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Mixtures of fluids and isotropic solids 

J. J. CROSS (MELBOURNE) 

NOLL's isotropy group is generalized to cover second grade materials. The particular cases of 
fluids and isotropic solids are covered in detail, for both single materials and mixtures. 

Uog6lniono grup~ izotropii Nolla w celu uwzgl<(dnienia material6w drugiego rz~du. Dokladniej 
om6wiono przypadki szczeg6lne dotyczqce cieczy i izotropowych cial stalych zar6wno w przy· 
padku material6w prostych jak i mieszanin . 

.I(aHo o6o61.1\eHHe rroiDITIHI rpyrriibi ~3oTporr~H, BBe,!leHHoro HoJIJIOM. UeJihlO 3Toro o6o61.1\e­
Hlf.fl HBJI.fleTC.fl yt~eT CBOHCTB MaTep~aJioB BToporo nopH,!lKa. EoJiee rro,!lpo6Ho o6cym,!leHbi 
tiaCTHhle CJIYti~, OTHOC.flll\~eCH K ~,!lKOCT.fiM ~ ~30TpOIIHbiM TBep,!lbiM TeJiaM, KaK B CJIYllae 
IIpOCThiX MaTepHaJIOB, TaK If CMeCeH. 

1. Introduction 

NoLL's [1] fundamental definition of the isotropy group of a simple material has been 
adapted in a variety of ways to apply to rigid heat conductors [4], to materials of second 
grade [7], to thermodynamic materials [2], and to mixtures [3, 6, 8, 9]. 

TouPIN [7] dealt with materials of second grade, using as independent variables a pair 
(F ,VF) of first and second deformation gradients, but for the symmetry group he considered 
only rigid deformations [7, Eqs. (8.10), (10.24), (10.25), and § 13]. In a series of papers 
[3, 6, 8, 9], BOWEN, BOWEN&WIESE, and BOWEN&GARCIA adapted the idea of symmetry 
groups to mixtures, for mixtures of materials of second grade. While the symmetry group 
is not restricted to the orthogonal group in these papers, it is restricted to linear trans­
formations. 

It seems that possible elements in the isotropy group should be of the same type as 
those considered in the constitutive relation. Since the response function R of a material 
of second grade depends on the pair (F, VF), where F is the deformation gradient and 
VF the second gradient, its isotropy groupe) should be formed by pairs (H, G), H cor­
responding to the deformation gradient and G to the second gradient, such that 

(1.1) R(F,VF) = R((F,VF)o (H, G)), 

where the composition rule is induced by the chain rule for first and second gradients. 
This approach is consistent with the work of NoLL [I] and of GuRTIN & WILLIAMS f2]. 

e) The isotropy group defined by the condition (1.1) has been considered recently by MORGAN in as 
yet unpublished paper on material bodies of second and higher grade. The results of the present work concern 
constitutive relations for materials and mixtures of materials of second grade and are independent of the 
work of MORGAN. 
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1026 J. J. CROSS 

The isotropy group of [3, 6, 7, 8, 9] would be only a subgroup of the present group, 
expressed as elements of the form (H, 0). 

The condition (1.1) for the isotropy group is not only more natural for materials of 
second-grade, but it also leads to more explicit forms of the response function in some 
cases. In § 5, we prove that the forms of constitutive relations assumed by MULLER [10] 
and DUNWOODY [11] are necessary from material symmetry if suitable isotropy groups 
defined by (1.1) are used. In § 6, we prove that the constitutive relations assumed by 
GuRTIN & V ARGAS [12] and GURTIN [13] are necessary from material symmetry in a similar 
way. The key section is § 4 and its apparent simplicity owes much to C.-C. W ANG. The 
results of §§ 4-6 are prepared by the basic sections, §§ 2-3, which introduce second-order 
classes and isotropy groups. 

We do not treat the effect of frame indifference on the constitutive relations for two 
reasons: first, conditions on several different types of functions and variables are involved; 
some of these conditions have already been solved in general and it only takes an easy 
application of these general results to obtain the corresponding special forms [12, 13, 14]. 
The other reason is that no polar decomposition is known for the third-order tensors 
which appear at vital places in the theory of second-grade materials. 

Notation. The notation q,**P by itself would suggest that this quantity is intrinsic to 
the body manifold. It is obvious that it is not intrinsic, and that it varies in a non-tensorial 
way under coordinate transformations. The pair (t/J*P' q,**P), however, is intrinsic; the 
notation adopted is used in lieu of the "jet theory" notation, where this pair is a second­
order jet. A formulation of a theory of materials in jet theory language may be seen in the 
reports of M oRGAN referred to in the footnote; we intend to frame a theory of membranes 
and shells in this language in a further paper, using the idea of the isotropy group developed 
here. 

