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Dynamical bending of circular piece-wise nonhomogeneous plates

Notation

V.N. MAZALOV and YU. V. NEMIROVSKII (NOVOSIBIRSK)

IN THE PAPER is considered the dynamical behaviour of piecewise non-homogeneous circular
plates simply supported along the contour and consisting of two parts with different mechanical
properties: a circular interior and an annular exterior. The material of the plate is supposed
to be perfectly rigid-plastic and satisfies the Tresca yield condition. The dynamical properties
of such a plate prove to be better than those of homogeneous plates. A more detailed analysis
concerns the problem of a plate loaded by a uniformly distributed pressure pulse.

Rozwazono zagadnienie dynamiczne plyty odcinkami niejednorodnej, podpartej na obwodzie
i skladajacej sig z dwoch czeéci o réznych wlasnosciach mechanicznych: z kotowego wnetrza
i z piercienia kolowego. Material plyty jest doskonale sztywno-plastyczny i spelnia warunek
Treski. Stwierdzono, ze wlasnosci dynamiczne takiej plyty sa lepsze anizeli plyty jednorodne;j.
Przeprowadzono dokladniejsza analize problemu w przypadku réwnomiernego udarowego ob-
cigZenia calej powierzchni plyty.

B pabore mccnemyerca QMHAMHYECKHH MAaru® KPYTJILIX MIAPHHDHO ONEPTHIX MO HAPYMKHOMY
KOHTYPY IUIACTHH, COCTOALIMX M3 JBYX YacTeil ¢ pas/MUHBIMK MEXaHHUECKHMMH CBONCTBaMH:
BHYTpPEHHEIi, KPYToBoil, X BHellIHeH, KoMbleBOH. B HEKOTOPBIA MOMEHT IUIACTHHKA BHE3AITHO
HArpy>KaeTcA HE BO3pacTalolleil BO BpeMeHH PaBHOMEDHO DAaCIpE[ENiCHHOH HArpY3KOH BbI-
COKOll MHTeHCHBHOCTH. MaTepran IIacTMHKH HAEaNBHBIA JKECTHKO-IIACTHYECKHH, mOMUHHA~
JOIMICA YCMOBHIO IUTaCTHYHOCTH, Tpecka ¥ acCOIMMPOBAHHOMY C HUM 3aKOHY TeueHmsA. HM3-3a
OrpaHHYEHHOCTH OOBEMA CTaTb¥ IPHBOJUTCA PpEIICHWE 3afaud JIHIIb JUIA CIy4asd, Koraa
BHYTPEHHAA YacTh IUTACTHHKH B NPOLECCE NBHYKEHHA OCTACTCA JKECTKOH. YKasblBaeTcA Ha
CYIIECTBEHHOE IIPEHMYIECTBO (B CMBIC/IE YMEHBIIEHHA OCTATOMHBIX NpPOruGOB) KYCOYHO-
HEOJHOPOAHBIX INNACTHH HO CPaBHEHHIO C ONHOPONHLIMH IUIACTHHKAMM TOTO XK€ pajuyca
u Beca, ITokasaHo, yro HamGosbinedl AHHAMHYECKON CONPOTHBIAEMOCThIO ofnajaer cTymeH-
4aras IUIACTHHKA C NapamMeTpaMH, COOTBETCTBYIOIIHMH MAKCHMATbHOM BeIMYMHE CTaTHYECKOH
npeaeNbHO HArPY3KH.

ao, bo radii of interior and exterior parts of a plate, respectively,
W deflection,
M,, M, radial and circumferential bending moments, respectively,
Q. shearing force,
¥, 20 surface density and thickness of the ring-shaped part,
Tg Yield Ii]njt,
P intensity of uniformly distributed load;
t time.
to duration of rectangular pressure pulse,
vo surface density of the central part;
r radial coordinate.

To THE INVESTIGATION of dynamical bending of circular rigid-plastic plates have been

devoted,

numerous papers a survey of which may be found in [1-4]. The attention of the
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authors was attracted only by homogeneous plates. In this paper is investigated the dy-
namical behaviour of piece-wise nonhomogeneous plates simply supported along the ex-
terior contour and consisting of two parts with different mechanical properties: the circu-
larshaped interior one and ring-shaped exterior. Plates are supposed to be ideally rigid-
plastic satisfying the Tresca yield condition. The further analysis not only gives a direct
method of calculation of the behaviour of such plates under dynamical loads, but also
indicates their essentially better dynamical resistance by comparison with homogeneous
plates of the same radius and weight. It is shown that the maximum of dynamical resistance
belongs to step-like plates with parameters corresponding to the maximum of static limit
load. The dynamical behaviour of plates under the action of uniformly distributed rectan-
gular pressure pulse is investigated in detail and the pecularities of the dynamic behaviour
of plates under the action of arbitrary “blast-like” load [5] are discussed.

Static analysis of piece-wise nonhomogeneous plates is given in [6, 7].

Put the coordinate origin at the centre of a plate, direct the deflection axis along the
direction of a load, the abscissa along the radius r.
The dimensionless equations of motion have the form [1]:

[xQ:(x, D) +x[p(x)—t(x, 7)] =0,

i) [xm, (x, T —ma(x, ) —¥0u(x, 7) = 0
m = M/e,0*...(I=1,2), w= Wyb}lo,6%%, p = Pb}|o,0d>.
Ox = bo0;/006%, T=1tltyg, x=rlbyg. a=aglby.. 0<a<l,

where M,; and M, are radial and circumferential bending moments, respectively, a, and
by are radii of the interior and exterior parts of a plate; y, 24 and o, are, respectively, sur-
face density, thickness and yield limit of the ring-shaped part of a plate, P — the intensity
of uniformly distributed rectangular pressure pulse of duration t,, f — time. Primes
indicate differentiation with respect to x and dots with respect to 7.

