
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 25, 5, pp. 791-799, Warszawa 1973 

Equations of flow of a one-component, three-phase mixture 

A. SZANIA WSKI (WARSZAWA) 

THE PAPER considers two models of a one-component mixture containing three phases:gas, 
liquid and solid, density of the gaseous phase being small in comparison with densities of the 
remaining phases. The corresponding flow equations are derived for these two models on the 
basis of the flow equations presented in [I) and concerning multi-phase and multicomponent 
mixtures. The first model assumes no relative motion of phases being in thermodynamic 
equilibrium. The second model admits the linear perturbation of equilibrium, assuming at 
the same time that the mixture consists solely of two types of spherical particles (liquid and 
solid) uniformly dispersed in the gaseous phase. Surface tension is disregarded in both models. 

Rozpatrywane S<l dwa modele mieszaniny jednoskladnikowej, zawieraj(lcej trzy fazy: gazow(l, 
ciekl<l i stal(l, przy czym g~stosc fazy gazowej jest mala w stosunku do g~tosci faz pozostalych. 
Dla tych dw6ch modeli- na podstawie uprzednio wyprowadzonych r6wnan przeplywu mie­
szanin wieloskladnikowych i wielofazowych [1), wyprowadzone S(l odpowiednie r6wnania prze­
plywu. W pierwszym modelu zaklada si~, ze fazy nie przemieszczaj(l si~ wzgl~dem siebie i pozo­
staj(l w r6wnowadze termodynamicznej. W drugim modelu dopuszcza si~ liniowe zaburzenie 
r6wnowagi, zakladaj(lc jednoczesnie o mieszaninie, ze sklada si~ ona jedynie z dw6ch rodzaj6w 
kulek (cieklych i stalych) rozproszonych r6wnomiernie w sp6jnej fazie gazowej. W obu mo­
delach pomini~to wplyw napi~ia powierzchniowego. 

PaccMoTpeHhi ~Be Mo~eJIH o~oKoMnoHeHTHOH cMecH:, co~ep>Kal.l.\eH TPH: <f>aaLI: raaoByro, 

>KH;~yro H; TBep~. Ilpe,wiOJiaraeTCH, tiTO IIJIOTHOCTb ra30BOH <f>a3bl MaJia no OTHOllleHH;IO 

K nJIOTHOCTHM OCTaJibHbiX <f>a3 • .IJ:mr npe~JIO.>KeHHbiX MO~eJieH BbffiO~HTCH ypaBHeHH;H TetieHH;H, 

OCHOBaHHbie Ha BbiBe)J;eHHbiX paHee ypaBHeHH;HX TetieHH;H MHOrOKOMnOHeHTHbiX H: MHOrO­

<f>a3HbiX CMece:H (1]. B paMKax nepBOH MO)J;e;m npe~oJiaraeTCS, . tiTO OTCYTCTBYeT B3aHMHOe 

nepeMel.l.\eHH;e <f>a3, KOTOpbie OCTaiOTCH B TepMO)J;IUiaMHtieCKOM paBHOBeCIUI. Bo BTOpOH MO­

~eJIH .o;onyCTI\Mbi JIHHeHHhie B03MYI.l.\eHHH paBHOBeCWI, npHtleM np:mtaMaeTCH, tiTO CMecb 

COCTOHT JIH;lllb H;3 mapHKOB )J;Byx BH;AOB (.>KH~IO{ H TBep~biX), paBHOMepHO pacnpe~eJleHHbiX 
no CBH3HOH raaoao:H Q>a3e. B o6oHX Mo.o;ennx He ytiH;TbiBaeTcH BJIHHHH;e nosepxHoCTHoro 

HaTH>KeHHH. 

Notations 

p, T pressure and temperature, 
~n mass ratios of the n-th phase, 
q density (1/e- specific volume), 

e, h, s specific energy, enthalpy and entropy, 
f mass force, 
u velocity, 

wn relative velocities (3.3), (3.6), 
p,n chemical potential of the n-th phase, 

rn (n = 1, 2) radius of drop or spherical solid particle, 
R gas constant, 
c~ specific heat of the gaseous phase at constant pressure, 

c1
, c2 specific heats of the liquid and solid phases, 
en non-dimensional specific heats (3.17), 
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a", h", Q" (n = 1, 2) thermodynamical constants (2.6), (3.5), 
r/, 'H.0 coefficients of viscosity and heat conduction, 
-r~, q0 viscous stress tensor and heat flux in the gaseous phase, 

