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Vitodzamierz Laprus, GStanislaw Przezdziecki
Zakiad Teorii Fal Elektromagnetycznych

REPRESENTATION OF TEM FIELDS IN GYROTROPIC
MEDIA BY SCALAR HERTZ POTENTIALS

1. INTRODUCTION

In isotropic media every two sélutions of the Helmhoitz
equation are scalar rertz potentials for an electrcmagnsetic
field. The field can be found by applying to the potentials
the well known differential formulae. It sstisfies the homo-
geneous Maxwell equations. In short, given two scalar Hertz
potentials, the corresponding electromagnetic field is
determined. :

The inverse problem, which consists in finding the scsisr
Hertz potentials of & given electromagnetic field, has been
first properly posed and solved by K.Bochenek /2/ /for iso-
tropic media with real ¢ and M /- The special case of TEM
fields has slso been treated by K.Bochensk /4/. This case is
important, because the theorem which solves the problen is
based on a similar theorem for TEM fields.

For gyrotropic media scalar Hertz potentials have bDesen
introduced by S.Przeidziecki and R.A.Hurd /1/. The probles of
representation of a given electromagnetic field by scalsr
Hertz potentials has been investigated by S.Przeidziecki and
W.iLsprus /3/. In this paper we shall examine the special

case of TEM fields.



2. SCALAR HERTZ POTENTIALS

In anisotropic media the Maxwell equations have the form

e
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/2.1/ vk H=-(ug :
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where ~ 1is real, ¢ anci/i are the permittivity and the permea-
bility tensor with complex components. We assume that the
medium is gyrotropic, and we denote by a the unit vector
which is parallel to the distinguished axis of the medium. Let
the z axis of the coordinate system be directed along the

vector a. Then
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The functions u and v satisfying in & domain D the

system of equations
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are called the scalar Hertz potentials of the electromagnetic

field E, H which is given by the formulae
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The following symbols are used:

g EEe . Ms LS et S LR i
/2.9/ hea A k,-uz‘_(/ﬁ—/uj)/s ke = ua (e-5)
The transversal /with respect to the z axis/ parts of vectors
are labelled with the subscript t, in particular,
v, = (3/2x ,3/2y,0) . The field E, H satisfies

/2.1/ - /2.2/ in the domain D.

In isotropic media the Maxwell eguastions are of the form

/2.10/ vxH=-lngk |

/2.11/ VxE= iwnH,

where g and/u, are complex numbars. In this case /2.4/ - /2.5/

reduce to the Helmholtz equations
/2.12/ T tku=d,
/2.13/ Uv kv =0

with kb= umz/u , and /2.6/ - /2.8/ reduce to the known

formulae

/2.14/ €, ==Y H =g
Fu .

/2.15/ _E't”-‘- ez 1 lapr vea
’ v

/2.16/ H,="kﬁ3£v{_“x£+vtr‘;; 5

The field E, H given by /2.14/ -/2.16/ satisfies the Maxwell
equations /2.10/ - /2.11/.

There exists a more compact vectorial form of the
formulae /2.6/ ~/2.8/ and /2.14/ - /2.16/ in which the

z components of the field E, H are written separately /see
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S.Przezdziecki and R.A.Hurd /1//. This form is independent of
the choice of the coordinate system.
It is seen that the formulae /2.14/ - /2.16/ are
degenerated with respect to /2.6/ - /2.8/. Namely, the

direction of 8 is unimportant.

3. TEM FIELDS IN GYROTROPIC MEDIA

The only possible TEM fields are those for which

E-a =0 @and Ha=0 . Assume the field E, H satisfies the

equations /2.1/ - /2.2/ in a domain D of a gyrotropic medium.
Putting Ez=0 and Hz=0 in the equations /2.1/ - /2.2/ and

eliminating ﬂt we get

/3.1/

/3.2/ v, *E =0 VaeE,=0.

The matrix M = Nii/g has the form

mo —lmg O‘(
L33/ s e T wm 0
' LO 0 mmJ
where
3.4/ m=wleprgm) o= w (gugthu), my= aTi kg
It is easy to calculate the eigenvalves A and the eigenvectors

Y of the matrix M:

525/ A= W‘l*M? ; IS o et o s X3=mﬁ



and

/3.6/
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The eigenvalue N\, and the eigenvector r, are unimportant,

3
since the z component of the vector E, is equal to zero.
If we look for the solution of /3.1/ in the form

e(x,y) exp (ikz) then we have
/3.7/ (M-K1)e =0,

where I is the unit matrix. Hence k=X and 3 =f(x,3)!:
with an arbitrary complex function f(x,y).

