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Equations of flow of a one-component, three-phase mixture

A. SZANIAWSKI (WARSZAWA)

THE PAPER considers two models of a one-component mixture containing three phases:gas,
liquid and solid, density of the gaseous phase being small in comparison with densities of the
remaining phases. The corresponding flow equations are derived for these two models on the
basis of the flow equations presented in [1] and concerning multi-phase and multicomponent
mixtures. The first model assumes no relative motion of phases being in thermodynamic
equilibrium, The second model admits the linear perturbation of equilibrium, assuming at
the same time that the mixture consists solely of two types of spherical particles (liquid and
solid) uniformly dispersed in the gaseous phase. Surface tension is disregarded in both models.

Rozpatrywane sa dwa modele mieszaniny jednoskladnikowej, zawierajacej trzy fazy: gazowa,
ciekla i stala, przy czym gestosc fazy gazowej jest mata w stosunku do gestoséci faz pomstalych.
Dila tych dwéch modeli — na podstawie uprzednio wyprowadzonych réwnan przeplywu mie-
szanin wieloskladnikowych i wielofazowych [1], wyprowadzone sa odpowiednie réwnania prze-

plywu. W pierwszym modelu zakiada sie, ze fazy nie przemieszczajg sie wzgledem siebie i pozo-
staja w rownowadze termodynamicznej, W drugim modelu dopuszcza sig liniowe zaburzenie
rownowagi, zakladajac jednocze$nie o mieszaninie, Ze sklada sie ona jedynie z dwoch rodzajow
kulek (ciekbych i stalych) rozproszonych réwnomiernie w spjnej fazie gazowej. W obu mo-
delach pominigto wplyw napigcia powierzchniowego.

PaccMoTpeHBI ABe MOIENH OJHOKOMIOOHEHTHOM cMecH, cofepkauiefi Tpu ¢asbl: rasoBylo,
WUAKYI0 ¥ TBepayio. Ilpeamonaraerca, uto IUIOTHOCTh ra30BoM (hassl Masia Mo OTHOLLEHHIO
K IIOTHOCTAM ocTabHbIX thas. [l npeqnoskeHHbIX Moaeseii BLIBOAATCA YPABHEHHA TEUEHHA,
OCHOBAHHBIE Ha BBLIBE[EHHBLIX paHee YDABHEHHAX TEUEHHA MHOTOKOMIIOHEHTHBIX H MHOTO-
¢asHbIx cmeceit [1]. B pamxax mepBoit MoJeny IIpeAiIoNaraerca, YTo OTCYTCTBYET B3aUMHOE
Iepemelrienne a3, KOTOpble OCTAIOTCA B TEPMOTHHAMMUYeCKOM paBHoBecHu. Bo BTOpoil Mo-
[eNH JIONYCTHMBI JIHHEHHblE BO3MYLIEHHSA PABHOBECHA, NpHYEM MPHHWMAaeTCHd, UTO CMeCh
COCTOMT JIKILE M3 IAPHKOB JBYX BHIOB (KMIKHX H TBEpPIBIX), PABHOMEPHO PACTIpE/eseHHbIX
IO CBA3HOH Tazopoit dase. B obouMx MOENAX He YUYMTHIBAETCH BIMAHME ITOBEPXHOCTHOTO
HATAYKEHHUSA .

Notations

p, T pressure and temperature,
&7 mass ratios of the n-th phase,
o density (1/p — specific volume),
e, h, s specific energy, enthalpy and entropy,
f mass force,
u velocity,
wn relative velocities (3.3), (3.6),
u"  chemical potential of the n-th phase,
r"(n = 1,2) radius of drop or spherical solid particle,
R gas constant,
c® specific heat of the gaseous phase at constant pressure,

cl, ¢® specific heats of the liquid and solid phases,
C™ non-dimensional specific heats (3.17),
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a", b", Q" (n = 1,2) thermodynamical constants (2.6), (3.5),
7% x° coefficients of viscosity and heat conduction,
9, q° viscous stress tensor and heat flux in the gaseous phase,
X™, Y, Z® mass, momentum, and energy fluxes from the gaseous phase to the unity of
mass of the n-th dispersed phase (n = 1, 2),
Fn reduced energy flux (3.10),
AP, L M A" Onsager constants in (3.10),
a" coefficient of condensation,
pm effective accommodation coefficient of molecular energy transport,
" effective coefficient of molecular transport of momentum,
Ap, AT™ parameters of perturbed state (3.3),
t time variable,
V Hamiltonian operator;
superscripts 0, 1, 2, denote gaseous, liquid and solid phase, respectively; a bar denotes equilibrium values
at the triple point state,