X", Y", zn mass, momentum, and energy fluxes from the gaseous phase to the unity of 
mass of the n-th dispersed phase (n = 1, 2), 

1E" reduced energy flux (3.10), 
.9/",%~, !l'",JI".%" Onsager constants in (3.10), 

rx." coefficient of condensation, 
fJ" effective accommodation coefficient of molecular energy transport, 
y" effective coefficient of molecular transport of momentum, 

.dp, LJ T" parameters of perturbed state (3.3), 
t time variable, 

V Hamiltonian operator; 
superscripts 0, 1, 2, denote gaseous, liquid and solid phase, respectively; a bar denotes equilibrium values 
at the triple point state. 

1. Introduction 

AccoRDING to Gibbs phase rule, at the triple point states of a one-component mixture, 
the pressure p and the temperature Tare constant. Only one triple point, where gaseous, 
liquid and solid phases coexist, will be the object of our interest. Four diagrams in Fig. 1 
present characteristics of the equilibrium state with phases separated by plane surfaces 

p 

p 

f 
14J T 

0 
3 

3 

1/p T 

Fio.l. 

of contact. The triple point in the (p, T) space corresponds to the straight line sections 
in the (T, s) and {p, 1/e) spaces, and to the inside of the triangle 012 in the (s, 1/e) space. 

The experimental data from [2, 3] for water, carbon dioxide and ammonia at the 
triple point state are given in the Table 1. It may be observed that in cases presented the 
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Table 1 

R T p 
m2 N OK 

~ s2.oK 

H20 [2] 462 273.16 611.2 
C02 [3] 188.6 216.55 518 ()()() 

NH3 [3] 480 195.42 6070 

density ratios are very small: 

(1.1) 

4.85· 10-6 

8.8· tQ-6 

5.28· 10-6 

9.15· 10-3 

793 

and disregarding specific volumes of condensed phases, we may simplify the (s, 1/e) 
diagram for the triple point triangle (Fig. 2). 

In the three phase mixture, the phases are dispersed in the form of small particles, 
drops or bubbles and the influence of surface tension phenomena may change the results 
presented on Fig. I and Fig. 2 for plane surfaces of contact between phases. In the internal 

s 

1/p0 1/p 

FIG. 2. 

energy of a mixture, an additional term proportional to the surface of separation appears, 
and also on both sides of a drop or bubble surface a difference of pressure arises which 
is proportional to the mean radius of curvature of the contact surface. Quantitatively, 
however, only in highly dispersed mixtures are the increment of energy and the difference 
of pressures important, but such mixtures are in general not permanent, due to the intense 
mass exchange. In the following considerations, the influence of surface tension will be 
disregarded. 

While flowing, the three-phase mixture may not fulfil the equilibrium conditions. 
The pressure may change and the temperatures and the velocities of each phase, and even 
of each fraction of drops or bubbles may be different. The irreversible processes and the 
dissipation of energy occurring therein depend notably on the internal structure of the 
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mixture and are very difficult for theoretical description. Thus only one idealised model 
of a non-equilibrium mixture will be considered here. The liquid and solid spheres are 
taken to be dispersed in a coherent gaseous phase. 

We shall deduce here the flow equations for two models of one-component three­
phase mixture composed of incompressible solid and liquid phases and of perfect gas: 

(1.2) e1 = const, e2 = const, pI e0 = RT0
• 

The first model shall fulfil equilibrium conditions p = p, T0 = T 1 = T 2 = f, u0 = 
= o1 = o2 = o. 

In the second model, the irreversible processes in linear approximation will be taken 
into account, but the mixture will be assumed to be composed of two sorts of spherical 
particles only. The equations will be deduced from the previously obtained equations 
of multiphase mixture [I] considered as a macroscopically homogeneous medium. 

2. Flow in equilibrium 

Let us consider the three-phase mixture in equilibrium conditions as a macroscopically 
homogeneous fluid. We shall assume also that the velocities of all phases are equal. 

