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Motion of a crack in antiplane state of strain of an elastic strip

M. MATCZYNSKI (WARSZAWA®)

THE PAPER presents the solution of the quasi-static problem of an infinite elastic medium weaken-
ed by an infinite number of semi-infinite, rectilinear, parallel and equally spaced cracks which
are subjected to identic loads satisfying the conditions of antiplane state of strain, The stress
intensity factors at the crack tips are determined for arbitrary loading of the cracks which are
assumed to propagate at a constant velocity. Several particular cases are discussed. The solutions
are used to discuss the problem of an infinite elastic strip with stress-free edges of the crack and
with prescribed displacements at the boundary surfaces.

W pracy przedstawiono rozwiazanie quasi-statycznego zagadnienia dla nieograniczonego orodka
sprezystego, ostabionego nieskornczona liczba péhieskonczonych, prostoliniowych, rownoleghych
i jednakowo od siebie odleglych szczelin o brzegach obciazonych identycznie i w spos6b zapewnia-
jacy warunki antyplaskiego stanu odksztalcenia. Wyznaczono wspblczynniki intensywnoéci
naprezenia w koficach szczelin przy dowolnym obciaZeniu oraz przy zalozeniu, Ze szczeliny
rozprzestrzeniaja si¢ ze stala predkoécia. Przedyskutowano szereg przypadkéw szczegOlnych.
Wyprowadzone rozwiazania wykorzystano do dyskusji zagadnienia pasma sprezystego ze szczeli-
na o brzegach swobodnych; na powierzchniach pasma dane s3 wartosci przemieszczenia.

B pabore paccmoTpeHa KBA3HCTATHUECKAA 3a/a¥a O HEOIPAHHYUEHHOH ympyroil cpepge, ocnab-
JIEHHOH BEeCKOHEUHBIM YHCIOM NPAMOMHHEHHBIX Napale/bHBIX H OHHAKOBO OTCTOSAIIMX
IOpYT OT OpYyra TPELIHH, KpaA KOTOPBIX NOABEDMKEHbI BO3AEHCTBHIO OIMHAKOBBLIX HATPY3OK,
VAOBJIETBOPAIOIIMX VCIOBHAM aHTHIUIOCKOTO AedopMHpOBaHHOTO cocToAHWA. Ompenener
K03 (PHIMEHT HHTEHCHBHOCTH HANPSDKEHMH [UIA OPOHIBOJIBHON HATPYSKHM HA KpAaio TpelH-
Hel. ITomydennsie pe3yabTaThl TINATENBHO H3YUEHE! IS HEKOTOPAIX CIIy4Yaes Harpysok. B ciy-
uafgX, KOT/la Kpas TPelHH MOJBEepPXeHHb! NEeHCTBHIO MOCTOAHHON HATDY3KM Ha Beell JUIMHE,
pelleHHe NOJHOH KpaeBoll 3a7auM [aeTcd B 3aMKHYTOM BHAe. JT0 pelleHHe HCIOb3YeTcsa
3aTeM JUIA peleHHA KBA3HCTaTHYECKOH 3a/1aul 0 DECKOHEUHOl moJloce ¥3 YIIPYTOro MaTrepHana,
ocnabnensoit momyGeckoneuHod TpenpuHoi. PaccmoTpen cityuail, KOrja Kpasd TPellMHbI CBO-
DO/THBI OT HArpY30K, a8 HA TOBEPXHOCTH ITOJIOCH! 3a/IaHBI IIOCTOAHHBIE TICpeMelleHHA,

1. General formulation

IT 1s KNOWN that the vector of elastic displacement u in antiplane state of strain may be
expressed, in a rectangular coordinate system (x,, x,, x3), in the form
u = [0,0, w(xy, x;, 1))
The non-vanishing components of this state of strain are thus given by the following
relations:

L X
=Tk T I
(1.1) ;
w
013 = '“6—x1’ 033 ='u_6x_2’

Here u is the shear modulus.

(*) The paper has been prepared by the author during his research visit at the Munich Technological
University, Chair of Mechanics A, sponsored by the A. von Humboldt Foundation.



824 M. MATCZYNSKI

In the case of vanishing body forces the equations of motion are reduced to the single
equation

1 *w

2op = —
(1.2) Viw =

where ¢ = u/p is the square of velocity of propagation of transversal elastic waves. If
the case considered is of such character that the fixed coordinate system (x,, x,, x3) may
be replaced by the convectional system (x, y, z),

(1.3) Xy =x+ct, X;=Y, Xa=372,

where ¢ is the velocity of motion of the system (x, y, z), then the Egs. of motion (1.2)
take the form

’w

——> =0,

?w
2
(1.4) B a2t

Here f? = 1—c?/c3.