2. Second-grade classes 

Let d be a body [5]: a connected, orientable, three-dimensional, differentiable manifold 
which can be covered by a single coordinate neighbourhood; i.e., there exist coo -
diffeomorphisms q,, x, A, ... , called (global) configurations, which map d into Bl3 , 

q, : .91 ~ gf3 . 

We define a second-grade equivalence class of configuration at a point p e .9!1 by saying 
that t/J, x : .9!1 ~ Bf3 are second-g,.ade equi1•alent at p, if there is a coordinate system 
(x1 

, x 2
, x3

) ford such that 

(2.1) a cl>; j = a"~-1 
OX lP OX lP 

and 

for all i, j, k = 1 , 2, 3, where cf>k, ,/ are the coordinate representations of t/J and x. 
LEMMA I. The second-grade equivalence classes are well-defined, i.e., they are independent 

of the choice of coordinate system. 
P r o o f. In coordinate form, let q, : .9!1 ~ Bl3 be written as 

t/J(p) = (cf>I(xl, x2, xl), cf>2(x1, x2, xl), c/>3(xl, x2, xl)) 
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MixTURES OF FLUIDS AND ISOTROPIC SOLIDS 1027 

for all p E .91, and similarly x: .91 ~ rJl3 be written as 

x(p) = (x1 (x1
, x2, x 3

), x2(x1
, x2, x3

), x3 (xl, x2, x 3)). 

Under any change of coordinates from (xi) to (Xk) on .stl, we have 

Hence we have two new coordinate representations for the maps q, and x: 

and 

x(p) = (K1(X1,X2,X3
), K2(X 1,X2,X3

), K 3 (X 1,X2,X3)) . 

Then, by the chain rule for functions of several variables, 

a~i = a~;i ax~ l = _a_"~--! axii i = _<7"~ 1 , 

oX lP OX !poX p OX lp oX :P OX iP 

since, for example, 

ct>"(X1
, X2, X 3

) = ~"(x 1 (Xt, X 2, X 3
), x 2(X1

, X 2, X 3
), x 3 (X1,X2, X 3

)), 

and similarly for x. The expression for the second gradient transforms is as follows: 

a2cpk i a { act>k }: 
7Jx; axi p = 7JXt 7JxT P 

a2~k I axs i axt I a~k : a2xt ! 

= axs axr ! axi 1· axJ1, + -axt 1 a xi axi l. 
lP P P .P P 

o2xk : OX5 
,. OX1 ! oxk 

1

1 82:•/ : 
= axs ox' i -ax; 7;Xi ! + ox1 ax; aXil 

,p ,p •P P ,p 

82Kk I 
= aX1 8Xi p' 

on using (2.1). Hence the lemma is proved. The transformation of the second gradient 
uses the equality of the first gradients as an essential step when the coordinate change 
is non-linear. 

We denote a typical second-grade equivalence class at p e.91 by (tP*P' tP**P) . Note 
that t/J**P is symmetric, and that q,*P is a linear isomorphism, 

(2.2) q,.p: .91 p ~ gtt3' 

where .91 P is the tangent space of .91 at p. A second-grade equivalence class is also called 
a (second-grade) local configuration ofp. Clearly, a configuration q, induces a field of local 
configuration on .91, but a field of local configurations on .91 generally need not be an 
induced field. 

LEMMA 2. Every local configuration (K, M) at p E .91 can be regarded as the induced 
local configuration at p of a configuration x. 

P r o of. Choose some coordinate system (Xi) near p; choose x(p) to be the origin 
of 913

• Let Ki1 and M 1
1k be the components of K and M relative to (Xm). Since the matrix 
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1028 J. J. CROSS 

[Kii] is nonsingular, the inverse function theorem guarantees a neighbourhood .K of p 
on which the equation 

(2.3) '!Ji(q) = Ki .Xi+ I_Mi. XiXk . 1 2 3 
,.., J 2 )k ' l = ' ' ; 

defines a diffeomorphism x with the desired properties. Outside .K, x is arbitrary. 
We define a local reference configuration of p to be a distinguished local configuration 

of p, say (K, M). Relative to such a local configuration, we may define a local deformation 
(F, VF) by using the following lemma. 