Let V¢ D be a circular cylinder whose axis is parallel
to the z axis, and which is bounded by two planes z = const.
Uenote by VO the projection of V onto the xy plane. The
solution of the equations /3.1/ - /3.2/ in V is the sum
/3.8/ £l E(E; c‘k;z 3 g; e—"‘(‘)'

l=
where kg Ag and

/3.9/ + +

g =il ry

x
S
the domain Vo and satisfy there the equations /3.2/. Because

with g = 1,2. The complex vector functions e are defined in

of the particular form of these functions, their real and

imaginary parts are related to each other, viz.,

e
oudd Ime =-axRee

/3.10/ £ £
1 1

"o

Ime, = axRee

.



Therefore, we may confine ourselves to considering the real

parts.
T
The fields Re gE are planar vector fields satisfying
the equations /3.2/ in the domain Vo. To such fields we can

apply the results of the zppendix. Thus, by /A.4/,
a3 L2 T et
A3 Reeg, = m Ff and Re ey = Re Ff

g
wwhere F; are analityc functions of the complex variable
Z = x + Jy, and the symbols Re and Jw denote the real and

the imaginary part with respect to the imaginary unit j

/this new unit is introduced to avoid confusion/. The func-
tions F?(;) are defined in V-

Our next step is to find the solution of the equations
/3.1/ - /3.2/ in the whole domain D. ile assume that D has the
following property. For every two points P,0 & D there exists
a finite sequence ofcylinders Vi,...,vn ¢ D such that P ¢ V1
and U € Vn, and that every two subsequent cylinders have in
common a domain. The domain is assumed to be three-dimensional.

Now, the solutions of /3.1/ - /3.2/ in two subseguent

cylinders coincide in the common domain of the two cylinders.

n

Let Vi,....,vD be the projections of V%...,\/n onto the xy

plane. Then the functions F? defined in Vg are the analytic
continuations of the functions F? defined in V;. By using
such analytic continuations we can define the functions F?
analytic in the domain D which is the projection of D onto

the xy plane.

It follows from the above consideration that there



= gD

exists a one~to-one corréspondence berween the field gt
defined in O and the four analytic functions F: definec == T
It may happen that there exists s suocdomain Eo of Dc E et
that every straight line parallel to the z axis and crossing
the domain Bo has more than one secticn in common with O,
In other words, therz cxists more thar one domain B ¢ T whose
projection ontoc the xy plane is Ec. Hence, it is possizle Fgor
F? to have different values in different domeins B with ime
same projection B_. In that case the Rzemann surface of ?%
may have more then one sheet in So. x

In general, the properties of the Rienmann surface of

PR

in D0 are related tc the form of the domain D. This is
explained by the following self-evident lemmas.

LEMMAL. If D0 is simply connected, then the functions Fi
are single valued in O .

LEMMA 2. If Bo does not exist, then the {unctions Fi are
single valued in Lo /even for multiply connected Do/'

The first lemma follows from properties cf &nalytic functiose,

-h

the secona follows from the uniqueness of salutions of the

Maxwell squations.

4. SCALAR HERTZ POTENTIALS

First, we shall find thegneral form of the functions w and

v. We put Ez = Q0 and Hz = 0 in the formulee /2.6/ and obtain
2 2

4.1/ v,uw=0, NV Uo

Taking this into account we write /2.4/ - /2.5/ in the fora

8.2/ 2

£ v _
3t e Kedw v ap gy =0,

http://rcin.org.pl
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T
/A.3/ -u;r,%-‘zf-+(§-;+£—-_k’;)u=0.

The sclution of the equations /4.1/ - /4.3/ in a cylinder

Ve D is equal to

i t ik - -ikee
/4.4/ «=Z (et Ve,
and
ke - —ike2
/4.5/ v=};.'.(\/;c’ Fee )

:
where the functions U;(x,y) and V;(x,y) sre solutions of the

Laplace eguations /4.1/ in the domain Vo' In addition,

/4.6/ . :
SERC L -
v! S ‘-Y{U:

with o
7 £ MM
A L A SLYSRNE ( TAE T .
/4.7/ 1 M Ets, 1 o £-%y

so that it suffices to determine U%

The real and the imaginary parts of U? are harmonic
functions in Vo' By applying arguments similar to those of the
section 3 we can define the four harmonic functions RelJ?
anc the four harmonic functions Imug-in the whole domain Do‘
It 1s worth emphasizing that, in general, the functions Uf
are not analytic functions of the variable I = x + iy.