In this paper we shall apply the complex integral Fourier transform defined by the
following relations:

F(a,) = V—;? [ e,

(15) w+ic
oL l —lox
1, y) = 7= ] mf+ ) F(a, y)e~"*da,

where the transform parameter o is a complex variable and the path of integration in
Eq. (1.5), lies within the strip a; < Ima < o, which represents the region of regularity
of F(a, y).

From the theory of integral Fourier transforms it is known [1] that the function F(a, y)
may also be represented in the form

(1.6) F(a,y) = F~(a, y)+F*(a, »),
where the functions
0

F-(2) = ;/%? . £ x, e,

(1.7) .
1
F * e r———y 3 ‘“dx 3
@ == 6[ £(x, e

are analytic in the lower Ima < «, and upper Ima > «, half-planes of the complex variable
o, respectively.
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Applying the integral Fourier transform (1.5) to the Egs. (1.1), (1.4) we obtain

AW (s,

Za(a,y) = —iapW(a,y), Zy(a,y)=p i‘a y):

(18) e
EHED gy —o

Solution of the Eq. (1.8); yields then the Fourier transforms of the displacement w and
SLTESSES Oxzs Oyz,

W(a, y) = A(a)shafy+ B(a)chafy,
(1.9) Zxe(, y) = —iop[A(x)shapy+ B(a)chapy],
Zy:(a, y) = pap[A(x)chafy+ B(a)shafy].

The unknown functions 4(«), B(a) are to be determined from the boundary conditions
of the particular problem considered.

2. Infinite medium with cracks

Let us consider the infinite elastic medium weakened by an infinite number of semi-
infinite, rectilinear, parallel and uniformly spaced cracks (Fig. 1). The edges of the cracks
are assumed to be loaded by identic forces; the cracks and their loads propagate at a con-
stant velocity ¢ < ¢, along the x;-axis of the fixed rectangular coordinate system
(x 15 X2, IS)'

Owing to the symmetry of the problem it may be reduced to the problem of an infinite
elastic strip of thickness 24 weakened in the middle plane x, = 0 by a semi-infinite crack

(27

___A/X,
=

S l__ /
g £ y
sl
X':'.:: /X, ¥z
5 =
x
S
[
Fig, 1. Fig, 2.

x; < 0 (Fig. 2). The surfaces x, = +h are rigidly clamped while the surfaces of the crack
are subject to the action of forces ¢,3 = p(x;). Both the loads and the crack itself prop-
agate at a constant velocity ¢ < ¢, along the x,-axis.

The latter problem, the symmetry conditions being used again, is reduced to the problem
of an infinite elastic strip with discontinuous boundary conditions which, by means of
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the convectional reference frame (x, y, z) defined by Egs. (1.3), is now expressed in the
form

wix,y) =0 for |x] <o, y=h,
wix,y) =0 for x>0, y=0,
ays(x,y) =p(x) for x<0, y=0.
Application of the Fourier transforms (1.5) and the relations (1.6), (1.7) yields the following

Wiener-Hopf equation
1 tgaph

@1 W@ = = 5 R IZk+ P,
where

1 0
22) P(a) = s f p(x)edx.

The region of existence of that equation is the region of regularity of the functions appearing
in Eq. (2.1), i.e. the strip —x/2fh < —¢& < Ima < 0. Equation (2.1) will be solved
by means of the method of factorization.

To this end, let us represent the function

@3) A = £
in the form
24 H@ = P -y o),
where
-2
(2.5 H™ (a) = , H (@)= H*(-a),

the functions H*(e) being regular and non-zero in the respective halfplanes Ima > —x/28h
and Ima < 7/2ph. Using Egs. (2.4) and (2.5), the Eq. (2.1) takes now the form

h
W-(a) = — ;:;H‘(a)ﬂ“ (@[55 () + P(a)].
Applying the procedure used in [2] this equation may be written as

@6) - D — HH B0 +E),

where
@.7 E(x) = H*(x) P(ar).
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If the function E(«) is regular at least in the strip of existence of Eq. (2.1), it may be repre-
sented in the form

(2.8) E(0) = E*()—E~ (),
where
E(C)
T
2.9) _‘
+ 1 E)
B@=g | g

—0—i

Here 0 < 8, < 8, < m/2fh, and the functions E*(a) are regular in the respective half-
planes Ima > —n/2fh and Ima < 0. Using now the relation (2.8), we transform the

Eq. (2.6),

_mp W (@)
h H (®)

+E"(0) = H* (o) Z5(0) + E* ().