In what follows the complete solution of the problem under consideration is ascertain-
ed only for the case in which the interior part of the plate remains rigid in the motion for
want of space. Essential for our analysis is whether the inequality

(1.2) k=yoly 21
or inequalities
(1.3) 0<k<l

are satisfied. Here y, indicates the surface density of the central part.
The necessary initial and boundary value conditions have the form:
wx,0) =w(x,0 =0, w(,7)=w(1,7)=0, w(1)=ul(7),
w(a, 7) = wu(7), m(l,7) =0, aQy= —(?/2)[p(x)—kiba(7)].
The flow law implies that curvature velocities %, and %, up to the positive constants
multipliers equal to

(1.5) = 0F|om...(=1,2), @@ =—w' % =—'/x),

(1.4)
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where # = F(m;, m;) is a Tresca hexagon on the m,, m,-plane (see Fig. 1). Limit load
corresponds to the plastic regime and is equal to (see [6, 7]):

(1.6) Po = 6/(1-%).

The plastic states corresponding to points 4 and B are realized for x = « and x = 1,
respectively (Fig. 1).

B A
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The complete solution of the indicated dynamical problem, depending on plate pa-
rameters and acting load, is the sum of particular solutions, corresponding to various
sides and vertices of Tresca's hexagon (Fig. 1). Every stress profile is characterized by
a definite system of inequalities for the functions m;(x, 7) in various parts of the plate
and for various times. In the interests of brevity, these inequalities have not been estimat-
ed for any part of the plate and any time. The estimations have been made only, where
these inequalities are indeed not true, but assuming them to be fulfilled in other parts
of the plate. The set of the values of parameters for which the corresponding system of
inequalities is not satisfied implies transition of the plate to a different stress profile. For
the same reason, of all possible plastic states only those have been selected which are
realizable in fact. It should be remarked that continuity in x and 7 of functions w(x, 7),
w(x, 7) and continuity in x of m,(x, 7), m,(x, 7), Qx(x, 7) is used in the solution of the
problem.

The plate is moving in regime 4— B (Fig. 1). Integrating the equation of motion (1.1)
and taking into account (1.4)-(1.6), we obtain:

_ X—a _ _ 67%(p—=po) 1—x
2.0 my = l—x—(lj&j‘g’(xsp,ks 9, m=1, w= Podlk, @) 1—a’
a<x<]l, 0<7t<]1l, po<p<p,
x—o
ml — I_T(T_—T)?(x’ 0, k, EI), mz e 1,
_ 6(—=7*+2p7[po—plpo) 1—x
@2 L. Ak, o) —a

a<x<1, 1<t<1=plpo, Po<P<Ps,

6 Arch. Mech. Stos. or 3/73
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where

_ 1—-x px, k@)
¥=1+ P [ 2 ATk 0} (p—po) (l+a+x)i|,

9 = —(1+a+a?)x?—a(l—a) [6a(k—1)+20+1]x—a?[6(k—1)(1—a?)
—202—20+1],
Ak, &) = (1—a) [6a?(k—1)+3a®+2a+1].

Solution (2.1) corresponds to the load acting in the time period 0 < 7 < 1 and (2.2) —
to the inertial moving unloading period 1 < = < 7,. Necessary conditions for the regime
A-B are

2.3) W(a,p,k,a) >0, (1—a)¥(1,p,k,0o)+a>0.

It may easily be shown that for k, satisfying the inequaily (1.2), the conditions (2.3)
are in fact sufficient, and the second of the condition (2.3) follows from the first one,
determining the characteristic load

Pe = 6k[(k—ko) (1 —a)2(14+20), ko= (1+30)/2(1+20).

Time of motion 7, is determined here and hereinafter from the condition w(x, z,) = 0.
In sections 3-6 solutions are derived for the parameter k from (1.2).

In the load-action period, for loads p, < p < p,, the following stress profile is realiz-
ed (Fig. 1):

3.1 a<x<p>A—F, n<x<1->A4-B.
By means of (1.5) and (1.4), we obtain the following velocity field:
- L i P ool
From the Egs. (1.1) by means of (3.1), (3.2) and (1.4), the following solution is derived:
m =1, my=I1-ac?k=1)ni—x»2m%, w=ar?®/2, a<x<1n,,
(3.3)  my = 1-a(x—n0)*[M5(x* —ng) + 20 (k — 1)(1 — o) (x + 210))/12x05(1 =10),
my =1 w=ar’(1-x)2(1-n0), no<x<1,
a = p[l+a®ns*(k—-1)]",

where the boundary of the regimes #, is connected with the parameters p, « and k > 1
by the relation

(G4 p = 12(1-0)"?[n§+ a®(k — 1)] 2% (k — 1)(1 +2n06) + 75 (1 + 70)] .

Since m,(, 7) decreases with increased p, the solution (3.3) is true for loads for which
holds:

D, = 1—(1/2)ax?(k—1) (1—a?n5?) = 0
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— that is, for loads
(3.5) P« <P < Pors
where po, is a root of the equation @, = 0.
After unloading, one part of the plate @ < x < n moves in regime A4, another, n

< x < 1 —in regime A—B (Fig. 1). The boundary of regimes is a function of time 5
= 7(7). The solution has the form:

m o =my=1, w=a2r-1)2, a<x<y,
(3.6) my = 1—(x=n)?[=x?+2(1=n)x+n@—3n)]/x(1 —n)*(1 + 3n),

my=1, @=a(l-x)(1-n" n<x<I,

létﬁfa, P,;Spépun

where the function 7(7) is determined from equation
(3.7) afno(1+n0—n3)—n(1+n—7?)]-12(z—1) = 0.
Since 7 < 0, at some moment 7(z,) = a. It follows that the solution (3.6) is true in the
time interval

(338) | <7< 7= 1+ (/1) no(1+m0—78) — a1+ a—a?)].
By means of (3.7) from (3.6) we obtain the equality:

1
(39) w(x, ©) = a0 = 1) (1= X)Q2+3n0+3n) +9(x).

