertible,
G=0.
Proof of sufficiency. Thisis now trivial. H orthogonal implies B(p) = B(p);
and G = O implies M = M from (4.36), and thus gradB(p) = gradB(p) from (4.26).

Therefore, the relative response function for an isotropic solid particle can be reduced
from a function of (F, VF) to (B, gradB), and we can write

4.37) R = R(F, VF, p) = R(B, gradB, p).

5 Mixtures without chemical reactions

Suppose we have a collection of bodies &, &« = 1, 2, ..., N, such that for some region
¥ in #° at time 1,

Xa: A=V
is a diffecomorphism for each «. Then ¥~ is a mixture. To each point x in ¥, there cor-
respond N particles, say X,, X,, ..., Xy for reference configurations »,, ®,, ..., ®xy.

We consider the following type of response function for the a-th constituent particle
of a mixture at (x, ¢):

(51) Ra = Ra(xs f) = Rg(ﬁp, gﬂa Fﬂ! VﬂFﬂ; ‘xﬁ; Xﬂ)’ ® = 1; 2; sesy N.

Here, R, may depend on X;, f = 1,2, ..., N, so that (5.1) is a point condition, and all
variables relate to a particular set of points. For this reason, we will suppress this explicit
dependence on Xg, both in this section and the next.

The independent variables in (5.1) are the 34N values below:

05 is the temperature of the B-th constituent; g; = grad f; is the temperature gradient
of the f-th constituent; (Fy, V4Fp) is the local deformation of the f-th constituent cor-
responding to some local reference configuration (Kz, Ms) at X; in xs(o/) and
X = 0yp(Xp, 1)/0t is the velocity of the f-th constituent. The subscript f under the
arguments in (5.1) indicates a dependence on all N sets of arguments for each constituent.

While Fg, V;F; may be regarded as gradients (Lemma 3, and the following Remark),
it is not necessary that they be induced from the configuration %,. In fact, we have

(Fp, VsFg) = (Xpxs Xpxs) © (Kps Mp)™!
atX;, forp=1,2,...,N.

In this section, we treat mixtures in which no chemical reactions take place. The mass
balance law for the constituents of a mixture [e.g. 3, (2.32);, (2.35)] is
(5:2) Pat padivi, = pls,
where ¢, is the supply of mass to the a-th constituent due to chemical reactions between
the other N—1 constituents. In the absence of chemical reactions, we have ¢, = 0 for
e=1,2,..,N, and we can integrate (5.2) to obtain

(53) pm!detFal = Pao
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foro = 1,2, ..., N, where the p,, are constants. (5.3) is the basic idea behind the require-
ment in § 4 that the linear transformations be unimodular, and it corresponds to (4.16).

For each constituent particle at x at 1 we may define an isotropy group %.(x,?) as
follows: (H, G) € 4, if, and only if, for § = 1,2, ..., N,

(5-4) Rﬁ(ﬂtr) 8as Fl) srey Fcr., sany FN’ vlFlr seey VCKFG$ "'!VNFN’ xd)
= Ry(0;,2,, Fy, ..., F.H, ..., Fy, V,\F,, ..., F.G+ V. F.(H, H), ..., VyFy, X,).

It is clear that %, is a group of the same type as that defined in § 3.

It is natural, in view of (5.3), to ask that, relative to some undistorted reference, %,
preserve the volume of the a-th constituent to the second grade in the reference configura-
tion. We call an inert (or non-reacting) constituent particle a fluid if its isotropy group
satisfies the requirements on a fluid in § 4A, and an (isotropic) solid if its group satisfies
the requirements on an (isotropic) solid in § 4B.

Suppose we have a mixture of inert constituents at a point in ¥~ at ¢, a mixture of inert
fluid and isotropic solids, say, fluids for « = 1, 2, ..., ¢, and isotropic solids for « =
= ¢+1, ¢+2,..., N. Then the arguments of § 4 apply and we obtain immediately that
(5.1) reduces to

(5.5) R, (x, 1) = Rﬂ(gﬁs g8 Pos grad p,,, B, grad B, "‘13)

fore, f=1,2,...,N:o=1,2,...,¢; 1= ¢+1,¢+2,...,N.

Thus the Eqgs. (6.11) of [3] are simplified; the awkward tensors M, are replaced by
gradB,, a fact later known to Bowen; similarly, (5.10) of [6] is simplified. Application
of the constraints f, = 6, g, = g does not affect our (5.5), nor does the inclusion of the
extra variable I‘*"'a, as these may be immediately replaced by

5
which is obviously not affected by local reference configuration changes.

PrOPOSITION 11. For a mixture of inert fluid and isotropic solids, the response function
relative to an undistorted reference can be represented by a function of density and density
gradient for the fluid constituents, and by a function of the left Cauchy-Green tensor and its
gradient for the isotropic solid constituents, together with the temperatures, temperature
gradients and the velocities of the constituents, i.e., from (5.1) to (5.5).