Now we proceed to determining the scalar Hertz potentials
w and v for a given TEM field.

THEOREM. Every TEM field satisfying the Maxwell equations
/2.1/ = /2.2/ in a domain D has scalar Hertz potentials in D.
Equating the coefficients of the functions exp (tiksz) we
cbtain

. t e &
=l U p(vtxgur)

/4.8/ . i

. 1+



where
+
/4.9/ 4 = E (ke ap 2) and F‘:'.'?Y‘.u/h.

The real part of /4.8/ has the form

Tk + +
/4 .10/ chf =—vt1m¢!ug +v*xg_Re,s;Ut‘.

By the lemma of the appendix /cf. the formula /A.9//, for the
o

§
4
= Im -c;r Ui and A, = Re ﬁfU;

planar vector field f'= Re e, the potentials

/4.11/

do exist and are given by the integrals /A.14/ and /A.15/ in

the domain Do’ That is

t i
/4.12/ ImalUs == I [(Fp - FZ)dT
yve AETen
and

£k g e
/4.13/ Re pyUy = b!Ft L

where F; are the analytic fuynctions corresponding to the
fields Re g? in Do' and Ef are the analytic functions in Do‘
wnich are chosen according to the considerations of the
appendix.

After simple calculations we obtain from /4.12/ and /4.13/
the functions Re U? and Imti in the form of the linear
combinations of the integrals /4.12/ and /4.13/. Obviously,

these functions are harmonic in Do' since the integrands are

analytic in Do' This remark concludes the proof of the theorem.

5. TEM FIELDS IN ISOTROPIC MEDIA

We considar the field E, H satisfying the Maxwell equations
/2.10/ - /2.11/ in a domain D of an isotropic medium such that
E'a = 0 and H-a = 0. Putting EzzO and HZ:O in /2.10/ -~ /2.11/

and eliminating H we get
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/5.1/ i +k§f—01
o2y VexE =0, Vi E A=lOn
In & cylinder VD the solution of /5.1/ = /5.2/ is the sum
K - =1
/5.5/ Etzg*'e z o Eelkl

9 +
where kkwfgu and e~ (x,y) are complex vector functions
satisfying the equations /3.2/ in the domain Vae

-+ +
The fields Re¢” and Ime” are planar vector fields in VD

satistying /3.2/. Hence

f p - X s &
s Ree, =tm F_ Re¢,=.TAF,,
and .
S =& t T
/5.5/ Lim e =7‘er’: ’ Im C: = Re F—,'. '

¥ 2
where F_ ancd F. are analytic function of the complex variable
£ =% + 3y defined in Vo 8y means of analytic continuation

-+ +
we can define the four functions F; and F; in the whole domain

o .
©

We put Ez = 0 and Hz = 0 in the formulae /2.6/ and get
- / T z
/5.6/ vu =0, o e

Therefore, we can write /2.12/ - /2.13/ in the form

[ =4 —7“ e LN

/5.7/ G =0
ety

/5.8/ : A s kv =0,

The solution of the equations /5.6/ ~ /5.8/ in g cylinder

Ve U is given by
'3 - -ike

o g willhe S+ et
and

+ Lk - -lkz
/5.10/ v=Y = )

+ -
whare the functions U~ (x,y) and V- (x,y) are solutions of the

http://rcin.org.pl
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Laplace equations /5.6/ in the domain Vo'

The real and the imaginary parts of Ut and V: are
narmonic functions in VO. As in the section 4, we can easily
define four harmonic functions Re Ut, Im Ut and four harsonic
functions Ra Vt P \/i in the whole domain Do'

By inserting /5.3/ and /5.9/ = /5.10/ into the formula

/2.15/ we obtain

* ’
75500 gt =t ikv*U‘ +w/«vtx5v-’:‘
and then
His P + +
/5.12/ Ree” =F v, ImkU™ - qxg[mu/uV')
+
/5.13/ lmg_':tvtﬁekut +vtxq_Reu/«V-+.

