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BRIEF NOTES 

A note on shock waves in fluids with internal state variables 

1. Introduction 

R. M. BOWEN (HOUSTON) and P. J. CHEN (ALBUQUERQUE) 

THE OBJECT of this note is to derive a general expression which governs the behavior 
of the amplitude of a shock wave propagating in fluids with internal state variables. 
Two specific cases are discussed: (i) when the fluid ahead of the wave is well stirred, 
and (ii) when the fluid ahead of the wave is undergoing spinodal decompositions. 

IN THIS NOTE we consider the behavior of shock waves propagating in fluids with internal 
state variables. We derive a general expression which governs the behavior of the amplitude 
of a shock propagating in such a fluid without adopting any assumptions regarding the 
condition of the fluid ahead of the shock (1). After examining the implications of this 
equation, we specialize it to two specific cases: (i) when the fluid ahead of the wave is well 
stirred, and (ii) when the fluid ahead of the wave is undergoing spinodal decompositions. 

2. Preliminaries 

Here, we consider fluids whose internal energy e, pressure p and absolute temperature 
0 are determined by the specific volume v, the entropy 'YJ, and N internal state variables 

(2.1) 

(2.2) 

(2.3) 

e = e(v, 1), a), 

p = p(v, 1), a), 

() = O(v, 1), a), 

where a is the N-vector with components (a1, a2, ... , aN) and is called the internal state 
vector. The material derivative a of a obeys the constitutive relation 

(2.4) a = h( v, 1), a). 

Of course, it is well known that the response functions e, p and 0 are not independent. 

Indeed, the Second Law of thermodynamics dictates that CZ) 
(2.5) p = -ev, 0 = e1j, 

9* 

e) Our results generalize those given by CHEN and GURTIN [1] and CHEN [2]. 
e) See, for example, COLEMAN and GURTIN (3). 
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and that 

(2.6) 

where a is theN-vector defined by 

(2.7) 

In view of (2.5)1 and (2. 7), we see that 

(2.8) 

R. M. BOWEN AND P. J. CHEN 

Gv = Pa· 

In applications of our theory to chemically reacting mixtures each ai is identified as the 
extent of reaction of a particular chemical reaction, ai its reaction rate, and ai its chemical 
affinity. 

In this paper, we are interested in the one dimensional motions of the fluids characterized 
by the constitutive relations (2.1), (2.2) and (2.3). Each such motion is described by the 
function x giving the position x at time t of the material point X: 

(2.9) x = x(X, t). 

Of course, we identify each material point with its position in a fixed homogeneous re­
ference configuration with density eo. The specific volume vis, of course, given by 

(2.10) 

where e is the present density. 
We assume that the motion contains a shock moving with velocity U(t) = dY(t)/dt > 0, 

where Y(t) is the material point at which the wave is to be found at time t. Hence, letting 
f denote v, e, x or 'YJ, we have 

(i) The motion xis continuous. 
(ii)f,i, andfx have jump discontinuities across the wave. 
We also assume that 

(iii) a is continuous, but a and ax have jump discontinuities across the wave. 
In view of (2.1), (2.2), and (2.3), we see that e, p, and() and their derivatives also have 

jump discontinuities across the wave. Further, we also have the following compatibility 
relations: 

(2.11) 

(2.12) 

(2.13) 

(x) = - U(xx) = -e0 U[v), 

(a) = - U(ax), 

d~J = (j)+ U(fxL 

whenever f is equal to v, (!, x, 'YJ, e, p, or 0. Here, (f) = J-- f+ with{:;: = lim f(X, t). 

Balance of linear momentum and balance of energy imply that 

(2.14) (p) = g0 U(x), 

(2.15) 

(2.16) 

(2.17) 

IPxl = -eo(x), 

eo u[e+ -}x2
] = (pXJ, 

(eJ = -fpvJ. 

X--+Y(t/~' 
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By (2.11) and (2.14), we have 

(2.18) 

for the velocity of the shock, and (2.14) with/= v and x, (2.2), (2.11) and (2.15) imply 
that e) 
(2.19) 

d~] dU 2 1 
2U-d + [v]-d- = U [vx] + - 2 [pvvx+P11 rJx+Pa · ax]. 

t t f!o 

Further, (2.17) with (2.1 ), (2.4), (2.5) and (2. 7) implies that 

(2.20) (0~) = [a· h). 