LEMMA 3. Suppose x : d -+ 91.3 is a configuration, and let f: B£3 -+ 9f3 be a 
coo - diffeomorphism. Then we have 

(2.4) (fx)*P = f*x(p) x*P and (fx)**P = f*x(p) x**P + f**x(p) (x*P' x*P), 

(where the last composition is defined in coordinate form in the proof below). 
P r o o f. Choose coordinate systems (Xi) on d, (yi) on a£3 , and note that 

yk = uk(Xl, X 2 , X 3), k = 1, 2, 3, 

for all x(p). Then, from the chain rule, we have 

and from the product and chain rules we get 

iJ2(fxll iJfk j azum I iJ2fk I aum I aun I 
iJXiiJXi p = oym lx(p)iJXiiJXilp + i}ymayn H(p) iJXi p (}Xi / 

which establish the formulae and prove the lemma. We have used the fact that Bl3 is a body 
in the sense of [5]. 

The local deformation (F, VF) from the configuration x to the configuration t/> = f o x 
is defined as the pair (f*x(p), f**x(p)). 

Now, suppose that (K, M) at p corresponds to some configuration x, i.e. (K, M)= 
= (x*P' x**P). Denote by (F, VF) the local deformation from x(d) to tf>(d) correspond­
ing to f = q, o x-I, where q, is some configuration of d. Then, from Lemma 3, 

(2.5) 
t/>*P = FK, 

q,**P = FM+VF(K,K), 

so that 

(2.6) 
F = q,*P 0 K-l' 

VF = t/>**p(K-t, K- 1
) -t/>*P o K- 1 M (K-1

, K- 1
), 

i.e., 

(2.7) 

F : Bl3 
-+ &13 is a linear isomorphism, VF is symmetric. 
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MIXTURES OF FLUIDS AND ISOTROPIC SOLIDS 1029 

If (xi) are coordinates for q,, (X·4) for x, then 

(2.8) 

. oxi I 
F'A = i)XA p' 

. i)2xi I 
(VF)'AB = i)XAi)XB P = (VFYBA· 

Since F is an isomorphism, F-1 exists; further, 

(2.9) (F-l)A. _ i)XA i 
I - 0Xi 'p 

in the chosen coordinates. 
R e m a r k. Every pair of values (F, VF), where F is nonsingular and VF is symmetric, 

can be taken as the value of a diffeomorphism from PA3 to PA 3
, as in (2.8). 

The response function r on the body .91 is a map from the space of local configurations 
to the response space (stress, entropy, heat flux, etc.), such that for the configuration q,, 
the response R at the point p E .91 is 

(2.10) 

Relative to a given local configuration (K, M), we may define 

(2.11) 

by 

(2.12) r(t/J*P' tP**P' p) = r(FK, FM+VF(K, K),p) = R(F, VF,p). 

R is called the response function relative to (K, M). If p is equipped with a response function, 
then it is called a second-grade material particle; a body composed of such particles is called 
a second-grade body. 

If p and q are second-grade particles, then they are said to be materially isomorphic 
if there exist local reference configurations (K(p), M(p)), (K(q), M(q)) such that 

(2.14) R(F, VF,p) = R(F, VF, q) 

for all (F, VF). 
LEMMA 4. p, q are materially isomorphic if, and only if, there exist maps K(p, q) and 

M(p, q), where K is a linear isomorphism from .9/P to dq and M is symmetric such that 

(2.15) r(t/J*q' tP**q' q) = r(t/J*q K, tP*qM +tfJ •• q(K, K), p) 

for all configurations t/J. 
Naturally, we call such a pair (K(p, q), M(p, q)) a material isomorphism from p to q. 
LEMMA 5. If (K(p), M(p) ), (K(q), M(q)) are local reference configurations such that 

(2.16) (K(p, q), M(p, q)) = (K(q), M(q))-1 o (K(p), M(p)) 

is a material isomorphism, then the corresponding relative response functions of p and q sat­
isfy (2.14). Conversely, if (2.14) holds for some (K(p), M(p)) and (K(q), M(q) ), then the 
mapping (K(p, q), M(p, q)) of (2.16) constructed above is a material isomorphism from 
p to q. 

The proof of Lemmas 4 and 5 is similar to that in [I, 5]. 

10 Arch. Mech. Stos. or 6/73 
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3. Isotropy group 

Let p be a second-grade particle. Then the isotropy group g(p) of p is the group of all 
material automorphisms of p, i.e., if h: d, ~ d, is an isomorphism and g is symmetric 
then (h, g) e g(p) if, and only if, 

(3.1) r(t/J.,, q, •• ,,p) = r((t/J*~'' t/J**P) o (h, g),p) = r(cf>.Ph, t/J.pg+c/>**~'(h, h},p) 

for all configurations t/J. As we shall see from Lemma 6 below, g(p) is a group. Clearly, 
elements of the form (h, 0)~ in g(p) form a (linear) subgroup of g(p), but in general g(p) 
is not a linear group. However, if r is continuous, then g(p) is a Lie group [5]. 

