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Stress-strain state of an elastic cylinder and a layer in joint torsion

YA. KIZYMA and V. B. RUDNITSKII (TARNOPOL)

WE coNsIDER the mixed boundary value problem of theory of elasticity, namely the joint torsion
of the cylinder and layer. We investigate the case of anisotropic materials. By means of the
Fourier method and integral Hankel transforms the problem has been reduced to a Fredholm
integral equation of the second kind. The proof of the convergence of the successive approxima-
tion method is given. Consequently, the problem has been reduced to the system of linear al-
gebraic equations (infinite). All characteristics of the elastic state of the body have been deter-
mined. The numerical examples are presented in the diagram form.

Rozpatrzono mieszane zagadnienie brzegowe teroii sprezystosci w przypadku réwnoczesnego
skrecania walca i warstwy. Przedyskutowano rowniez przypadek materialéw anizotropowych.
Za pomoca metody Fouriera i przeksztalcen catkowych Hankela zagadnienie zostalo sprowa-
dzone do réwnania catkowego Fredholma drugiego rodzaju. Podano dowdd zbiezno$ci metody
kolejnych przyblized. Zagadnienie zostalo nastgpnie sprowadzone do nieskoriczonego ukladu
algebraicznych rownan liniowych. Zostaly wyznaczone wszystkie wielkosci charakterystyczne
stanu sprezystego. Przyklady liczbowe zostaly przedstawione w postaci wykreséw.

PaccmaTpuBaeTcs CMelllaHHas TPaHHUHAS 3a/1aua TEOPHH YIPYTOCTH O COBMECTHOM KpPYYeHHM
UMAMHAPE M oo, PaccmaTpHBaeTcs CiTydall aHHIOTPOOHBIX MaTepHanoB. Merogamu Dypee
1 MHTeTpPaJILHbIX NpeobpazoBanuit Xauke/ls 3a7aua NpPUBEEHA K MHTErPANLHOMY YPABHEHHIO
Ppearomsma II-ro poaa. Jano HoKa3aTeNbCTBO CXOOHMOCTH METOAA MOCIEAOBATE/IBHBIX NPH-
omwienmii, CrennansHBEIM IPHEMOM 3afaya CBedeHa K CHCTeMe JIMHeHHBIX ypaBHeHHiH (Oec-
KoHeuHoit). Onpe/eeHE] BCe XapaKTEPHCTHKH YIIPYTOro COCTOAHNA Tesa, ITpoBeienn] UKCIeH-
HbIe IOJICYeTHI, KOTOphIe NpENCTAaBJIEHHLI B BHJE I'padHKOB.

Introduction

THE PROBLEM of the joint torsion of an elastic cylinder and a semi-space and the influence
of the shear moduli ratio on the stress-strain state of the elastic system has been discussed
in the papers [1, 3]. In the present paper, the problem of the joint torsion of a cylinder
and a layer is solved by the methods presented in [1, 4]. The effect of the layer thickness
for various ratios of shear moduli is investigated.

1. Statement of the problem and basic relations

Let us consider the equilibrium of the system consisting of an elastic cylinder of radius
R and length L and a layer of finite thickness H in joint torsion. The cylinder is fastened
to the layer on a base and is subjected to the action of tractions rotating the upper base
as a rigid whole. The cylindrical surface of the bar and the surface of the layer outside
the contact region is free from stresses. The lower surface of the layer is rigidly clamped.
The cylinder and the layer are made of different isotropic materials.

Introduce the cylindrical coordinate system r, 6, z such that the surface z = 0 coin-
cides with the layer surface while the axis Oz is directed along the symmetry axis of the
cylinder.
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Thus in order to determine the non-zero component of the displacement vector u,:
and the stress tensor components 7, 75, We obtain the following boundary conditions:

(1.1) for z=1L, ufV =er, r<R,
(1.2) for z=0, U =uf®», Y =13, r<Rk,
1.3 #2 = 0, r> R,
(1.4) for r=R N =0, 0<z<L,
(1.5) for z=—H u® =0,

Here and in what follows, all the quantities referring to the cylinder will be denoted
by the index 1 and to the layer — by the index 2.