1. Introduction

ACCORDING to Gibbs phase rule, at the triple point states of a one-component mixture,
the pressure p and the temperature T are constant. Only one triple point, where gaseous,
liquid and solid phases coexist, will be the object of our interest. Four diagrams in Fig. |
present characteristics of the equilibrium state with phases separated by plane surfaces
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of contact. The triple point in the (p, T) space corresponds to the straight line sections
in the (T, s) and (p, 1/g) spaces, and to the inside of the triangle 012 in the (s, 1/g) space.

The experimental data from [2, 3] for water, carbon dioxide and ammonia at the
triple point state are given in the Table 1. It may be observed that in cases presented the
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Table 1
R T P 2ole* a°le*
2
m oK N _ _
| 520K m?
H,0 2] 462 273.16 611.2 4.85-10°¢ 5.28- 10-¢
CO; [3] 188.6 216.55 518 000 9.15- 103
NH, [3] 480 195.42 6070 8.8+ 10~
density ratios are very small:
a0 -0
(L1) LAl Sk 1y
e e

and disregarding specific volumes of condensed phases, we may simplify the (s, 1/p)
diagram for the triple point triangle (Fig. 2).

In the three phase mixture, the phases are dispersed in the form of small particles,
drops or bubbles and the influence of surface tension phenomena may change the results
presented on Fig. 1 and Fig. 2 for plane surfaces of contact between phases. In the internal
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energy of a mixture, an additional term proportional to the surface of separation appears,
and also on both sides of a drop or bubble surface a difference of pressure arises which
is proportional to the mean radius of curvature of the contact surface. Quantitatively,
however, only in highly dispersed mixtures are the increment of energy and the difference
of pressures important, but such mixtures are in general not permanent, due to the intense
mass exchange. In the following considerations, the influence of surface tension will be
disregarded.

While flowing, the three-phase mixture may not fulfil the equilibrium conditions.
The pressure may change and the temperatures and the velocities of each phase, and even
of each fraction of drops or bubbles may be different. The irreversible processes and the
dissipation of energy occurring therein depend notably on the internal structure of the
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mixture and are very difficult for theoretical description. Thus only one idealised model
of a non-equilibrium mixture will be considered here. The liquid and solid spheres are
taken to be dispersed in a coherent gaseous phase.

We shall deduce here the flow equations for two models of one-component three-
phase mixture composed of incompressible solid and liquid phases and of perfect gas:

1.2) o' = const, p?=const, p/e® = RT".

The first model shall fulfil equilibrium conditions p =p, T =T' = T? =T, u° =
=w=uw=u

In the second model, the irreversible processes in linear approximation will be taken
into account, but the mixture will be assumed to be composed of two sorts of spherical

particles only. The equations will be deduced from the previously obtained equations
of multiphase mixture [1] considered as a macroscopically homogeneous medium.

2. Flow in equilibrium

Let us consider the three-phase mixture in equilibrium conditions as a macroscopically
homogeneous fluid. We shall assume also that the velocities of all phases are equal.
At the triple point state, the temperature and the pressure are constant:

2.1) T = const, p = const,

and the density p, the specific entropy § and the mass ratios £°, &', &2, fulfil the
following relations:

11 1 1

= = O B B,

e ° o 0?
(2.2 § = $OL0 4+ U8 45282,

1 =80+8+8.

Diseregarding all dissipative phenomena, we may write for the mixture under consid-
eration the isobaric momentum equation:

(2.3) % +(-V)u=f,

and “classical” continuity and isentropy equations:

a1 1 1
1= +u'V(7)—7V‘u=0,
31(9) e/ e

os =

—a—t“+l.I‘V.Y =0.