Let (K, M) be a local reference configuration of p and R the corresponding relative 
response function. Then (H, G) is called a material automorphism relative to (K, M) if 
H: 913 ~ 913 is alinear isomorphism and G is symmetric, and for all (F, VF), 

(3;2) R(F, VF, p) = R( (F, VF) o (H, G), p) = R(FH, FG + VF(H, H), p ). 

We denote the group of all material automorphisms relative to {K, M) by C§(p). 
LEMMA 6. g(p) and tB(p) are groups, and 

(3.3) C§(p) = {K, M) o g(p) o (K, M)- 1
, 

where (K, M) is a local reference configuration for p. 
P r o o f. Closure of each set under the product rule 

(3.4) (h, g) 0 (h1, g1) = (hh1, hg1 +g(h1, ht)) 

and its analogue for pairs (H, G) are consequences of (3.1) and (3.2), respectively. Associa­
tivity comes from the fact that the elements are transformations of a set. The identities 
are (i, 0) and (I, 0), where i: Jaf P ~ Jaf P, I: 913 ~ {11 3 are the identity maps. The in verses 
are 

(h, g)-1 = (h-1, -h-1g(h-1, h-1)), 

(H, G)-t = (H-1, -u-t G(H-1' H - t))' 
(3.5) 

and these are elements of their respective sets, since, for example, 

R( (F, VF) o (H, G)-1 , p) = R( (F, VF) o (H, G)-1 o (H, G), p) 

= R{(F, VF) o (I, O),p) = R(F, VF,p), 

when (H, G) is an isotropy element or material isomorphism. 
The relation (3.3) is proved from (3.1 ), (3.2) and (2. 7): 

(3.6) R((t/J.,, "'**~') 0 (K, M)-1' p) = R((t/J*P' "'**P) 0 (h, g) 0 (K, M)-1, p) 

= R((t/J*P' ••• p) 0 (K, M)- 1 
0 I (K, M) 0 (h, g) 0 (K, M)-1 1, p). 

LEMMA 7. If (K1 , M1) and (K2 , M2) are local reference configurations of p, then 

(3.7) 

where 

(3.8) 
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If c = (K(p, q), M(p, q)) is a material isomorphism of p, q, then 

(3.9) g(q) = cg(p)c-1
• 

Consequently, if (K(p), M(p) ), (K(q), M(q)) are as in Lemma 5, 

(3.10) r§(q) = r§(p), 

and if C of (3.8) is a material automorphism, then 

(3.11) 

The proof of this lemma is obvious from (3.3), (3.6) and Lemma 5. 

4. Simple fluids and isotropic solids 
4.1. Second-grade ftuids 

1031 

To define a second-grade fluid point as a particle whose isotropy group with respect 
to all reference configurations is the set2 

{(H, G): He d//J/(3), G arbitrary but symmetric} 

would remove all the dependence of R on the second gradient VF (see § 6 below). 
To avoid this over-simplification, we seek some restrictions on the pairs (H, G) in 

the isotropy group. Let (K, M) be a given local reference configuration of p. Then (K, M) 
can be regarded as the induced local configuration of a configuration x, by Lemma 2. 
Suppose that (H, G) is any given local deformation. Then (H, G) o (K, M) defines a new 
local configuration of p and can be regarded as the induced local configuration of a con­
figuration A. For the deformation f = A o x- 1 from x(d) to A(d), we then have 

(4.1) 

We now choose the following restriction on (H, G): we require that (H, G) be an ele­
ment of r§(p) if, and only if, the deformation f = A o x- 1 be second-grade voJume pre­
serving, i.e., 

(4.2) ldetFl = 1 and VldetFIP = 0. 

Two choices were made in obtaining f, so we must now show that r§(p) is well-defined, 
i.e., independent of the choices for x and A. Indeed, if x 1 is another configuration such 
that 

and, similarly, if l 1 is such that 

(Aup' A1**P) = (H, G) o (K, M), 

then the deformation f1 = A1 o x1 1 from x 1 (d) to A1 (d) also obeys the condition 

(4.3) (F1, VF.)Ip = (H, G). 
It remains to show that if ( 4.2) is valid, so too is 

(4.4) ldetF1lp = 1 and VldetFdP = 0, 

(2) We denote the unimoduJar group over f}l3 by if/ .,I( (3), and the orthogonal over {it3 by () (3). 

10" 
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and vice versa. (4.4)1 is obvious, since F{p) = H = F 1 (p) from (4.1) and (4.3). (4.4)2 then 
follows from the chain rule and the fact that VF(p} = G = VF1(p). Thus tJ(p) is well­
defined by (4.2). 