It is a known fact [2, 4] that in the case of pure torsion the displacement component
uf? (i = 1, 2) satisfies the differential equation

u® 1 oud  up? £ 32uh

(L9 a2 YT o r? Fr 9 =1yl
and is related to 7§ and 7§ by the equations

) )
.7 ) = GI-‘E'-‘S’_, ) = Gi( a;‘f ..%) i=1,2,

where G; (i = 1, 2) denote the shear moduli.
The solution for the layer and the cylinder will be determined separately. For the
layer, we introduce the Hankel transform #$” of the function u§”

(1.8) u§(E, 2) = 1 [P, 2), - ()

consequently, we obtain for 7{?), up, and 7,, the following formulae:
U = o, [A(E) e+ BE) &, £l

(1.9) o) = G, H [-A@) e+ B(E)e*, &1,

©P = Gy H[E(A@ e +BO) ), E-r].

Here, A(£), B(¢) are arbitrary functions.
Taking into account the boundary condition (1.5), after some algebra, we obtain the
formulae for the stresses and the displacements in the elastic laver

ug? = Rﬁ;[n"ﬂn)%}%, n— e],

» chn(C+h) A
(1.10) rs,’-w,[nn}—cm, " e],

o = ~Guots iy A, 1=l

(') Where 5, [F(n); n —~ ] = [ nF()Js (ne)dn.
0
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where ¢ = r/R, h = H[R, n = (R are dimensionless parameters, F(n) is an arbitrary
function determined from the boundary conditions and the continuity conditions.

In order to solve the Eq. (1.6) for the case of the cylinder, Fourier’s method will be
applied. The solution is assumed in the form

(1.11) Uy = Aorz+Bor+2Z(2) - R(r).
Substituting (1.11) in (1.6) and taking into account the finiteness of the solution for r =
= 0, and the Eq. (1.7), we obtain the particular solution:
uf = Aorz+Bor+J,(Ar)[AshAz+ Bchiz],
(1.12) i) = G, Aogr+G, AJ(Ar)[AchAz+ Bsh Az],
i) = —G, AJ,(Ar)[4sh Az+ Bch Az].
Here A and B denote arbitrary constants, 4 is a parameter, J;(x) is the Bessel function
of the first kind.
The boundary condition (1.4) is satisfied for J,(AR) = 0. Whence we obtain the latent

values of the problem A, = u,/R, where u, are the roots of the characteristic equation
Jo(u) = 0. Then the general solution for the cylinder can be written down in the form

u§’) = R*Ao0C+RBoo+ 2 T (ux0) [Axsh e + Bych i L],

k=1

(=]
(1.13) D = G, RAoo+G1/R ) i Ty (e[ Axch e+ Beshp 2],
k=1

G (=]
w=-5 Z tix T (11 0) [ Ax S aa £+ Bechpu 0],

k=1
where { = z/R.

2. Determination of stresses and displacements

The stresses and displacements in the layer and the cylinder will be determined if the
constants 4, By (k = 0,1, 2, ...) and the function F(») are known. In order to determine
them, we make use of the boundary conditions and the continuity conditions (1.1)-(1.3).
Satisfying the boundary condition (1.1) and the second continuity condition (1.2), we
obtain

@1 ¢Rg = R*Aool+RoBo+ D, T, (o) [Aushul+ Bechpl),
k=1
(=] 6 oo
@2 | A0 = doBed+ e D undi o)A

where § = G,/G,,[ = L/R.
Multiplying both sides of the Egs. (2.1) and (2.2) by p* and oJ,(uxp), respectively,
integrating them from O to 1, and taking into account the orthogonality of the Bessel
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functions, we obtain the relations for the determination of 4, and B; by the function
F(n):

4 0o
AoRI+By =¢, B = Avthul, Ao =*§5f F(n)Jy(n)dn,
0
2.3 1
e _ R
£ 0T ()

Now, satisfying the first continuity condition (1.2), the boundary condition (1.3),
and taking into account (2.3), we obtain the dual integral equations in the form

o7, (em)de | mFen)Ty(e)dn.

RS
H A FG); 1~ o) = ole= AR~ D e () thyal
k=1

24 + [ Fo)(-thaiyd ovdn, 0 <1,
0

K\ [Fin);n—01=0, o>1.