Obviously, for 7, < x < 1

p(®) = w(x, 1) = %(1 (=10,

In segment 5 < x < 7,, the function y(x) is determined by the continuity @(x, 7) at
x = 7.
Then, from (3.6)-(3.9) is derived the equality:

1
p() = gall2—a(me—x (1 +x+200)), 1< x < 7.

In the last interval of motion (7, < 7 < 7), the plate is moving in the regime 4-B
(Fig. 1); the stress profile is determined from the solution (2.2). The distribution of re-
sidual deflections is given by:

(310)  wlx, 1) = ;01— (1=0) Ak, )+ (1= o) o= a) o+ 3+ D]+ 93

a<x< 1, 7= 7.+ -2—l£aA(k, ).

For loads from
4.1) Po1 € P < Poz,
the stress profile is (Fig. 1):
4.2) a<x<uy—>E-F, u<x<n—>F-4, n<x<1->4-B.
From the flow law (1.5) for the side E~F it follows that
w(x, 1) = Ao(1)Inx+Bo(7),
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where A'o(r) and Bo(t) are arbitrary functions of time. But since 0 < m, (2, 7) < 1, we
have [1]

4.3) w'(a, 7) = 0.
Hence A'g(t) = 0. Therefore, the velocity field in this case is determined by the formulae
3.2).

Integration of (1.1) yields:

m, = l—laugaznaz(k-—l)(E—l—lné), my=m—1, a<x<u,

4
@4 my=1, my=E-ud)ms—ud)™", o< x< 1o,
0<z<, ngpspoz»
where
4.5) £ =x32  ud = ndll—2/act(k—1)).

And 7, is again determined from (3.4). The stress profile on the segment 7, < x < 1
and the deflection function w(x, ) on the whole plate are of the same form as in (3.3).
Since m, (e, 7) decreases with increeses of p, therefore p = py,,, m,(ax, v) = 0. Hence
stress profile (4.4) is realized only for loads, for which

D, = 2dug?—otug?—1—-In(uia=2) =0
— i.e. for loads (4.1), where p,, is a root of the equation @, = 0.
In the unloading interval 1 < 7 < 7, the dynamical behaviour of a plate is described
by the formulae of the previous section for this interval of time. The expression for re-
sidual deflections coincides with (3.10).

5

For loads
(.1 Poz S P < Po3s
the following stress profile in the plate is realized;
5% Sx<9—>D-E, v,<x<u —E-F,
G2) Ug < x< N> F—-A4, n<x<1- A-B;

the point D is not realized; the equality (4.3) is fulfilled as also is (3.2). Hence, as in Sec. 4,
for 0 € 7 < 1 we have

my = —ao?(k—1)(vo—x) Bui—x*—vox—03)[6xnE, my=—1, a<x<9,,
my = gans*ed (k- Died— ¥ ~udin(eix3, m=m=1, v <x< .

Deflections of the whole plate and the stress profile at the segment u, < x < 1 are
determined by formulae from the solutions (3.3) and (4.4) for corresponding segmental
boundaries of the regimes 7, and u,, as earlier determined by the formulae (3.4) and
(4.5); v, = V/ Aouo, Where A, is the root of the equation

2ug?—2—-1+nd =0
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satisfying the inequality 0 < 4, < 1. From the inequalities —1 < m, («, 7) < 0, the inter-
val of loads (5.1) is derived for which

Dy = 6vom3—aa’(k—1) (vo—0)(3nd~v5—avo—a?) > 0,

where pos is the root of the equation @, = 0. After unloading up to the full stop of plate
(1 £ 7 < 7y), its dynamical behaviour is the same as in Secs. 3, 4 after unloading; for
residual deflection, the formula (3.10) holds.

If p= pos, then, though during loading the stress profile (5.2) holds, at x = o the
point D is realized (Fig. 1), and (4.3) is not fulfilled; the velocity field in this case is differ-
ent from (3.2) and is by the kind:

Wetz(x—a)(v—a)~t, < x<v,
. _ | @a+2[1+ o In(x/v)], v < x<u,
(6.1 (¥, %) = W+ 2[1 +o In(ufv)], u<x<mn,
(1=x)(1=n) e+ z[l +wIn(@/v)]}, n<x<1,
where

w=v@v—0)", Zz=wl,r)-w,1).