3. The governing equation of the amplitude 

Here, we shall derive the governing differential equation of the shock amplitude without 
adopting any assumptions regarding the condition of fluid ahead of the wave. First, we 
note that the jump [AB] in the product AB may be rewritten in the form (4

) 

[AB)= A-[B]+B+ [A]. 

With this in mind, (2.19) becomes 

d[v) dU (p; 2 ) 1 + (3.1) 2U---+[v)- = ---+U [vx]+----- vxfPvl 
dt dt e5 e5 

1 -r J 1 +r I 1 . + - 2 P11 rJx + -2 rJx P11 + - 2 -lPa axl· 
f!o f!o f!o 

Before we can fully evaluate (3.1), we need expressions for lrJxl and dUjdt. The derivations 
of these expressions are rather lengthy; however, we shall only outline the procedure, 
the interested reader may consult other papers in which special cases of these results are 
derived. 

First, we note that (2.16) with (2.11) may be rewritten in the form 

(3.2) 

Taking the djdt derivative of (3.2), substituting the result into (2.13) with f = e and using 
(2.1), (2.5), (2.17) and (2.20), we have 

p~(1- p,) d[v) ( 2p;(l- p,) fPvl ) dv+ 
(3-3) lrJxl = p~-U(2r-l) (i( + p;; U(2r-l)- P;} il(2r-1) dt 

(l) Cf. CHEN and GURTIN [1 ). 
(

4
) Cf. CHEN [2, 4]. 

( 
p;+p: 2[0) ) dr]+ 1 [') 

+ p~ U(2r-1) + p;; U(v)(2r-l) dt- -[i rJ 

( 
p; +p: 2[a) ) da 

+ P;} U(2r-1)- P;} U(2r-1) (v) . -dt 

http://rcin.org.pl



706 R. M. BOWEN AND P. J. CHFN 

where we have introduced the definitions 

(3.4) 
o-

r=---. p;; (v) 

Now, differentiating (2.18) and using (3.3) and (3.4), we obtain 

dU rp;;(1-p) d(v) I p;;(l-p) (r-1)(p0 ) } dv+ 
(
3

.
5
) dt - e5 U(2r-I)(v(dt- e5 U(v) (2r-1) + e5 U(v)(2r-1) dt 

- { [pfJ) + p;; + p~ + (0) \ drj+ 
2e5 U(v) 2e5 U(v)(2r-1) e5 U(2r-1)[vJ2 dt 

I (Pal p; +p: (a) } da 
- 2e5 U(v) + 2e5 U(v)(2r-l) - e5 U(v]Z (2r-l) . -dt . 

If we substitute (3.3) and (3.5) into (3.1), it can be shown that the resulting relation may 
be written in the form (5

) 

(3.6) 
d(v) U(2r-1)(1-p) 
(ft = (3p+1)r-(3p-l) (A.- (vx)), 

where 

1 I dv+ (3.7) A=- p;;(2r- 1)U(l-p) {3p;;(1-p)+(r-2Hpvl}dt-

+ {( r-}) IP.l + ~ (p;; +p;j)+ 3[~l_}ddr+ 

{( 
1 ) 3 _ + (a) } da I 

+ r- 2 (Pal+ -i"(Pa +Pa )-3 (v) · dt 

1 { p;; 101 + + VI I p;; (a · h)} - V(p Jv++ V(p I'Ylx+ + ----a ·h + Pa·ax - --- - · p;; U(1-p) V x 11 ., o-o+ o-

Equation (3.6) is the governing differential equation of the amplitude of the shock; it is 
of the same form as those which arise in other theories. In particular, we observe that 
if at any instant A. = (vx), then d(v)/dt = 0, i.e., at that instant the shock amplitude neither 
grows or decays. In general, however, we expect that A. =f. (vx), and hence the amplitude 
may either grow or decay. Before we can infer any results from (3.6) regarding the behavior 
of the shock we need to recall certain preliminary results. 

Consider a particular instant of time. Hence v+, rJ+ and a are fixed. If we assume that 
(3.2) can be solved to express rJ- as a function of v-, and, as is customary, that 

(3.8) 

then (i) the shock is compressive, (ii) the shock speed is subsonic with respect to the ma­
terial behind the wave, and (iii) the entropy rJ- increases with decreasing specific volume e-. 