Applying the inverse transform to the dual integral equations [5], we obtain a Fred-
holm integral equation of the second kind

_ 4 1 [sinp B 2 {01
F(n)—;;(s—Alﬂf)?(—n— cosn) ﬁﬁmth#kh

1 1 o
x f sing ysinnydy+ —g—ff F(i)(l —thu)sin X sin nydudy .
7 n h
0 00
To complete the solution to the problem it is necessary to determine the constants
A, and the function F(n), which are mutually related by the relations (2.3) and (2.5).
Equation (2.5) can be solved by the method of successive approximations. The solu-

tion for an elastic semi-space (h = 0), obtained in [1] is taken as the zero approximation,
ie.:

oo 1
_ 4 1 [sing 2 Z f A :
26) Fo(n) = ;(S—AORI)?(—H— cosn) — ;-R-k 1 Akth‘u,‘fo sing ysinnydy.
Then the subsequent approximations can be determined from the formula:
I oo
@) Bt f f F,‘_l(i‘—) (1 —thu)sin-"2.sinqydudy
an d J n R
and the solution assumes the following form:

238) Fo) = D) Fla).

k=0
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To justify the application of the method of successive approximations, and to find
the interval of convergence, we make use of the contracted mapping principle. The Eq. (2.5)
can be written in the form F = U(F), where U is an operator in the space M of bounded
functions. We shall prove that the following conditions hold:

. UF)eM if FeM,
2. |U(F,)-U(F,)| < msup|F|—F,|, F,,F,eM.

The convergence of the process is ensured for 0 < m < 1. The zero approximation
is bounded —i.e., Fo(n) € M, since the solution for the semi-space, derived in [1], is
bounded.

Let F(n) € M. Performing the relevant estimations, we obtain

(2.9)

U(F)< C+ T—ézof u(l—thu)du = C+ 27:]12 Glg (”3"“ < Cs, UF)eM.
Then
|U(F,)—U(F,)| < 1 2 ik sup|F,—F,| .
23‘!!'12 el n2
If

[+5]

1 O (1-)+!
i D < b

n=1

the operator U(F) is a contracted operator which by Banach’s theorem possesses the fixed
point. Performing the relevant calculations, we find that the Eq. (2.5) can be solved by
the method of successive approximations, provided that & > 0.362.

The problem is solved in the following way. As it was shown above, the successive
approximations are found by the formula (2.7) and the solution by the formula (2.8).
Since, except the first approximation, the straightforward integration is not feasible, each
approximation is expanded into series in terms of A~%, up to the terms with A~7. Subs-
tituting the value thus found of F(n) into (2.3) and introducing new constants C, and
Ci for Ay and A4,

(2.10) Co = -?—Aoa G = Ak‘%‘:ﬁ;_[;

after some arrangements, we obtain the infinite system of linear algebraic equations

@.11) &Gt D 0inCr=fir ki =0,1,2...

n=0

The coefficients o, oy, and f; have the following values:

2 2N, 2N, . 4N} . 3N
12 =fo=S+s 55— ; ;
(2.12) %0 =Jo =T+ 5015 ~ Tsuh* T Samih® t F5aRT’
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Naﬁlﬁll NS

Q12) Gy =t = Prat T — I BB+ i)
fcont.] 7
I5N; ( BBy’ ﬂi’ w  BiBa) | N3BiBn
+ th’( 10 3 t710 )T 3
N !’ i N 3 f!f
wo=fim Bt polh - Mo (B B A, N (g B,
nd 7d

Oop = 2009, Oo = Sk o = TPIJIZCUI)'

Here, the following symbols have been introduced:

. 1 [sinu )
= —|—— —cos ],
Bi m( Lk Mk
,, =cosm(_6__dl)+ 3smm(1_i)

@13) T T \pd Ui ut

e =cosm(5sinm _1)_£[cos,u,, i—1)+ 3singy (1——2,—)]

M Mx ATV Mi Hi
BiSIn p4, COS iy — i, SIN 13, COS f2
Pin = 2 2 ’
Hn — Hi
o0 L -
NI=Z( . 1w 38,9,
mel e

After the determination of C, from the system (2.11), and taking into account the
relations between 4, B, C, 4y, B, and C, according to (2.3) and (2.10), we obtain the
following equations for the stresses and displacements in the cylinder:

k=1

oo
£ C
Q1) o) =G, -Cop+266, Y B 1 ()chun(-0),
o e

D = 266, meke) o rshu(I=0).

The stresses and displacements in the contact region can be determined from (2.14)
for{ =0.