Further analysis is carried out for an arbitrary “blast”-like load [5]. Therefore, from
the very beginning of the load action, v,.u, n are functions of time. Differentiating (6.1)
by time, substituting the result in (1.1) and taking into account (1.4), the following system
of five differential equations for w,, z, v, u, 5 is derived:

2w—a)[3etk—1)+ o2 +ov+ o], + (v — ) (v + ) Z— (02— a?)0z
—=2[6v+p(v*—a*)] = 0,
3(w—a)?[u? —v?+20? (k— 1) In(u/v)] 8, + (v — o) {[v(v? + 3u?)
+20%]In(u/v) ~ 3a(u® —v?)} Z+ {[2(v* — o) — 3a(u?® +v?)]In(u/v)
—3(@—20) (1 —v?)} 92— 3(v—0)*{p(u*—v?)+4[1 +1n(u/v)]} = 0,
(6.2)  6(v— ) [u*+ a(k—D]ewe+ (v — o) [v(Bu? +v?) — 20(3u? — «?) + 6vu> In(uv)] Z
+ {(2v—30) (92— 3u?) —2a[a? + 3u2In(u[v)]} 92 — 6(v — «)*(2+pu?) = 0,
(0 —u?) {(v—0)*dba+ (v~ @) [o— a+2In(w/0)]Z— [v— a+aln(u/v)] oz
+@/u)@— iz} +@—0)?*[2-p(n*—u?)] = 0,
(A=n)(14+3n) (* —u?) {(v ~ Do+ [0~ a0 In(u/v)] 2}
—@—a) {(n*=u?) [(1—=n)* (1 +7)p—12]+2(1 —n)*(1+37)} = 0.

Observing the behaviour of the function xQ.(x, 7) at the segment « < x < 1, and

the obvious identity
()" = (%) [x
for every twice differentiable function y = y(x), it is not difficult to show that the profile
(5.2), corresponding to the system (6.2), is preserved under any loads exceeding pos.



476 V. N, Mazarov anp Yu. V., NEMIROWSKII

If a rectangular pulse is the loading plate, then during the loading period 0 < 7 < 1)
we must set ¥ = # = 7 = 0, so that the system (6.2) becomes a system of algebraic equa-
tions with the unknowns €b,, %, v, o, 7. After unloading for the system (6.2), we should
set p = 0; numerical integration of the system under initial conditions at the time = = |
is performed in the time interval 1 < v < 74, Where 7, is determined from the condition
z(zo) = 0. At moment 1,, the velocity field (6.1) goes into (3.2), and during the interval
7o € 7 < 74 the plate is moving with the same stress profile as in seetions 3,4, 5 in the
unloading interval (1 < 7 < 7).

For an arbitrary “blast”-like load, numerical integration of the system (6.2) is per-
formed in the time interval 0 < 7 < 1, with zero initial conditions for the functions
w. (1), Wa(7), 2(7), 2(7). Initial conditions for »(7), u(z), n(z) are determined from the
system of algebraic equations derived from (6.2) © =2 =% =0, p = pos. Though at
T = 17, the velocity field (6.1) goes to (3.2), the stress profile (5.2) does not vanish immedia-
tely, as for a rectangular pulse, but is preserved for some time, while the boundary v does
not reach the rigid part of the plate. Subsequently the stress profile (4.2) is realized, while
the boundary of u, in its turn, does not reach «. Then the transition of the plate to regime
(3.1) is realized, and when n = « to regime 4—B (Fig. 1). If a peak of arbitrary
“blast”-like load satisfies the inequalities (3.5), (4.1), (5.1), the analogous behaviour
holds.

In conclusion of this section, we point out a number of problems, which are for «
and k limit cases of the case considered. Above all, for any fived o« # 0 as k — 1 the dy-
namics of the plate for 0 < 7 < 7, is described by the formulae of the known solution
by Hopkins and PRAGER [I] for a hinge-supported homogeneous plate, and comple-
tely coincides with it if « = 0 and & — 1. Furthermore, if k — c0, for 0 < & < 1, the
dynamical state corresponds to dynamical bending of a ring-shaped plate, hinge-supported
along the exterior contour and clamped along the interior one, if in addition to & = 0
the problem of dynamical bending of a circular homogeneous plate, hinge-supported
along the exterior contour and fixed at the central point is derived. In both cases, the
stress profile (5.2) is realized. Finally, for every pair o # 0 and k > 1, the problem is
equivalent to that of dynamical bending of a ring-shaped plate, hingesupported along
the exterior countour and clamped along the interior one, if, furthermore, & — 0, then
a homogeneous plate is supported in the centre by a pliable point.

7

Now, we investigated the dynamical behaviour of the plate for k satisfying the ine-
qualities (1.3). The upper bound of peak load p,, in regime 4—B is not determinable
here in an explicit way. But such a quantity p® < p,, can be indicated that in the interval
of loads

) Po<p<p° =2/aP(1—-a)(k°—K), K° = (1+5a%)/6a?

the solution of Sec. 2 holds, since the necessary conditions (2.3) for loads (7.1) are at
the same time sufficient for maintenance of the regime 4 — B (Fig. 1) in the entire ring-
shaped part of the plate. If the peak load rises, beginning from the load p,, then, as was
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shown by numerical calculations, beginning from some p'* > p° the monotonolity of
m, (x, 0) is lost. For some p > p'*, m,(x, 0) has the form shown at Fig. 2. Hence the
conditions (2.3) for the regime A-B (Fig. 1) would be sufficient, if

(72) ml(xi’o) = 0! ml(x290) < 1;
where x; and x, (Fig. 2) are determined from the system of equations
(1.3) mi(x;,00=0, i=1,2, o <x<x,<]I.

1

- = RN E

FiG. 2.

Depending on the parameters «, k, and growth of the peak load, it is ppssible that
one or both of inequalities (7.2) are not satified. Denote by x,,, and x,, the values of
x; and x, at which the equalities hold in one or both of the inequalities (7.2).

Then from (7.2), (7.3) and (2.1), we have

[A(x24) = 11 [A(X24) — (X241, if my(x,0)20,

PaslPo =1 (I=x)[@+x,,(14x,)]
(T ot o?) (= ) [ACx14) — (1]

p(x) = (I=xi) (1 +a+x,) (1+a+a?) 7,
Alxin) = 1= [(xig— 0)f(xis) + 6ko* (1 — )] A4 (k, @),
fxi) = —xf+2(1—a)xiy+2(4—3a), i=1,2,
where x,, and x,, are the roots (@ < x;, < x;, < 1) of the polynomials.