Having stated the desired restrictions on ~{p), we now examine their implications for 
the pair (H, G). Let (XA) and (Y~ be coordinate systems for x and A, respectively. Then, 
from ( 4.1 ), we have 

(4.5) 

From (4.2)1 , we see that 

and from ( 4.2h, we obtain 

(4.6) O A B axE ldetoY foX lP = o. 

If we expand (4.6) by the chain rule and use the formula ol detKlfoK = ldetKI(K-1)T for 
any invertible K, we obtain 

(4.7) 

or equivalently, from (4.5), 

(4.8) 

We write (4.7) in the form 

(4.9) 

axe I 02yD I 
iJYD p iJXCiJXE P = O, 

which defines the operator tr as used below. 
The conditions ldetHI = 1 and tr(H- 1 G) = 0 may now be taken as the defining con­

ditions for the isotropy group of a second-grade fluid: p is called a (second-grade) fluid 
particle, if there exists a local reference configuration (K, M) relative to which the isotropy 
group tJ(p) consists of all pairs (H, G) such that 

(a) H is unimodular, and 

(b) tr(H- 1 G) = 0. 

Note that if (a) is satisfied relative to one local reference configuration, it is satisfied for 
all [1]. But (b) is not independent of the choice of local reference configuration. We call 
a local reference configuration in which (b) is satisfied an undistorted reference. 

Re mark. Pairs (H, G) satisfying (a) and (b) do form a group. We need only check 
the product of two elements (H, G) o (P, S) for condition (b), and 

{ (HP)- 1 }AB{HS+ G(P, P)}BAc = (P- 1)AE(H- 1)EB(HBRSR Ac+GBRTpR APT c) 

= (H- 1)EBGBETpT c+ (P-l)AESE AC = 0, 

since each part is separately zero. 
We have now come to the first of our basic results. 
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PROPOSITION 8. The response function R(F, VF, p) relative to an undistorted reference 
of a fluid particle p can be represented by a function of ldetFI and grad I detFI; i.e., (F, VF) 
and (F, VF) satisfy 

(4.10) 

and 

(4.11) 

ldet Fl = ldet Fl 

gradldetFI = gradldetFI 

if, and only if, the local deformation (H, G) connecting them, viz., 

(4.12) (H, G) = (F, VF)- 1 o (F, VF), 

belongs to the isotropy group t§(p). 
Proof of necessity. We must show that the pair (H, G) of (4.12) satisfies 

(a) and (b). 
Lemmas 2 and 3 guarantee that there are configurations x, A, t/J, and (/) such that the 

diffeomorphisms f = cp o A - 1 , f = -;p o x- 1, and h = A o x- 1 give rise to (F, VF), (F, VF), 
and (H, G) when their gradients are evaluated at p. We omit this evaluation in what now 
follows. 

From (4.12), H = F- 1F and so (4.10) obviously implies that (a) holds. Then, since 
the chain rule gives 

(4.13) 

together with a similar formula for gradldetFii, (4.10) and (4.11) combine to give 

(4.14) 

We now use the formulae for inverse and product of second-grade isotropy elements to 
obtain 

(4.15) (H- 1) ... BG8 AC = { (F- 1F)- 1 }AB{ -F-1VF(F- 1F, F- 1F)+F- 1VF} 8 
AC 

= {- (VF)iMN(F- 1)Mi(F- 1)NJ+ (VF)iMN(F- 1)Mi(F- 1)Ni}Fic = 0, from (4.14). 

Hence (b) holds also. 
Proof of s u ffi c i en c y. If (a) and (b) hold for (H, G), then (4.10) and (4.11) 

are trivial consequences of the reverse algebra via ( 4.12), ( 4.14) and ( 4.15). Hence the 
proposition is proved. 

From balance of mass it is well known that the densities p0 and p in the local reference 
configuration (K, M) and in the present configuration (F, VF) o (K, M), respectively, 
are related by 

(4.16) Po = eldet Fl, 

which implies also 

(4.17) grad p0 = ldet F) I grad p + p gradldet Fl. 

Hence ldetFI and gradldetFI are determined by p and grad.p and vice vet:sa, at any point 
p, since a full specification of a · second grade particle requires that p0 and grad Po (or V Po) 
be given in the local reference configuration. From this simple remark we see that the 
preceding proposition is equivalent to: 
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1034 1.1. CRoss 

CoROLLARY 9. The response function R(F, VF, p) relative to an undistorted reference 
of a fluid particle p can be represented by a function R (p, grad p, p) of p and grad p, i.e. 

(4.18) R(F, VF,p) = Rf(p, gradp,p). 