(
5

) The relation includes as special cases those given by CHEN and GuRTIN [I] and CHEN [2). 
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With these results, we can show that p, and r, defined by (3.4), obey the inequali­
ties (6

) 

(3.9) 0<p,<1, 
1 

T>T. 

By (3.6) and (3.9), it is a simple matter to establish the following results on the local 
behavior of the shock: 

At any instant 

(3.10) 
dl[v)l 

[vx) > A <=> ----;Jt > 0, 

(3.11) 
dl[v)l 

[vx) < A <=> ----;Jt < 0. 

Equation (3.10) and (3.11) states that the magnitude of the shock either grows or decays 
according as [vx) is greater or less than A. In other words, the shape of the pulse behind 
the shock has a definite effect on its behavior. 

A most interesting application of our results is when the fluid ahead of the wave is 
well stirred, in the sense that each reaction is proceeding at the same rate at every point 
prior to the passage of the wave. Hence, the field quantities ahead of the wave are independ­
ent of position. In this instance (3.6) reduces to 

(3.12) 
d[v) U(2r-1)(1- p,) o _ 

dt = (3p,+ 1)-r- (3p,-1) {A-vx}, 

where 

(3.13) l ~ - p;(2T- i)U(l- f') I {3p;(l-f')+ (T-2) [p,I}V+ 

{( 
1) 1 1 3( _ +) 3[0) p;(2r-1)[0J}a+.h+ 

+ r-2 P" +2 P" +p" +M+ o- ~ 

{( 
1 l r 3 ( _ +) 3 [a) 

1 
+I 1 { _ p; [a. h) 

1 + T-2 Pa)+2 Pa +Pa - (v) ·h + p-;;U(l-p,) Pa ·[h)+ o- . 
As a further special case of (3.13), we can consider the situation where iJ+ and a+ 

are zero. When a+ is zero, it follows from the energy equation that ~+ is also zero. In 
a state (v+, 'YJ+, a+) such that a+ = 0 the inequality (2.6) has the following implications C): 

(3.14) 

(3.15) 

(3.16) 

av(v+' 'YJ+' a+). h(v+' 'YJ+' a+) = 0, 

a"(v+, 'YJ+, a+)· h(v+, 'YJ+, a+) = 0, 

a8 (v+, 'YJ+, a+) h(v+, 'YJ+, a+) = 0. 

Equations (3.14), (3.15) and (3.16) can be viewed as a system of N+2 equations with N 
unknowns h+. They place certain restrictions on the possible values of a+ = h(v+, 'YJ+, a+). 

(
6

) See, for example, CHEN [2]. 
(1) BowEN [5, Sec. 4]. 
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If the rank of the matrix of coefficients is N then a+ = 0. In which case, our results would 
be the same as those given by CHEN and GURTIN [I]. However, if the rank of the matrix 
of coefficients is less than N, then a+ = h+ need not vanish. Chemical reactions which 
occur with a zero chemical affinity are known to exist. They are called spinodal decomposi­
tions(8). In this special case (3.13) with (2.8) and (3.I4) reduces to 

~ I f 3 - 3 a-~ h+ I {O- - - -) h-
(3.17) A= -p;;-(2r-l)U(l-,u)\ rp.- Tv]. +(1-,u)UO-p;;- p.+pTJa f" • 

In closing, we wish to record the limiting form of (3.17) which is valid for weak shocks, 
i.e., in the limit as (v)-+ 0. Following the procedure used by CHEN and GuRTIN (1], (3.17) 
yields 

(3.18) as [v)-+ 0. 

where e~U5 = -p:. Equation (3.18) is equivalent to that obtained by CHEN and GuRTIN 
[1] under the different assumption that the region ahead of the wave is in a weak chemical 
equilibrium state (9

). In the case where both a+ and h+ are zero, we can prove, as CHEN 
and GURTIN [I] proved, that f. ~ 0. 
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(
8

) See, for example, KUBASCHEWSKI, EVANS and ALcOCK [6), pp. 69-70. 
(

9
) Here, we should point out that our ). is -1 I e~ times the). given by CHEN and GuRTIN [I], Eq. 

(48). Also, their Eq. (48) is also valid when a+ =I= 0 because (2.6) implies that a+ · h+ = 0 in a weak chem­
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