X (T 2x, 4+ 303+ 03 (1+2x, ) [1 -3a—6(1—a)(1—k)] = 0,
X3y (X3 +2ax,, + 302) — 2% (a4 2x,,) [a+3(1 — ) (1 —k)] = 0.

it m(x;,0 < 1;

Kok
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0t=03342 i_ k, | —1""]
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The set of values of « and & — at which with the increase of load the equalities hold
in (7.2) — determines on the plane «, k a certain curve k() (Fig. 3). If a point with coor-
dinates («, k) lies above the curve k,(e), or to the left of the straight line & = o, = 0.3342,
then along the rise of the peak load when x = x,,, the moment m, achieves its limit
positive value, though at x = x, it is still above zero (Fig. 4). Otherwise, if a point (a, k)
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lies below the curve k, («) (Fig. 3), then at x = x,,, m;, becomes equal to zero, the time
as at x = x; still being less than 1 (Fig. 5). On the curve k,(«), as the load, rises the equa-
lities in (7.2) are satisfied simultaneously (Fig. 6). In Figs. 7, 8 are plotted the dependences
P D Xiws M1(Xiy, 0) (i = 1,2) on the parameter of “washer’s” mass k at a = 0.3;
0.7. It is of interest to remark that on the curve k(o) (Fig. 3) p,, takes its maximum value.
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Let the parameters o and k satisfy the inequalities (Fig. 3):

(8.1) O<k<latO<a<oa,, ki<k<lato,<a<l.
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In the interval of loads p,, < p < p;,, the following velocity field exists:
e~ (x—a)(—0) ' (@a—w,), A< X<,
(I=x)(1=n)""w,, n<x<1,
w, = w(7, 7).
For m,, we have side by side with (1.4) the following conditions:
(8.3) my(n—0,17) =m(n+0,7) =1, min—0,1)=m(n+0,17)=0.
It is obvious that m, = 1 in the whole segment & < x < 1; the expressions for m, we de-
termine from the motion equations (1.1) by means of (1.4), (1.6), (8.3)
(8.4)
14+ (1 — a/x){0Qu+ (x— @) [A(x? +2ax + 302) +2(B—p) (x + 20))/12},  «
ok {1+(x—n)=[é'(x2+2nx+3qz)_2(c':'+p) (x+2n))/12x, n

(8.2) w(x, 7) = {

where 4, B, C are derivatives of the expressions:
8.5) A= (a-n)'@—w), B=@-o)@i—ow), C=@-D"w,

The unknown functions w,(7), w,(t), n(z) are determined from the following system of
differential equations:

Gy Wyt a8, +an = b, i=1,2,3
ay, = n*+2an+302—603(1—k), @y, =n*—0?, a3 = (+) (Wa—1w,),
(8.6) b, =2(*+an+a®p, day =N tan+ed=3e3(1=k), @ = —)2n+a),
@ = +0) @a—1y), by =3p, a3 =0, as=(1-9>(+3n),
a3 = (1-n)(1+3nw,, b; =2[(1—-n)*(1+2n)p-6].

When the rectangular pressure pulse acts on the plate, during its action (0 < 7 < 1)
we have to set # = 5, = const. Then the system of differential equations (8.6) becomes
the system of algebraic equations with the unknowns by, %, , 77o. For the independent
parameter it is convenient to take 7,. Then %@,, @, , p are found from the system as func-
tions of the parameter 7,.
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03 04 05 (1 o7 o8 09 10
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If the peak load rises from the value p,,, then m,(x,, 0) decreases, as shown in Fig. 9.
Obviously, the velocity fields (8.2) would be preserved while the first of the inequalities
(7.2) holds. Denote by p,,, Mox, X15 values of p, 1, and x; at which the equality holds
in the first inequality of (7.2). The qualities indicated are plotted in Fig. 10 as functions

m-zﬂn Mo , X1n
25 10
=03
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20 Toe.
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08

Ll /
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m AN

5 = 05
T
————"M\!&
04
] 02 04 06 08 1;‘0
FiG. 10.

of k at « = 0.3. For other values of 2, the dependences are identical. Under zero initial
conditions, from (8.2), (8.6) is derived the deflection in the loading phase (0 < 7 < I):

[t~ (= @) (10— )@=, )] T2[2, &< X < o,
(1 =) (1=70)"* 722, m<x<1,

dy = Wy, Gy =W,

8.7 w(x, 1) =

After unloading at the segment o < x < #, the regime A is realized, and at n < x < 1
the regime A-B (Fig. 1); n = n(7). Clearly,

(8.8) m=m=1, a<x<n;, m=1, n<x<Il.