Both sides of this equation represent functions which are regular and non-zero in the
respective halfplanes Ima > —x/2fhand Ima < 0, and thus the Liouville theorem enables
us to determine the solutions,

W-(x) = —;;H'(a)E‘(u), reg.for Ima <0,
(2.10) )

Zh(@) = - H+—w,

reg. for Imoa > —x/26h.

From the point of view of the crack stability, the most interesting value is the stress
intensity factor of a,, [3].

This factor as also the crack edge displacements will be determined by means of the
Abel theorem concerning the Fourier transforms [4] which make it possible to determine
the behaviour of the inverse Fourier transforms at |x| = o0 and |x| — 0 from the behav-
iour of the corresponding transforms at the respective points |a| — 0 and |&| — co.

Using the relation (2.7) and the fact that E*(e) defined by Egs. (2.9) are assumed to
be regular functions for —n/2fh < Ima < 0, they may be represented in the form

(2.11) E*(x) = ——-[ Yo f ;E(C) dC]
where

co—id
(2.12) B = . Edt, 6, <8 <é,.

2ni

—oo—
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Consequently, basing on the properties of E*(«) and using Eq. (2.11) as also the fact that

Te+d) _
T a*, || = o0,
it may be demonstrated that the functions W~ (a) and 2}t («) for |a] — co assume the form

@=_Bq/ 1 +w) = By/— Bk L
@14 W)= #]/mﬁ o B@=B)/ s

This, on the basis of the Abel theorem quoted before, yields the following relations:

w(x) = %1/3 for x- (=0),

(2.15)
N

0y:(x) = VJ——C- for x— (+0).

Here N, the stress intensity factor, is equal to
(2.16) N = —iB]/znﬁ.

This result makes it possible to establish the exact value of the stress intensity factor for
an arbitrary loading of the crack edges.

3. Particular cases
3.1. Concentrated force
Let us consider the case when the edges y = 0 of the crack are loaded at x = —I by

a concentrated force of a constant intensity P. Then p(x) = P8(x+1/) and from Eq. (1.7)
it is seen that

3.1) P(a) = V;ﬂ_ ",

while the function E(x) described by Eq. (2.7) is a function regular within the strip
—nf2fh <Ime < 0. Using the Egs. (2.5), (2.7), (3.1), (2.12), we obtain the relation
(2.16) in the form

—nl s+l

Pe 26 | I'(p) =%
NP, A) = — —— g ¢ dp,
( ) Vﬁh 2,7[1 ‘__!; P(p+ _1_) € @
2

where 4 = I/h and 0 < & < 1/2. The corresponding integration [5] yields now the stress
intensity factor N in the case of concentrated loading of the crack edges,

P
V nBhlexp(zA/B)—1]

with the notation A = //h. The stress intensity factor N(P, ) as a function of 4 and of
the crack propagation velocity is demonstrated graphically in Fig. 3.

(3.2) NP, ) = —
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It proves interesting to compare the conclusions following from Eq. (3.2) with the
result obtained in [6], where a similar problem has been considered under the assumption
of stress-free strip surfaces x = +h. It may be seen that with increasing crack propagation
velocities the stress intensity factor (3.2) decreases, in contrast to the case considered in [6].

A similar effect is observed when the thickness of the strip decreases. In the case of
a strip with stress-free edges, the stress intensity factor increases, and in the case considered

AR )
P

15

10

as

here — it decreases. Passing with the strip thickness to the limit # — oo it is found, how-
ever, that in the both cases we obtain the same solution for a plane weakened by a crack
loaded by concentrated forces P, the stress intensity factor being equal to

NP, }) = —-i-_— for h- 0.
ny/l
3.2. Arbitrary loading

The considerations presented thus far may be generalized to the case of an arbitrary
loading p(x) of the crack edges. The formula (3.2) is then treated as a Green function
what makes it possible to write the stress intensity factor N for an arbitrary distribution

p(x/h) in the form
- D 4
N ]/:rﬁ f Vexp(@a/B)—1

If, for instance, the edges of the crack are subjected to the action of a constant
load p(x) = p, along the interval —/, < x < I,, then

(3.3) N= - 220V Bh [arctgyexp(nd,[B)—1 —arctg Y exp(io/B) — 1],

nyn

where Ao = ly/h, A, = I,/h. Figures 4 and 5 illustrate the behaviour of that function
for various values of 4, and 1, = kA, and various crack propagation welocities.