6. Mixtures with chemical reactions

For mixtures of second-grade materials with chemical reactions, it seems pointless to
require that the change in local reference configuration preserve the density or volume in
the reference configuration, since (5.3) is no longer valid.

We adopt the (slightly modified) list of independent variables of Bowen [8],

(61) 9&! gcn Fﬂ.’ VCIFCH iﬁ! p«-’a’ grad(pﬂjl)s

where J, = |detF,|. The variables are independent if the ¢, are non-zero in (5.2), i.e.,
P« Jo is independent of F,, and grad (p,J,) is independent of F, and V. F,, if the mass
of the «-th constituent is not conserved.
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Since the density field in the reference configuration is now not restricted by (5.3) or
(4.16), we may drop the requirement that the linear part of the isotropy group be a sub-
group of the unimodular group #.# (3), as in [8]. So let us define a reacting fluid to be
a particle whose linear group is the full second-order group, i.e., if (H, G) is an element
of the isotropy group for a reacting fluid if H is invertible and G is arbitrary but symmetric.

In general, (H, G) € %.(x, t) if, and only if, for all values of the argument,

(6'2) Rﬁ(x’ t) = Rﬂ(ocj 8o F] 3 oeeey Fay seey FN’ VIFI, weny VaFcn very VNFN-; x\cn
P1d1s o5 Padas oo PNIN, grad(py Jy), ..., grad(pals), ..., grad(pxJy))
— Rﬂ(ﬁﬂs gtn F] 3 seey Fa}{s sesy FN: v1 Fla AR | FaG+VaFa(H; H); ey VNFN, ig’
P1tys ooy pataldetH, ..., pyJy, grad(p,J,), ..., grad(p, JoldetH)), ..., grad(pyJy)),
where He 94 (3),and f = 1,2, ..., N.

A necessary consequence of (6.2) is that the dependence on the reacting fluid variables
is reduced as follows, by noting that (H, G) = (F,, V4 F,)~! is an allowable choice:
(6.3) PatoldetH| = py|det F, F;*| = p,,  grad(p,|detF.H|) = grad p,,

(Fy, Vo Fy) o (Fq, VoF)™! = (l! 0)

and 0,, g,, X, are unchanged. Hence, for a mixture of reacting fluids,

(6.4) Ry(x,1) = Ry(0,,8,,1,1,...,1,0,0, ..., O, X, ps, grad p,),
for p=1,2,...,N; ie., we can define new functions R, and write for $ =1,2, ..., N,
(6.5) Ry(x, 1) = Ry(6,, 8s» %o Po, grad py).

Note further that the same reduced form (6.5) holds for a mixture of inert and reacting
fluids, since (5.3) is a constraint which reduces the set (F, VF, pJ, grad(pJ)) to (F, VF)
for an inert fluid and reduces the linear part of the isotropy group %.#(3).

The definitions of inert and reacting fluids are compatible; for in the case of a reacting
fluid, the density in the reference configuration need not be preserved, but for an inert
fluid, preservation of the densities in both configurations, under (5.3), implies that
|detH| = = 1.

For a reacting solid particle, or a reacting isotropic solid particle, we leave the definition
unchanged, i.e., the isotropy group has elements of the form (H,Q), H € ®(3). Then
the analogous definition for the a-th constituent particle to be an isotropic solid will have
H e 0@3), G =0, in (6.2). Then, exactly as in Proposition 10, we can reduce the depend-
ence from (F, VF, pJ, grad (pJ)) to (B, grad B, p, grad p), where the reduction follows
from

pldetF| = p|detB|'/,

(6.6) grad(p|detF|) = |detB|"?grad p+ %PfdetBlmtr(B"gradB)
for reacting isotropic solids. Note that for inert isotropic solids, (5.3) reduces the depend-

ence to (B, gradB) as before, since p and grad p can be expressed in terms of F and VF,
as in (4.16) and (4.17).
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So for a mixture of ¢ fluids, ¢ reacting isotropic solids, and N — ¢ —¢ inert solids,
we have the response functions

(67) -fo(x! t) = Ra(eﬂ, g5 iﬁ; Pos gfﬂd Pos Bu gl'adB'),

where a, f=1,2, ..., Nyw=1,2,..., ¢+0,and 7 = ¢+1, ..., N.

THEOREM 12. For a mixture of second-grade fluids and isotropic solids, the response
function relative to an undistorted reference can be represented by a function of the density
and density gradient for the fluids, whether they be inert or reacting, to a function only of
the left Cauchy-Green tensor and its gradient for the inert isotropic solids, and to a function
of all four of these variables if the isotropic solid is reacting, together with the temperature
gradients and the velocities of all the constituents, i.e., from (6.1) to (6.7).
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