From the Eqs. (1.1), taking into account (8.7), (8.8), we obtain the 'deflection:

w(x, 7) = [a,— (x— ) (o~ )" (@~a, )I(z—1/2), a<x<7.
On the segment 7 < x < 1, m, coincides with the second line of (8.4), after setting in the
expression for C from (8.5)
(8.9) w, = @(1, 1) = a—(n—o) (o— )" (@e—a,), *< 7 < ”.
By means of (8.9) we determine from the third equation of the system (8.6) the known
relation (3.7) for 7(r). The characteristic time 7, is determined by the formula (3.8). In
the expressions (3.7), (3.8) it should be set:
a = [(1-2)a, —(1-no)aal(no—0o)~".
On the segment 7 < x < 1, the deflection equals to
w(x, 7) = (a/24) (1 —x)(no — 1) [2a0 + (o +7) (bo +3do) +2bo (13 + 1701 +1*)]+9 (x),
ao = (NoGa—0oa,)(Mo—a)~", b= —(aa—ﬂ'q,)(ﬂo—“)dl-
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This is deduced analogously to (3.9); and (%) is equal to

(x) = (1/2)(1_"‘)(1_7?0)‘1“%’ N S X < l,
(1/24)[12(ag+box)—a?(no—x)*(1 + 2970 +x)], 7 < x < 7.
In the last stage of motion (7« < 7 < 7y), the stress profile is determined from the
solution (2.2). The expression for residual deflection has the form:

w(x, 7)) = (1-x)(1—a)" {agA(k, @) +a(l—a) (no— o) [2a0+ (10 + @) (bo +3ac)
+2bo(ni+ano+ad)]} 24+ p(x), a<x<I1.
For arbitrary “blast”-like load, the numerical integration of the system (8.6) proceeds
in the time interval 0 < 7 < 7,; the initial conditions at 7 = 0 for the functions w,(7),
wy(7), w,(7), @,(7) are zero, and for 7(r) are n(0) = 7o, where 7, is determined as the
solution of the algebraic system of equations derived from (8.6) at = 0, and p = p(0),
p(0) is the peak load. The characteristic time 7, is determined from:
(8.10) (1= 0)%,(70) = [1=7(7o)] (7o) = 0.

To arrive at w(x, 7), it is obviously necessary to integrate (8.2) by 7 in the interval
0< <€ 19

%e(7) — (x—2) ﬂf Eﬁ%__l—;mdr, a< x <,
(8.11) wix, 7) =

(-9 [ [L=g@ o) dr+p(), n<x< L
0

For the segment 7, < x < 1, y(x) = 0, since w(x, 0) = 0. Further,

612 p0) = wd)+ (o) [ EDZID gy 1y [ g,

'?5-"5'?0,

where g (1), w3 (n), wd(n), 7°(y) are known functions of 7 as a result of integration of
the system (8.6). In the last stage of motion (7, < 7 < 1), the regime A-B is realized
in the plate (Fig. 1). For deflection, we have the equation

8.13)  d(x, 1) = 12(1-x)(p—po)/po(1—)A(k, @), a<x<1, 7T, <T<T1H
Thus, by means of (8.10)-(8.13), we have
8.14)  w(x, 1) = (1—-x)(1—a) [(t— To)Wal(T0)+ 1247 (k, o) x

X f f(ppg’—l)dtd‘r]+w(x, 7o), o<x<1l,7o<1< 1),

To To

where 7, is the root of the equation

s
wa(70) + 12472 (k, @) [ (pp3*—1)dr = 0.
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If the peak load exceeds p,,, then for o and k from (8.1) the following stress profiles
are realized in the plate (Fig. 1):

e<x<§ —+A-B, & <x<§,-»B-(C)-B,
®.13) LX<y >B—-4, n<E<]1>A4-B,
a£x€51_’A'_‘B; E;\{\xs.f_’B_‘Cs
(8.16) E<x<é&-C-B, §,<x<n—->B-4,

n<x<l->A-B.

The stress profile (8.15) is realized in the interval of the loads P,, < P < P,,, where
P, is determined from the condition m;(x;,0) = —1 and the stress profile (8.16) —
for loads with peak P > P,,.

Solutions, corresponding to profiles (8.15) and (8.16) are not presented here because
of their cumbersomeness

9

The parameters « and k satisfy the inequalities
.1 e, <a<l, 0<k<k,

— 1i.e., a point with coordinates o and k lies under the curve k,(«) (Fig. 3). In the interval
of the loads

9.2) Psx SPSPyy
the following stress profile holds (Fig. 1):
as<x<§ +>A4-B, % <x<§ - B-(0)-B,
é,<x<1- B—(4)-B.
From (1.5), (1.4), by means of the conditions [1]
9.4 w'(6i—0,7) = '(5+0,7), i=1,2,
the following velocity field is derived:

©.3)

W™ (@ +w—Xx), a< x< &,
(-5} w(x, 7) = wgo~ {ato—& [I+In(x/E)]}, & <x< &y,
(§1%/6,0) (1-3), L<x<l,

o = £ 1+&1n(,/8)]—a.
By means of (1.4), (9.3)-(9.5), and also the conditions
my(&-0,7) =m(&+0,7) =0, i=1,2,

from (1.1) we derived the stress profile:
(/4 =) [D—p~ (1 -lnx)Cl+{1+£,Q;,

+(&/2)[(1-1n&)C+p—D}In(x/E), & <x< &y,
XM =£) {146:0,+ (1/12) (x— &) [E(x? + 2%, 4 383)

—2(B+p)(x+25)]}, & <x< L

©6) my =
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l’ u‘s.x__gfly Ezg._x\(._l,
=

“l1+m, & <x<é,,
£,0s, = 0Qa+(1/6) (5, — @) [24 (83 + &, + 22)+3(B-p) (€, + )],
£,0:,= £,0:, + (1/2) (D—p) (£2—£2) +(C/4) [E3(2In &, — 1)~ £2 2In &, — 1)),

On the segment o < x < &, the expression for m, coincides with the first line of (8.4).
The quantities 4, B, C, D, E are derivatives of the expressions

A=—-w0!, B=w,0'(atw), C=—&w0,

D= ggo  [atw—&(1=In&)], E= —¢& i/t 0.