Taking into account (2.2), we may replace p, s, by &, &2, reducing (2.4) to equivalent
equations of a three-phase mixture :

aa: +u V&"+a"(1-b'8—b**)V'u=0 n=1,2,

(2.4)

@2.5)
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where

=1- 1, n,m=1,2,

|y

&5 P $©—5" P e
b"(s°—sm)—b™(s°—5") " 5"—s™’ ’

The constants @" and b" fulfil the evident relation:

2.7 a'b*+a*h* = 1 = a'+a>.

It should be emphasised that the validity of the idealised model of a three-phase mixture
in equilibrium seems to be restricted to a very narrow class of problems. The isobaric
flow with p = const seems to be difficult to realise and, more realistically, the dissipative
phenomena should be taken into account. A simple model of three-phase mixture in
non-equilibrium conditions will be presented below. Further comparison of solutions
of equilibrium and non-equilibrium equations may give some idea of the region of validity
of the idealised Egs. (2.2) and (2.5).

3. Non-equilibrium flow

Let us consider now the three-phase mixture composed of a coherent volumetrically
dominant gaseous phase

1 g2

3.1) ra (E E— <1,
in which is dispersed a constant number of numerous small particles: spherical drops
of radius r* and solid spheres of radius r2. The spheres always belong to the same phase.

In non-equilibrium conditions, the temperatures 7° T, T2, and the velocities u®,
u', u* of each phase and the pressure p may be different from their equilibrium values
T, u, p. Also, the phenomena of the viscosity and the heat conduction in the gaseous
phase may be considered.

According to [1], for the non-equilibrium conditions considered we shall introduce
two sorts of parameters: the reference parameters
(3.2) £, £, u = w0+ £ (u! —u®) + £2(u? —uO),
and the parameters characterising the perturbation of equilibrium:

AT = T°~T, AT'=T'-T, AT*=T*-T, Adp=p—-p,
w =ul—u, w?=u?-u,

(3.3)

enabling us to introduce the linearised thermodynamical forces:

0__7gn 0 __ n n n
T_T= AT fAT’ —TA;‘ o AT°— AT" +RT(£P——- A;)’
(.4) R
wo—w" = — (I—&)w'+{ w nm=1,2, n#m,

1_51_52 L
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where
T dpiz°(T) i i B —h
3.5 " = —, n=1,2,
(3.5) Q" = > 4T R R
is the logarithmic derivative of the condensation or sublimation curves on the (p, T)
diagram (Fig. 1), according to the Clapeyron-Clausius equation. We shall use also the

auxiliary quantities:

51 wl + 62 WZ
1-8-8 -
From the derived previously equations of transport of mass, momentum and energy

of a multiphase mixture [1], we obtain in our case the following particular form:
for the mixture as a whole:

d |1 1 1
2{Hruv2)-Ltva=o,

ou PV . N
(3.7) §—+(Il V)u—f—EVp+EV Tos

(3.6) P =1-8-8, w=uw-i=

(Z}; i Vh)——(—-l- Vp) - T:)_V. [—0(£%° WO + £le! w! + £2e2 w?)

1
—pw®— °+-:E-w°]+E-r§:Vu,

and for the dispersed phase forn = 1,2:

aasn +u VEI p— éhv * (an) +§IXJI’
0
(3.8) ai-!-(u V)" = f4+Y,

(—+u VT") Z"-X].
The flux of mass X" causes growth of spherical particles, described by the equation
or"

ot

The fluxes X", Y", Z" of mass, momentum and energy from the coherent gaseous
phase to the unit of mass of each dispersed phase are, according to [1], the linear functions
of thermodynamical forces (3.4) and may be presented in the form:

1
(3.9 3 =

")=X", n=1,2.