4.2. Second-grade solids 

To obtain suitable restriction on pairs (H, G) for solid particles, let us look at the 
local reference configuration induced by x and A once again. Then as above, we have 

(F, VF)Ip = (H, G). 

But we now choose the following restriction on (H, G): we require that (H, G) be an 
element of f'§(p) if, and only if, the deformation A o x- 1 be second-grade inner-product 
preserving at p, i.e., that 

(4.19) 

As before, we can show that f'§(p) is well defined by this restriction. Further, if (XA) and 
(YB) are coordinate systems corresponding to x and A as before, then the restriction (4.19) 
has the coordinate form 

and 

(4.19') a2yB I ayBI ayBI a2yB I 
aXEaXA p axe p + aXA P·axEaxc P = O. 

This last equation, after cycJic interchanges of the indices A, C, E and a suitable combina­
tion, gives 

or 

(4.20) 

a2yB I ayBI -
axAaXE P axe jp - 0, 

a
2
YB I 

axAaXE p = O. 

(4.19')1 implies that [aYBjaXEIP] is orthogonal. So the restrictions imply that 

(c) HBE = aYBjaXEIP is orthogonal, and 
(d) GBAE = a2 YBfaxAaxEIP = o. 
So we define a second-grade solid particle to be a particle p whose isotropy group ~(p), 

relative to some local reference configuration, is a linear group, a subgroup of the 
orthogonal group (9(3) under the identification 

(H, 0)--+ H. 

Notice that both (c) and (d) depend on the choice of local reference configuration. As 
before, we call a local reference configuration an undistorted reference if it satisfies these 
conditions. An isotropic solid particle is a particle p for which ~{p) is the orthogonal 
group (9(3) for some local reference configuration. 
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PROPOSITION 10. Relative to an undistorted reference, the response function R(F, VF, p) 
of an isotropic solid particle p can be represented by a function of the left Cauchy-Green 
tensor B = FFT and of grad B = grad (FFr), i.e., (F, VF) and (F, VF) are such that 

(4.21) B = B, 

(4.22) grad B = grad B 

if, and only if, the second-grade local deformation (H, G) defined by 

(4.23) (H, G)= (F, VF)- 1 o (F, VF) 
belongs to the isotropy group <§(p). 

Proof of necessity. We must show that (H, G) satisfies (c) and (d). (4.23) 
gives H = F- 1F, and (4.21) implies that 

(4.24) HHT = F- 1FF1 (FT)- 1 = I, 

so (c) holds. We have 

(4.25) 

and 

(4.26) (grad B)iik = (VF)i...tsFi ...t (F- 1) 8k+ (VF)i ...tBF;...t(F- 1) 8 k = Mi.kmB"'i + Mi1cMB"'i, 

where 

(4.27) 

From differentiation of 

(4.28) 

we get 

(4.29) ~iB-1)," = - (B-1). oB:sJ (B-1)·-j 
ox"' ,. ox"' ... 

and hence from ( 4.26), we get 

(4.30) B"'i(grad(B-1))tkm = -B"'l(B- 1);:sM',." -B"'i(B-1)bM',.;. 

Now form 

(4.31) (B- 1);, oBsi fox"+ (B- 1)"' oBsj fox; = 2Mi;k- B"'1 o(B- 1);kfox"', 

using (4.26), (4.27) and (4.29). 
Now, evaluate these expressions at p. Then (4.21) gives 

(4.32) B(p) = B(p), and B-1(p) = ji-1 (p), 

while (4.22), (4.29) and (4.32) give 

(4.33) {grad(B-1)}(p) = {grad{B-1)}(p), 

as well as 

(4.34) gradB(p) = gradB(p). 

Hence ( 4.31 ), ( 4.32) and ( 4.33) give 

(4.35) M=M. 
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But ( 4.23) and ( 4.27) give 

(4.36) F G(F-1, .F- 1
) = M-M = 0. 

Therefore, since F and F are invertible, 

G =0. 
Proof of s u ffi c i en c y. This is now trivial. H orthogonal implies B(p) = B(p); 

and G = 0 implies M = M from (4.36), and thus gradB(p) = gradB(p) from (4.26). 
Therefore, the relative response function for an isotropic solid particle can be reduced 

from a function of (F, VF) to (B, gradB), and we can write 

(4.37) R = R(F, VF,p) = R(B, gradB,p). 

5 Mixtures without chemical reactions 

Suppose we have a collection of bodies d a;, rx = 1, 2, ... , N, such that for some region 
"'"" in 9f3 at time t, 

xa::da;--+ "Y 

is a diffeomorphism for each rx. Then "'"" is a mixture. To each point x in "'"", there cor­
respond N particles, say X1 , X2 , •.• , XN for reference configurations x 1 , x 2 , ••. , xN. 