The functions of time wy(7), &,(7), £,(7) satisfy the system of equations:
O7)  oayitind  [(E—0ané +6 6 (-8 b)) = b, i=1,2,3,

ayy = (61— 0){2w[£} + b, + o = 3a*(1 = K)] = (&, — 0)* (&, +a)},  a; = (E—a)?(&,
+o)[1=§,+&:1In(52/6)), a3 = — (61—’ +9), by = 2[(§1—a’)p—6¢,],
a3y = 36 (- )28+ o +3w(1 - k) In(6,/61),  ax2 = 33 -ED+2[(1
= &) — )28, + ) =381 — &, (61 +aé +a®)In(6,/E))]In(E2/6,),  ay3 = 3a(¢5—E&1)
— (35, 8+ 8 +20%)In(&,/8), by = 3[(E3-EDp—4In(&,/E)], a5y = £, &5
x[3&6(1+&)+(1-£)"]-2[° +281 +3e’0(1-K)], a3, = 32-E)E-ED+(
—&)[2(287 — ady —a?) + (1= &) (14 38,)] - 28, (3 + ab +a?)In(E,/€),  ays = 383
xQu—§&)— &3 —2a% — (&, — a)(1 - &,)(1+3&,) — &, (1428, + 383)In(&, /£),

by = 2[(1+&,+&)p—6).

When beginning from the value p = p,, the peak load rises, the quantity m,(x,, 0)
(é; < x, < &,) decreases monotonously, tending to —1, as has been shown by numerical
calculations. The quantity m,(x,,0) (§, < x < 1) can, depending on « and k, either
increase monotonously up to 1 or stay constant or decrease, tending to zero. In this way,
in the region (9.1) is determined a certain curve k,(«) (Fig. 3) such that

(9.8) -a%ﬁmi(x;, 0)=0 for (a,k)ek,(a).

For point («, k) belonging to (9.1), but lying above the curve k,(e) as is shown at Fig. 3,
the characteristic load p, is determined from the condition

(9.9) ml(xZ,O) = l.
If a point («, k) lies under or on the curve k, () [corresponding to fulfilment of (9.10)]
(9.10) 0654 =y, < a<1, 0<k<k(o),

the p, is determined from the condition:

©.11) £,(0) = 1.
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Denote by &4, 24, M (X14,0), X2, py the characteristic values of the quantities
&, &, m(x, 0), x,, p(0) at which the equality (9.9) is satisfied under the increase of
load. These quantities are plotted in Fig. 11 depending on k at « = 0.5. For « and k& from
(9.10) by the non positivity of the derivative (9.8) with rise of peak load, the equality (9.1)
holds. Denote by &,,, x,,, m;(x;,,0), p, the values of the quantities obtained above.
In Fig. (12), these quantities are plotted for k& from (9.10) at & = 0.8. For other values of
a, the dependences are identical with those plotted in Figs. (11) and (12). It must be re-
marked also that in the whole interval of loads (9.2) in the region (9.1) m,(x,,0) > —1.
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For a ectangular pressure pulse in the loading phase (0 < 7 < 1), in the system (9.7)

it should mt
(9.12)

&

&o; = const,

53 = 50: = const.

For numerical solution of system obtained of transcendental equations the following
reception nay be recommended. From any two of equations of the system, express €,
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and p by &5, and &;,. Substituting these values into the third equation, we may solve it
with respect to one of the unknowns &,, and &,,, considering the left unknown as an
independent parameter. When motion proceeds by inertia, numerical integration of the
system (9.7) is performed in the interval of time 1 < 7 < t,, where 7, is determined by
the condition &,(z,) = &,(t,). Further motion (7, < 7 < 7) proceeds in the regime
A-B (Fig. 1).

For an arbitrary “blast”-like load [5], the system (9.7) is integrated in the time interval
0 < 7 < 7;. The initial conditions at = = 0 for w,(z) and w,(7) are zero conditions,
and for £,(7) and £,(7) are determined from the system of transcendental equations
derived from (9.7) under the conditions (9.10).
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In conclusion of this section, it should be pointed out that under the rise of peak load
from the value p = p,, the stress profile (9.3) may pass on to the profile (8.15) and further
into the profile (8.16), if the parameters « and k lie between the curves k() and k(o)
in Fig. 3.

10

If o and k satisfy the inequalities (9.10), then in the interval of loads p; < p < p;
the following stress profile holds (Fig. 1):

(10.0) a<x< & —>A-B, &£ <x<1-B-(C)-B.

The characteristic load p, is determined from the condition m, (x,,0) = —1, (§; <x; <1)
(see Fig. 13). The velocity field, and also m,(x, 7), m,(x, 7) are derived from (9.5), (9.6)
by setting &, = 1

The unknown functions w,(7), &,(7) are determined from the first two equations of
the system (9.7) at &, = 1. Numerical integration of the system derived is performed in
the intervals of time 1 < 7 < 7oy, 0 < 7 < 743, respectively, for a rectangular pulse and
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an arbitrary “blast”-like load [5]. The characteristic time z,,;, in general different for
different loads, is determined from the condition mi(l, 7o,) = 0. In the time 7 = 74,
from the exterior contour of the plate its propagation begins inside a region B-(4)-B
bounded from the interior side by the moving boundary &,(7), and from the exterior
one — by the exterior contour of the plate. Thus in the entire ring-shaped part of the
plate the stress profile (9.3) is realized, which, in turn, is preserved only up to the moment
when the boundaries &, () and &,(7) merge on into the other. Further motion (7; < 7 < 7,)
holds in the regime 4-B (Fig. 1).