At the triple point state, the temperature and the pressure are constant: 

(2.I) T = const, p = const, 

and the density e, the specific entropy s and the mass ratios ~0 ' ~1 ' ~2 ' fulfil the 
following relations: 

(2.2) 

1 _ I z:o I 1 1 z:2 
~- -=<>"' +-1 ~ +-zs- ' e e e e 
8 = :yo~o+:y1~1+s2~2, 
I = ~o + ~~ + ~2 • 

Diseregarding all dissipative phenomena, we may write for the mixture under consid­
eration the isobaric momentum equation: 

au 
-+(o· V)o = f ar ' (2.3) 

and "classical" continuity and isentropy equations: 

:,(~)+u·v(~)- ~ V·u=O, 
as- _ 
Tt+o· Vs= 0. 

(2.4) 

Taking into account (2.2), we may replace e, s, by ~1 , ~2, reducing (2.4) to equivalent 
equations of a three-phase mixture : 

(2.5) 

http://rcin.org.pl



EQUATIONS OF FLOW OF A ONE-coMPONENT, TIIREE-PHASE MIXTURE 

where 

(2.6) 

-o 
b" = 1- ~" ~ 1, 

(! 

The constants d' and b" fulfil the evident relation: 

(2.7) a1b1 +a2b2 = 1 ~ a 1 +a2
• 

795 

n, m= 1, 2, 

It should be emphasised that the validity of the idealised model of a three-phase mixture 
in equilibrium seems to be restricted to a very narrow class of problems. The isobaric 
flow with p = const seems to be difficult to realise and, more realistically, the dissipative 
phenomena should be taken into account. A simple model of three-phase mixture in 
non-equilibrium conditions will be presented below. Further comparison of solutions 
of equilibrium and non-equilibrium equations may give some idea of the region of validity 
of the idealised Eqs. (2.2) and (2.5). 

3. Non-equilibrium flow 

Let us consider now the three-phase mixture composed of a coherent volumetrically 
dominant gaseous phase 

(3.1) eo ( ~t ~z) 
¥er+7~ 1 ' 

in which is dispersed a constant number of numerous small particles: spherical drops 
of radius r 1 and solid spheres of radius r2

• The spheres always belong to the same phase. 
In non-equilibrium conditions, the temperatures T 0 , T 1

, T 2, and the velocities u0 , 

u1
, u2 of each phase and the pressure p may be different from their equilibrium values 

T, u, p. Also, the phenomena of the viscosity and the heat conduction in the gaseous 
phase may be considered. 

According to [1], for the non-equilibrium conditions considered we shall introduce 
two sorts of parameters: the reference parameters 

(3.2) ;t, ;2, 0 = 0 o+;t(0 t_ 0 o)+;z(0 z_0 o), 

and the parameters characterising the perturbation of equilibrium: 

(3.3) 
L1To =To-T, LJTl = Tt-f, LJT2 = Tz-T, LJp =p-p, 

enabling us to introduce the linearised thermodynamical forces: 

T 0 -T" L1T0 -iJT" 

T T 
~-t" - LJT0 -LJT" -(LJp iJT") -TLJ- = -h0 +RT ---Q"--=--
T" T p T ' 

-------= --------
(3.4) 
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where 

(3.5) 

is the logarithmic derivative of the condensation or sublimation curves on the (p, T) 
diagram (Fig. 1 ), according to the Clapeyron-Clausius equation. We shall use also the 
auxiliary quantities: 

(3.6) 

From the derived previously equations of transport of mass, momentum and energy 
of a multiphase mixture [1], we obtain in our case the following particular form: 

for the mixture as a whole: 

!__ (_!_)+u · v(_!_) _ _!_V· u = o, ot e e e 

(3.7) 
iJu I 1 -+(u·V)u = f--Vp+-V·"t'0

, at e e " 

(~+u · Vh)-_!_( iJp +u·Vp) =_!_V· [-e(~0e0 w0 +~1e1 w1 +~2e2w2) at e at e 

and for the dispersed phase for n = 1 , 2 : 

iJ~" +u". vr:n = _r:n _V. (ew") +~"X" at s- s- e ' 

(3.8) 
iJu" -+(u"· V)u" = f+Y" at -' 

( 
iJT" ) c" --+u"· VT" = Z"-e"X". at - .. 