8 Arch. Mech. Stos. nr 5/73



830 M. MATCZYNSKI

3.3. Constant load p(x) = p for x < 0.

Passing to the limits with 4, - 0 and A, — oo, we obtain the stress intensity factor
N in the case when the edges of the crack are loaded on their entire length by p(x) = po,
and then

3.4 N =—p, ]/‘_iﬁ

In such a case, the exact solution of the complete boundary value problem can be deter-
mined.
From the Eq. (22), we obtain
P(a) = —k~, where k= £
iy2n

while E(x) defined by Eq. (2.7) is a function regular within the strip —z/2fh < Ima < 0.
By means of the relations (2.9), (2.11), we may therefore obtain the functions E*(x),

>3

+
E~(x) = — kHa(O) reg. for Ima <0,
E*(a) =£[H+(a)—H+(0)] reg. for Ima > o
o ' 2fh
whence, using the relations (2.10), we determine
+ =
W-()= — R0 B2 reg. for Ima <0,
17 o
€9 k[ H*(0)
) = | 2 12 —
2 () = I:H"(ac) I] reg. for Ima > TR

H#*(a) being defined by Egs. (2.5).
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Since the functions W~ («) and 2} («) are regular functions in the respective lower
(Ima < 0) and upper Imo > —a/26h halfplanes of the complex variable «, application
of the Egs. (1.5), and (3.5) yields

=i

poh 1 f H~(2) el do

P}/; 2ni .

w(x) =—

0 +id oo 414

_ poVn f e Po f e
0y () = 5 = waH*(a)da 5 de for x>0.

-0+

— 0+

Performing then the integration [5] we arrive at the conclusion that the displacement of
the upper edge of the crack and the stresses o,, along the positive x-axis are expressed
by the following formulae:

w(x) = - -g;’;:‘—h arccos[exp(nx/28h)] for x <0,
1
0yz(X) = Po[l - VW] for x>0.

Passing to the limit with |x] - 0 we conclude that the displacement w and stress oy,
in the neighbourhood of the crack tip are described by the formulae established before,
Eqs. (2.15), and the stress intensity factor N is given by the Eq. (3.4).

From the relation (3.6) it additionally results that in the case when |x| — oo,

for x- —o0,

Oy:(x) =0 for x- +o0.

3.4. Crack with stress-free edges

To conclude our considerations it should be mentioned that the relations (3.6) obtained
here may be used to solve the following problem. Let an infinite elastic strip weakend

Wewy | A* Wy ki w=0 e
:{ oy =0 )i c}i | « =Pg f._

whew, w=wp w=0

Fia. 6.

=¥

in its middle surface by a semi-infinite crack have prescribed displacements w*(x, +h) =
= Fw, = const at the boundary surfaces y = +4; the edges of the crack are stress-free
(Fig. 6a). By means of the superposition principle the solution may be represented as
a sum of solutions for a continuous strip having prescribed displacement w = Fw, on
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the surfaces y = +h (Fig. 6b) and for a strip with a crack acted on by a constant load
0y: = po (Fig. 6¢).

The displacement w and stresses 0, 0y, in the problem shown in Fig. 6b are calculated
by means of the relations

E(x 2 Y ) = —x),
Gx(x,y) =0, E,,(x, J") = —Po = —Hx,
where x = w,/h. Combining the corresponding solutions (3.6) and (3.7), the displacement

w* at the upper edge of the crack and the stress o, along the positive x-axis assume, in
the case described in Fig. 6a, the form

3.7

w*(x) = — 2:" arccos[exp(nx/2fh)] for x <O,
(3.8)
oy (%) = — e B e for x> 0.

V/ 1—exp(—ax/ph)

Using the relations (3.4), (3.7), or passing to the limit x — (+0) in Eq. (3.8),, we obtain
the stress intensity factor N*,

N* = —pwoVplah.
From this formula it follows that — in contrast to the problem considered in Sec. 3.3 —
the stress intensity factor N increases with decreasing values of the thickness of the strip.
In order to obtain the solutions of the corresponding static problems in all the formulae
derived in this paper it should be assumed that g = 1.
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