11

Let the p > p, parameters « and k satisfy (9.10). In the initial phase of motion, the

following stress profile holds (fig. 1).
(11.1) a<x<é »24-B, & <x<éE->BC, £<x<1-C-B.
The velocity field may be expressed:
) we+ 20~ {&, [ +In(§/5)]—x},  a<x<éy,
w(x, 7)= 1w+ &, 20 In(&[x), E<x<é,
ﬁ.ﬂe(lnx)"ns, E L ls
z=d,—w, o==E&—a+&In@lE), @=w(,71).

The expression for m, coincides with the first line of (8.4) in the interval & < x <
and with the second line of (9.6) in the interval &, < x < &; in the interval &£ < x
it has the form:

my = —1—(1[4)(x*—E)[p+ (1 ~InD)E]+ E/2)[p— (1 ~In E]In(x/é).
A, B, C, D, E are derivatives of the expressions
z‘i — —ifw", B = t;‘.?g'f"fléw_l[l +ln(§f‘fl)]’
C=—&i0', D=w+&20 ' né,  E =d(né)".

The functions we(7), we(7), &,(7), &(r) are determined from the system of equations:

£,
<1

(112)  wayio,+0ayiop+2(6, — a)as &, + 26, £ a é = 0y, i=1,..,4,
4y = (’51_“){2‘0['5%-#0(51+0€2—3°‘2(1“k)]"('51‘“)2(51+“)}’
a, = (¢ -0 +0), ay; = (E—a)?¢E+a)nEE), ais= (E—0)*(¢E +a),
by = 2[(E3-a)p—6&,], @y = 3&,(82—ED2— [Betw(l —k) +2£1+®]In(é/£)),
a3, = 3a(&}—£%)+ (3%, 82+ &1+ 2% In(¢/E,),
@zy = [~ 8- 28n(E[E)] 261+ by + 0 EE), e = aza,
by = 3{(E2—EDp—4[1+In(¢/£)]}, a3, = 38,82 &1 —20° — 60’0 (1 - k),
a3y = 38%(6, —20)+ £} + 20 + 68, £2In(£[£,), @33 = 3(8*—61)—2(61 + aé +o?)In(é/§)),
a3q = 382(5,—2a) + &1+ 20 +6£, EIn(§/§)),
by = 6(8%p—2), @4y =0, a4 =& [1-E+282(1-Iné)iné]n,
43 =0, a4 = —wway,[2E,Iné, by = —E[4+(1—-E+281né)p]In?E.

7 Arch. Mech. Stos. nr 3/73
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As in previous cases for rectangular pulse, at the time of load action (0 < 7 < 1) we
have a quasi-static problem, so that

£, = &, =const, &= §, = const.

The system (11.2) becomes a system of transcendental equations with respect to the
unknowns ,, @, &0, £o. The latter is easily solved by reducing to one equation relative to
one of the unknowns &, or &,.

Numerical integration of the system (11.2) for rectangular load is performed in the
time interval

(11.3) I<z< 1,

For an arbitrary “blast”-like load [5] unit in (11.3) should be replaced by zero. The
necessary initial conditions at T = 0 are determined as in previously considered cases.
Time 7, is determined from the equation:

ﬂ)ﬁbg"‘flélné = 0.

Further motion in the interval * < 7 < 7, proceeds by the same scheme as in the previous
section in time intervals 1 < 7 < 7, and 0 < 7 < 7;, respectively, for the first and the
second types of load.

In conclusion, we would point out that if in the solution of this section we set

then we obtain a solution corresponding to the dynamical bending of a piece-wise in-
homogeneous plate with rigidly clamped exterior confour (with 0 < k < 1). If, further-
more, a — 0, then we have the known solution [2].

It should be remarked also, that for « and k& from (9.11) and p > p,, the stress profiles
(10.1) and (11.1) are similar in quality, as in the problem with local load investigated
in [4].

12

Numerical calculations were performed by means of the electronic computer M-220,
making use of previous results. In Fig. 14 is shown the influence of the mass parameter
k on the maximum residual deflection in the plate. It will be seen that by enlarging the
mass of the “washer”, deflections may be reduced in an essential manner (making the
dynamic resistance better); the time as static load capacity remains the same.

Figs. 15 and 16 enable us to compare the maximum residual deflections of piece-
inhomogeneous and homogeneous plates of the same radii and volume, of the same
material —i.e., when the jump of mechanical properties follows from the jump in the
thickness the plate. The condition of volume equality ¥ = ¥° is equivalent to the following

(12.1) 8910 = v(a, k) = 1+a2(k—1),

where 24° is the thickness of a homogeneous plate. It is more convenient to express the
dimensionless quantities by the parameters of a homogeneous plate, such that

p=vp°% w=vu’ p°=pb}lo,8°% w® = Wy°b}o, 8°%F.
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Let M,, and M, be limit moments of exterior and interior parts of a plate. Then at static
load, the interior part of a plate remains rigid [7]:

(12.2) p<py = 1=-)(1+a?=a)t,  u= Mo Ms;.

Since uk? = 1, there follows the equivalence of (12.2) to the inequality: k > k,, = u7 '

Admitted were only such loads the central part of which remains rigid. Numerical
calculations were performed for various o and k, satisfying (12.1). It should be remarked
that deflections were maximum at « = 0.79 and k = k,, = 1.49 (Fig. 15)—i.e., for those
parameters of the plate at which load carrying capacity is maximum [7].

From Fig. 15 it follows that redistribution of the plate material to the central part
to improve its dynamic resistance is permissible only up to a certain limit, the exceeding
of which leads to a negative result.

In Fig. 16 are shown the analogous dependences in the case in which the load capacity
of both types of plates is the same — i.e., under the condition »*(1 —a®) = 1. It should be
remarked that in this case, the maximum of dynamic resistance is reached at a = 0.79.
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