Applying the lemma of the appendix we find

/5-14/ tIm kU = [ (FE-FE)dT
C
/5.15/ = Im u/a.\/1 =—Rejf?fdl,
Co
/5-18/ tRe kUF == [(FE-F )T,
Cﬂ
/5.17/ Rg“/{.\vt =—RL[E%AE?
Cn

where %E and E% are the auxiliary functions correspodning ta
FE and F:;. From /5.14/ - /5.17/ we can obtain the harmonic
functions ReUr, Im U:r anmd Rth ; ImVI in O_.

It is interesting to note that the real and tije imaginacy
part of the function c.:/uvi, given by /5.17/ and /;5.15/, are
determined by the real parts of two different analytic
functions. Hence, in general, the functicn A)/.«.V‘fcannot be an

analytic function of the complex variable §= x + iy /Jor of

the variable 3* = x = iy/. A sinilar remark applies to the

http://rcin.org.pl



function kut.

6. CONCLUSIONS

Every TEM field in a domain D of a gyrotropic medium can
be expressed in terms of four analytic functions defined
in Do' which is the projection of D onto the xy plane /the
distinguished sxis of the medium cbincides with the z axis/.
D, may be multiply connected. Moreover, every TEM fiald‘in D
has two scalar Hertz potentials w and v in D. The functions

w and v are expressed in terms of the four analytic

functions mentioned above.

The correspondence between a TEM field and the appropriate
four analytic functions is unigue. However, the scalar Hertz
potentials are defined nonuniquely: there exist more than
one pair of Hertz potentials corresponding to a given TEM

field.



APPENDIX
We shall consider a vector field f which is transversal
with respect to the z axis and independent of z. Such a field
will be called planar vector field. We assume that f is a real
vector function defined in a domain D, of the xy plane, and
that the first derivatives of_‘{ are continuous. The domain D‘J
is assumed to be multiply connected. ~
Let'f be a solution of the equations
/A-1/ oxF =0, v-F=0
in the domain Do. Rewriting /A.1/ we get the Cguchy=-Riemann

equations for ¥ and ?j Vi,

F 9% 7% 9%
_: AL K X z -
/A.2/ X 9y g r +’33 0.

Hence, the function

/A.3/ F‘(Z)=?‘;(x,y)+i?;(x,3)
of the complex variable ; = x+iy is analytic in Do‘ In other
words, to every planar field T satisfying /A.1/ corresponds

an analytic function F given by /A.3/. And conversely, to
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every, analytic function F in D_ corresponds a planar field 7

in Do' given by the formulae

JA.4/ T =l = and 3‘; =:Ret ,
which satisfies /A.1/.
The eguations /A.1/ imply existence of a scalar potential
¥ and of & vector potential A /with A =0 and Ay=0/ in the
following sense. If a function Y(x,y} defined in Do satisfies

there the Laplace equation AY = 0, then the field

/A.5/ T=-vy 5
satisfies /A.1/ in D_. Similarly, if & function Az(x,y)

defined in Do satisfies there the Laplace esquation AAZ = 0,

then the field
JA.6/ F=vxA
satisfies the eguations /A.1/ in Dy- Thus, given e scalar
potential or a wvector potential in Dc' we easily find the
corresponding planar field. The inverse problem of finding
the scalar potential and/or the vector potentiasl for a given
field in D0 is more subtle.

Consider the integral
JA.7/ y Y=~£{(;;)7;).J_¢
which is obtained by integrating /A.5/ along a curve C ¢ D,
from a point P to a point Q . dl denotes the vector (dx,dy).
The integration constant has been deleted as unimportant for
the further consideration. Suppose the point P, is fixed and
the point Qo is variable. In order to define properly a
function T{Qo) the integral /A.7/ should be independent of

the path C, between P, end Qo. or, in other words, it should
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vanish for every closed curve Coc Dc' For a simply connecited
domain D° this condition implies wvanishing of ths curl affg
in Do’ and hence, 1t’;s obviously fulfilled. However, in ithe
case of a multiply connected domain D° some of the closed
curves Co (= Do enclose the "holes" of Do‘ i.e., domains Jaof
the xy plane/ which are not contained in Do' So we come t® itine
conclusion that the integral /A.7/ may not vanish for some
closed curves c, ¢ Do, and consequently, the scalar potential
Y may not exist.