Note that according to (1.10), for { = 0, another form of the solution for the stresses
and displacements in the contact region can be found. Since the expressions for F(n),
as well as for 7§2), u§?), 7{?) are cumbersome, the solution is not given here.
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In order to obtain the relation between the rotation angle of the flat end of the cylinder
and the torque, we make use of the equilibrium condition

1
M = 2R3 f o*1§do.
0

After computation we obtain

3. Solution for particular case of anisotropic materials

The method discussed in the preceding sections can be applied to solve the problems
when the cylinder and the layer materials are transversally anisotropic or cylindrically
orthotropic. If the geometrical axis of the cylinder coincides with the anisotropy axis
of the cylinder and layer, we find, exactly as in the case of isotropy [4, 5], that the only
non-vanishing components of the stress tensor z§p, 7§, and the component of the dis-
placement vector u{"? (i = 1, 2) are related by the formulae

@D = a2 (P 4,

where AY), A§2 are the moduli of elasticity.
Making use of the equilibrium equations, we find that the displacements u§”, each
in its region, satisfy the equation
AY) ot oufd

0 i)
i ouf u
A0 a7 T

1 .
— =0, i=1,2.

AS
we transform the Eq. (3.2) to the form

uld  Pud 1wl ufd
@3 oz} vt t T oo rr
The boundary conditions of the problem remain unchanged, i.e., (1.1)-(1.5) — only the

quantities Z, L and H have to be replaced by z, or z,, L; and H,, respectively, where

A§Y ALY
LI-VA{l)L H2=VA{2)H

Thus it is evident that in the particular cases of anisotropy the torsion problem can be
reduced to the isotropic case. We obtain the following formulae for the stresses and dis-
placement in the cylinder and the layer:

(G4)  uwd = Rsﬂg[uﬁi‘@] -2 C;;:*(‘f,*@)sh k(h—cl)},
1 k=1

(3.2)

Substituting
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34 YW= ic" VAL AL 0+26 ) A i’A“’ZCk,u*J,(pk Shputh—Cy)
[cont.] sh,ukll
sh I C
=20 3™
(2) — -4 Sh’?(kz‘i‘hv) N
Uy R‘#l[ F( ) Ch?ﬂ! El n o1,
chn(&,+h,)
(2) — (2) 412)
(3.5) 72 = ARG AD [F() ~he 1)
_ shy({+1)
Tor = —Aﬁs‘#z[F(ﬁ)—-W, n-=o0]|
where

Ci - Z”;R, 1’1 = Ll!R! hz = H;_J"R.
The constants Cj can be determined from the system of equations (2.11), provided that

we replace / and 6,7, and &, = A4Y/A%Y in the expressions for the coefficients (2.12).
4, Numerical results and the analysis of the solution

It has been shown that the solution to the problem can be reduced to the determina-
tion of the constants C; from the infinite system of linear algebraic Eq. (2.11). Since

P4 B B4
/ /
02 i '// 04 04 a7
1
&=0 A z=1/2 2=1 |
7 ',
/ _ A o4
[ f& ME o]
= -] 2™
o= | — -
a7 / 07
01 = = ,A 02 —
] 7 N/ =
P =] / N
<o 7 / e
N 01
/\25S & o
= ||
EN Ao e
. ”
142 \ac -@
0 04 08p O 04 08p 0 04 08 p
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Fig. 3.

the final expressions are cumbersome, we do not dwell on the investigation of the system.
However, we should point out that the coefficients of the given system depend on the
dimensionless parameters: the height of the cylinder /, the width of the layer A, and the
ratio of shear moduli 4. Independently of the parameters, the system has a symmetric
matrix the diagonal elements of which are much greater than others. The non-diagonal
terms are alternating and tend to zero for n and k tending to infinity. This enables us
to determine the constants Cg , in the convergence region, by the iteration method.
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16 constants for /=4, 4 =1/2,1,2,4 and h = 0.7, 1 have been determined. The
results of the computations are shown in Figs. 1-3. In Fig. 1 the quantity §; = uy/Re
is presented for the cross-sections of the cylinder =0, 1/2,1 for 6 = 4,2,1,1/2 and
for h = 0.7, 1 and co.

The distribution of the quantity §, = 7,./eG; for h = 0.7 is shown in Fig. 2 for the
same values of é and .

Figure 3 illustrates the relation between the torque M and the rotation angle ¢ for § =
=0,1/2,1,2,4and h = 0.7, 1, co.

On the basis of the numerical calculations and the analysis of the solution, we arrive
at the following conclusions:

1. The width of the layer, such that the process of the successive approximations is
convergent, does affect the character of the distribution of stresses and displacements, i.e.,
it is exactly the same as in the case of a semi-space [1].

2. The width of the layer affects the value of the stresses and displacements. This
influence depends on the magnitude d. It increases with the increase of ¢ and decreases
with the decrease of it. For d < 1/2 it is negligible, i.e., the solution i — oo is sufficiently
accurate, in practice, for the determination of the stresses and displacements in the contact
region as well as in the cylinder.
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