We consider the following type of response function for the rx-th constituent particle 
of a mixture at (x, t): 

(5.1) Ra: = Ra:(x, t) = Ra:(Op, gp, Fp, VpFp, xp; ~p), rx = 1, 2, ... , N. 

Here, Ra; may depend on Xp, {3 = 1, 2, ... , N, so that (5.1) is a point condition, and all 
variables relate to a particular set of points. For this reason, we will suppress this explicit 
dependence on Xp, both in this section and the next. 

The independent variables in (5.1) are the 34N values below: 
Op is the temperature of the {3-th constituent; gp = grad Op is the temperature gradient 

of the {3-th constituent; (Fp, VpFp) is the local deformation of the {3-th constituent cor­
responding to some local reference configuration (Kp, Mp) at Xp in xp(dp) and 
Xp = OXiJ(Xp, t)fot is the velocity of the {3-th constituent. The subscript {3 under the 
arguments in (5.1) indicates a dependence on all N sets of arguments for each constituent. 

While Fp, VpFp may be regarded as gradients (Lemma 3, and the following Remark), 
it is not necessary that they be induced from the configuration Xp. In fact, we have 

(Fp, VpFp) = (Xp*' XP**) 0 (Kp, Mp)- 1 

atXp, for {3 =I, 2, ... ,N. 
In this section, we treat mixtures in which no chemical reactions take place. The mass 

balance Jaw for the constituents of a mixture [e.g. 3, (2.32) 1 , (2.35)] is 

(5.2) .Da:+Pa:divia =pea;, 
where ea: is the supply of mass to the rx-th constituent due to chemical reactions between 
the other N- I constituents. In the absence of chemical reactions, we have ea: = 0 for 
rx = 1, 2, ... , N, and we can integrate (5.2) to obtain 

(5.3) PaldetFa:l =- Pao 
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for et. = 1, 2, ... , N, where the Pa.o are constants. (5.3) is the basic idea behind the require­
ment in§ 4 that the linear transformations be unimodular, and it corresponds to (4.16). 

For each constituent particle at x at t we may define an isotropy group ~a.(x, t) as 
follows: (H, G) E ~a. if, and only if, for f3 = 1, 2, ... , N; 

(5.4) Rp(fJc, ga, F1, ... , Fa., ... , FN, V 1F1, ... , Va.Fa., ···, VNFN, Xa) 

= Rp(Oa, ga, F1, ... , Fa,H, ... , FN, V1F1, ... , Fa.G+Va.Fa.(H, H), ... , VNFN, Xa). 

It is clear that ~a. is a group of the same type as that defined in§ 3. 

It is natural, in view of (5.3), to ask that, relative to some undistorted reference, ~a. 
preserve the volume of the ct.-th constituent to the second grade in the reference configura­
tion. We call an inert (or non-reacting) constituent particle a fluid if its isotropy group 
satisfies the requirements on a fluid in § 4A, and an (isotropic) solid if its group satisfies 
the requirements on an (isotropic) solid in§ 4B. 

Suppose we have a mixture of inert constituents at a point in"//' at t, a mixture of inert 
fluid and isotropic solids, ..say, fluids for et. = 1, 2, ... , c/J, and isotropic solids for et. = 
= cfJ + 1, cfJ + 2, ... , N. Then the arguments of § 4 apply and we obtain immediately that 
(5.1) reduces to 

(5.5) Ra.(x, t) = Ra.(Op, gp, Pw, grad Pw, Bp grad Bp Xp) 

for et., f3 = 1, 2, ... ,N: w = 1, 2, ... , cfJ; r = c/J+l, c/J+2, ... ,N. 
Thus the Eqs. (6.11) of [3] are simplified; the awkward tensors Ma are replaced by 

gradBa., a fact later known to Bowen; similarly, (5.10) of [6] is simplified. Application 
of the constraints Oa. = 0, ga. = g does not affect our (5.5), nor does the inclusion of the 
extra variable Fa., as these may be immediately replaced by 

' 1 Fa.F;, 

which is obviously not affected by local reference configuration changes. 
PROPOSITION 11. For a mixture of inert fluid and isotropic solids, the response function 

relative to an undistorted reference can be represented by a function of density and density 
gradient for the fluid constituents, and by a function of the left Cauchy-Green tensor and its 
gradient for the isotropic solid constituents, together with the temperatures, temperature 
gradients and the velocities of the constituents, i.e.,from (5.1) to (5.5). 

6. Mixtures with chemical reactions 

For mixtures of second-grade materials with chemical reactions, it seems pointless to 
require that the change in local reference configuration preserve the density or volume in 
the reference configuration, since (5.3) is no longer valid. 