X,,=x,,AT" —AT° +$n(£|p AE"‘
T T )
Zr—ex” AT"—AT® Ap . AT"
g‘=—'—"_—= = »—— A — "—_—‘
(3.10) o M = +m(!_, 0 = )
(1 EMywW'+ Emw™

Y= -

-8 g 4
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where the constants &", ™, ", #", /" (n = 1, 2) are determined by the irreversible
interaction phenomena between the coherent phase and singular particles(*). These
constants should fulfil the relation
(3.11) QL — N ="
resulting from the Onsager symmetry principle applied to the model of multiphase mixture
under consideration [1].

The infuence of the viscosity and heat conduction phenomena will be here considered
in the first linear approximation only:

(]
Vol = n"(V-V)u°+%V(V-n“)

—-Vq°® = x%(V-V)4T1°,
disregarding z0:Vu and V- (t0- w°) as higher order terms.

Taking into account the assumptions introduced above we may transform the equations
previously derived and linearise them with respect to the non-equilibrium parameters
AT, AT, AT?, Ap, w!, w2,

The linearised specific volume 1/o and enthalpy 4 are

1_ é(uﬁ“f #fgi’.), otppap,
e e r p e
(3.13) h = hi+cQEPATO + 1 E AT + c2£24T?,
h = h° — RT(Q"&' + Q%&?).

The transformed and linearised equations may now be presented in the following
form:

the momentum equation (3.7):

(3.12)

(3.14) —a£+(n V)u = f+§°{ %‘3+~§V=(u+w°)+—— Vv (u+w°)]}

the continuity and energy equations (3.7):

(%ﬂu-v) [E“(Hé::‘fwé;)]—é“(udro _fpﬁ) ‘u=0,

(3.15) (%+u'V)|:-QI§‘ (3252+<:°‘5°A;:°+cl£1 A;lwzef”]

g 4p ofol 1L 1giwl 4 0282 w2 2[4T°
el el v e o).

(*) For example, in the case in which the diameter of particles is very small in comparison with the
mean free path of gas molecules, we may apply the Knudsen model of interaction (cf. [4, 5]), obtaining

20 = gm0 _)139 ]/xr -
l:l:[ 2),&« (Qnuz) } F g rlﬂ‘ ‘d_sen E%

where 0<a"<1,0< <1, 1,19 < y" < 2 are constants characterising the molecular transport of
mass, energy and momentum between phases.

6 Arch. Mech. Stos. nr 5/73
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and the linearised Eqs. (3.8) forn =1, 2:

aEn n —_ E w‘“ nyn

W+u V& — £y . Ea —+&5"X",

c" a AT”+ Vﬂ ="
(3.16) 51‘ T T

——é‘:—-{-(u* V)W'+ (W' V)u = Y"+§°iRTVA—;
_._'_71 2 o ___1_’?_0 ‘ 0 }
T VW)~ VIV - (W)l
We have introduced here the non-dimensional constants

(3.17) -9 o a_
R’ R’ R

By means of (3.16), we shall now transform the Egs. (3.15) to the form:

(—+u v)(ﬁ'::'J 4") V- )(ATO )+V( ey X 2L
p

EO

(3.18
) AT Ap 5
—+u- Vi[CO———] = —[E‘(Q‘X‘ — I+ (0 X —-Z%))
ot T £?
V’ AT"
Rg“ T
The values of Q", C", calculated from [2], [3] are given in Table 2.
Table 2
Ql Q:_QL cn ct c?
H,0 [2] 19.8 2.93 4,18 9.15 4,6
co. [l 8.56 4.88 5.15 11.1
NH, [3 15.8 3.53 10 6.5

The set of 12 scalar and 5 vector Egs. (3.14), (3.18), (3.16), (3.10), (3.9) for the unknown
functions u, £, &2, AT°|T, T'|T, AT?|T, Ap[p, w*, w?, X*, X2, ', &%, Y!, Y2, !, r?
are the flow equations sought for of the model under consideration of one-component,
three-phase mixture in non-equilibrium conditions. Comparing them with the equations
resulting from the equilibrium model (2.3), (2.5), we see that their number is larger and
that they are more complicated. It should be emphasised, however, that the considered
model of the case of non-equilibrium is highly simplified also — for instance, by the
assumption that only two fractions of spherical particles exist in the mixture. These par-
ticles should always belong to the same phase and their number should not change during
the flow.
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