The flux of mass X" causes growth of spherical particles, described by the equation 

(3.9) 3_!_ (or" +u" · Vr") =X" n = I, 2. r: iJt ' 
The fluxes X", Y", zn of mass, momentum and energy from the coherent gaseous 

phase to the unit of mass of each dispersed phase are, according to [1], the linear functions 
of thermodynamical forces (3.4) and may be presented in the form: 

X 11 _ :/{" L1T"-L1T
0 

aJ11(L1p L1T") 
- T +~~ p -Q" f ' 

(3.10) !l" = = - ...11" +%" --Q"---=-
Z"-e"X" L1T"-L1T0 (Llp L1T") 

RT T p T ' 
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where the constants dn, %n, !l'n, .An, .A'n (n = 1, 2) are determined by the irreversible 
interaction phenomena between the coherent phase and singular particles{~). These 
constants should fulfil the relation 

(3.11) Qn!l'n-.A'n = %n, 

resulting from the Onsager symmetry principle applied to the model of multi phase mixture 
under consideration [1]. 

The infuence of the viscosity and heat conduction phenomena will be here considered 
in the first linear approximation only: 

0 

V· -r~ = 'YJ
0 (V · V)u0 + ~ V(V · u0

) 

- Vq0 = u0 (V · V)L1T0
, 

(3.12) 

disregarding -r~ : Vu and V · ( -r~ • w0
) as higher order terms. 

Taking into account the assumptions introduced above we may transform the equations 
previously derived and linearise them with respect to the non~quilibrium parameters 
L1To' LJT1' LJT2' L1p, wl' w2. 

The linearised specific volume 1/e and enthalpy h are 

(3.13) 

_!_ = ~ { 1+ Ll~o _ Ll!), ~ = 1 _~1-~2 = ~o, 
e e\ T P e 

h = h+c~~OLJTO+c1~1LJT1 +c2~2LJT2' 

h = !zo -RT(Ql~t + Q2~2). 
The transformed and linearised equations may now be presented in the following 

form: 
the momentum equation (3.7): 

(3.14) ~ +(u · V)u = fH0
{ -RTv Ll; + ~: V2 (u+w0)+! 1:: V[V • (u+w0

)]}. 

(1) For example, in the case in which the diameter of particles is very small in comparison with the 
mean free path of gas molecules, we may apply the Knudsen model of interaction (cf. [4, 5]), obtaining 

( 
1 ) ~0 I RT Otn 2,%n = fl'n =.Afnl Qn __ = 3-J __ _ I 2 en 2n ,.,. , 

Jtn = [( C~ _ _!_)pn _ (Qn _ _!_) ~] 3 ~0 ,. / RT _1 J4n = 3 ~
0 I/ RT __r_ 

~ . R 2 2 2 en Jl 2n rn , en Jl 2n ,n ' 

where 0 ~ Otn ~ 1, 0 ~ pn ~ 1, 1,19 ~ yn ~ 2 are constants characterising the molecular transport of 
mass, energy and momentum between phases. 
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and the linearised Eqs. (3.8) for n = 1, 2 : 

a;" ;"w" 
-+u·V;" = -;0V·--+l:"X" ot ;o li ' 

(3.16) 
C"(_!_ L1!_" +u ·V L1!") = ~", 

ot T T 

ow" { - L1p -+(u· V)w"+(w"· V)u = Y"+;o RTV-=-ot P 

- ~: V2 (u+w0)-! ~: V[V · (u+w0
)]}. 

We have introduced here the non-dimensional constants 

(3.17) 
OJ eo= .5!_ 

R' 

By means of (3.16), we shall now transform the Eqs. (3.15) to the form: 

(3.18) 

'Xo LJTO 
+ --V2--=---. 

Rr/ T 
The values of Q", C", calculated from [2], [3] are given in Table 2. 

Table 2 

Ql Q2-Ql eo ex c:z 

H 20 [2] 19.8 2.93 4.18 9.15 4.6 
C02 [3] 8.56 4.88 5.15 11.1 
NH3 [31 15.8 3.53 10 6.5 

The set of 12 scalar and 5 vector Eqs. (3.14), (3.18), (3.16), (3.10), (3.9) for the unknown 

functions u, ;t, ; 2 , L1T0 /T, T 1(T, L1T2 (T, L1pFft, wt, w2
, XI, X 2

, ~t, ~2, Yt, Y2
, r 1

, r2 

are the flow equations sought for of the mode] under consideration of one-component, 
three-phase mixture in non-equilibrium conditions. Comparing them with the equations 
resulting from the equilibrium model (2.3), (2.5), we see that their number is larger and 
that they are more complicated. It should be emphasised, however, that the considered 
model of the case of non-equilibrium is highly simplified also- for instance, by the 
assumption that only two fractions of spherical partic1es exist in the mixture. These par­
ticles should always belong to the same phase and their number should not change during 
the flow. 
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