A similar conclusion is valid for the integral

/h-8/ Az=](_};1;;]"ﬂ}

which results from the intzqration of /A.6/. In a simply
connected domain Do the integral /A.8/ vanishss for every
closed curve Coc Do' since the divergence of z‘ vanishes in
DQ. But in a multiply connected domain Do /A.8/ may be
different from zero for some closed curves Co G Do' and tha
vector potential A may not exist.

Thus we see that, in general, the field 'f cannot be
expressed by means of /A.5/ or /A.6/ in the wholes domain DQ
which is multiply connected /this is of course possible in
simply connected subdomains of Dc/' However, z'can always be
expressed by using a pair of potentials 'l and A. This is
explained by the following LEMMA. For every planar field

satisfying the equations /A.1/ in I_ there exist a scalar

=
<

potential Y and a vector potential A such that

/A.9/ f=—VL{+VXé

in the domain Do'

http://rcin.org.pl
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T he proof. It can be cerried out either.in tearms of
vectar enalysis or in terms of analytic functions. We choose
the latter way.

First, taking intc account /A.4/ and observingc tnat
/5.10/ F(Z)dl = [ReF ,-ImF).dl +
i (ImF, ReF)-dl

we rewrite the integrals /A.7/ and /4.8/ in the form

/A.11/ g==1ImJFdT

Lo

and
Jh.12/ RE= Eegf FdZ .
wWe introduce an auxiliary planar field %‘1n Do satisfying
there /A.1/, and we denote by F(Z) tne corresponding analytic
function in O_. Assume E(l) is such that
/A3 / Re[Fdl =0  awd  Im[Fdl =Im[Fdl

(2 C. C.

for every closed curve C ¢ D . Then the integral
JA.14/ =-Im] (F-F)dl
b
vanishes for every closed curve C < D,- By the assumption
/A.13/ the integral

e Fe g
A= =Re | Fdl
Ce
has the same propertv. Thus, /A.14/ and /A.15/ define functions

/AL15/

Y and A, in the domain Do' provided the curve CD links a fixed
point F_ and & variable point QO. The definitions /A.14/ and
/A.15/ should not be confused with the previous definitions
/A.11/ and /A.12/. /A.14/ and /A.15/ define e p & i r of

potentials y and A,, whereas /A.11/ and /A.12/ define
either ¢ or A, for & field F .
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~

A function F(Z) satisfying /A.13/ is easy to find. Denote
by Uz the simply connected domain whose boundary coincides
viith the outer boundary of Do, i.e., the domain obtained by
“filling up" the holes of DO, Then every function of complex
variable defined in D:, analytic in O,» and having suitable

¥

~
poles in DO - Uo' can serve as F(Z). The simplest choice is

/A.16/ F(1) =1§1 ¢, /(3-1) ,

where Z,corresponds to a pole lcocated in the v=th hole of Do'
and ¢, the complex number satisfying /A.13/.

Evidently, the functions given by the formulae /A.14/ and
/A.15/ satisfy /A.9/, since
/A17/ "Vl{=f‘§ and v;5=§.
This remark concludes the proof of the lemma.

It is worth noting that for a given f'there exists more
than one pair of potentials ¢ and Az. Consequently, the
ecomposition of f’into the irrotational part and the
solenoidal pert, as given by /A.17/, is not unique. Indeed,
if ; is an analytic function in Do such that
/A.18/ E/:;d§=0

~

for every closed curve (< Do' then the auxiliary function F

~

C
o
can be replaced by F + F

without affecting the eguations
/A.13/. The condition /A.18/ is setisfied by every analytic
function definad in D:. In general, F may have poles in D: =10
provided the sum of the residua is eqgual to zero.

K
The potentials y and A: corresponding to the field f =0

in D are celled null potentials. They are given by

http://rcin.org.pl



/A.139/ v“ = Imdel and A: n—?e_f FdZ .
. C. G

/In this case the auxiliary function E-has the property /A.18/
therefore, it is identified with ;./ Note that the null
potentials have nothing tec do with the potentials % and Rz
corresponding to ;. The existence of null potentials is
obviously related to the fact fhat potantigla are not unique:
if ¢ and A_ correspond to a field ¥, then Y +r" and A, + A:

also correspond to 7.
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