We adopt the (slightly modified) list of independent variables of BowEN [8], 

(6.1) 

where Ja. = ldetFa.l· The variables are independent if the ea. are non-zero in (5.2), i.e., 
Pa. J(l is independent of Fa., and grad (pa.Ja.) is independent of Fa. and V a. Fa., if the mass 
of the ct.-th constituent is not conserved. 
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Since the density field in the reference configuration is now not restricted by (5.3) or 
( 4.16), we may drop the requirement that the linear part of the isotropy group be a sub­
group of the unimodular group "'/.If (3), as in [8). So Jet us define a reacting fluid to be 
a particle whose linear group is the full second-order group, i.e., if (H, G) is an element 
of the isotropy group for a reacting fluid if H is invertible and G is arbitrary but symmetric. 

In general, (H, G) E ~a(x, t) if, and only if, for all values of the argument, 

(6.2) Rp(x,t) = Rp(O(Hga,F1, ... ,Fa, ... ,FN, V1F1, ... , VaFa, ... , VNFN,X11 , 

p1 11, ... , Pala, ... , PNJN, grad(p 1 1 1), ••• , grad(pala), ... , grad(pNJN)) 

= Rp(Oa, g(J, Fl, ... ,FaH, ... , FN, vl F., ... , FaG+VaFa(H, H), ... , VNFN, Xa, 

p1 11 , ••• , PalaldetHI, ... , PNJN, grad(p1J1), ... , grad(palaldetHI), ... , grad(pNJN)), 

where HE ~.!l' (3), and {J = 1, 2, ... , N. 
A necessary consequence of (6.2) is that the dependence on the reacting fluid variables 

is reduced as follows, by noting that (H, G) = (Fa, V a F a)- 1 is an allowable choice: 

(6.3) PcxlcxldetHI = PcxldetFaF;- 1
j = Pa, grad(PaldetFcxHD = gradpcx, 

(Fcx, VaFa) o (F,0 VaFa)- 1 = (1, 0) 

and Ocx, L, Xa are unchanged. Hence, for a mixture of reacting fluids, 

(6.4) R,(x, t) = R/J(Ot, gc, 1, 1, ... , 1, 0, 0, ... , 0, Xe1, ptl, grad ptl), 

for {J = 1, 2, ... , N; i.e., we can define new functions R., and write for {J = 1, 2, ... , N, 

(6.5) R,(x, t) = R/J(Otl, gc, xtJ, ptl, gradptJ). 

Note further that the same reduced form (6.5) holds for a mixture of inert and reacting 
fluids, since (5.3) is a constraint which reduces the set (F, VF, pJ, grad(pJ)) to (F, V.F) 
for an inert fluid and reduces the linear part of the isotropy group qJJ/(3). 

The definitions of inert and reacting fluids are compatible; for in the case of a reacting 
fluid, the density in the reference configuration need not be preserved, but for an inert 
fluid, preservation of the densities in both configurations, under (5.3), implies that 
ldetHI = = 1. 

For a reacting solid particle, or a reacting isotropic solid particle, we leave the definition 
unchanged, i.e., the isotropy group has elements of the form (H, 0 ), He fJ (3). Then 
the analogous definition for the ct-th constituent particle to be an isotropic solid will have 
HE fJ(3), G = 0, in (6.2). Then, exactly as in Proposition 10, we can reduce the depend­
ence from (F, VF, pJ, grad (pJ)) to (B, grad B, p, grad p ), where the reduction follows 
from 

(6.6) 

pjdetFI = pjdetBI 1
'
2

, 

1 
grad(pjdetFI) = jdetBI 1

'
2 gradp+ 2 pjdetBJ 1

'
2tr(B- 1gradB) 

for reacting isotropic solids. Note that for inert isotropic solids, (5.3) reduces the depend­
ence to (B, gradB) as before, since p and grad p can be expressed in terms ofF and VF, 
as in (4.16) and (4.17). 
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So for a mixture of c/J fluids, a reacting isotropic solids, and N- c/J- a inert solids, 
we have the response functions 

(6.7) 

where a,{J = 1,2, ... ,N, w = 1,2, ... , c/J+a, and 1: = c/J+l, ... ,N. 
THEOREM 12. For a mixture of second-grade fluids and isotropic solids, the response 

function relative to an undistorted reference can be represented by a function of the density 
and density gradient for the fluids, whether they be inert or reacting, to a function only of 
the left Cauchy-Green tensor and its gradient for the inert isotropic solids, and to a function 
of all four of these variables if the isotropic solid is reacting, together with the temperature 
gradients and the velocities of all the constituents, i.e., from (6.1) to (6.1). 
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