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Dynamical bending of circular piece-wise nonhomogeneous plates 

Notation 

V. N. MAZALOV and YU. V. NEMIROVSKII (NOVOSIBIRSK) 

IN THE PAPER is considered the dynamical behaviour of piecewise non-homogeneous circular 
plates simply supported along the contour and consisting of two parts with different mechanical 
properties: a circular interior and an annular exterior. The material of the plate is supposed 
to be perfectly rigid-plastic and satisfies the Tresca yield condition. The dynamical properties 
of such a plate prove to be better than those of homogeneous plates. A more detailed analysis 
concerns the problem of a plate loaded by a uniformly distributed pressure pulse. 

Rozwaiono zagadnienie dynamiczne plyty odcinkami niejednorodnej, podpartej na obwodzie 
i skladaj(lcej si~ z dw6ch cz~sci o r6znych wlasnosciach mechanicznych: z kolowego wn~trza 
i z pierscienia kolowego. Material plyty jest doskonale sztywno-plastyczny i spelnia warunek 
Treski. Stwierdzono, ze wlasnosci dynamiczne takiej plyty S<l lepsze anizeli plyty jednorodnej. 
Przeprowadzono dokladniejs:l.'l analiz~ problemu w przypadku r6wnomiemego udarowego ob­
ci<lZenia calej powierzchni plyty. 

B pa6oTe llCCJie.zzyeTcH ~aMHllecJ<RH ll~6 KpyrJihiX ruap.HilpHo onepTbiX no Hapy>I<HoMy 
KOHTYPY nnaCTilH, coCToH~ ll3 .nByx llaCTe:H c pa3JlllliHh!Am MeXaHillleCKUMil csoiiCTBaMB;: 
BH}'TpeHHeH, KpyrOBOH, B; BHentHeii, KOJib~eBOH. B HeKOTOpbiH MOMeHT nnaCTilHKa BHe3aiiHO 
Harpy>KaeTCH He B03paCTaiOII.\eH BO BpeMe.HI{ paBHOMepHO pacnpe~eJieHHOH Harpy3KOH Bbi­
COKOH HHTeHCilBHOCTB;. MaTepg;an nnaCTB;HKU ~eaJibHhm >KeCTKo-nJiaCTB;t~ecKB;:H, no~­
roll.\llHcH YCJIOBB;JO nnaCTB;'IHOCTil TpecKa g; acco~poBaHHOMy c HaM 3aKOHY TelleHHH. li3-3a 
orpa.HillleHHoCTB; o6'beMa CTaTLH npHBo~c.a perue.HI{e 3a~aqg; JIB;ntL wm cnyqa.a, Kor~a 
BH}'TpeHHHH llaCTL nnaCTHHKil B npo~ecce ABB;>KeHHH oCTaeTcH meCTKo:H. YKa3LmaeTCH Ha 
CYII.\eCTBeHHoe npei{MYII.\eCTBO (B CMbiCJie yMeHLnteHB;H OCTaTOliHbiX nporn6oB) KYCOliHO­
HeO~OpO~IX nnaCTHH no cpaBHeHHID c o~opo~IAm nJiaCTilHKaM:Il Toro me pa~yca 
B; Beca. lloKa3aHO, liTO HaB;OOJibnteH ~lleCKOH COnpOTilBJIHeMOCTLlO o6Jia~aeT CTyneH­
liQTaH llJIQCTilHKa C napaMeTpa.~B;, COOTBeTCTBYJOII.\B;Mil MaKCI{MaJibHOH BeJIB;liB;He CTaTB;lleCKOH 
npe~eJibHOH Harpy3KU. 

ao, bo radii of interior and exterior parts of a plate, respectively, 
W deflection, 

Mt, M2 radial and circumferential bending moments, respectively, 
Qr shearing force, 

y, 2~ surface density and thickness of the ring-shaped part, 
r1o yield limit, 
P intensity of uniformly distributed load; 

time. 
to duration of rectangular pressure pulse, 

Yo surface density of the central part; 
r radial coordinate. 

To THE INVESTIGATION of dynamical bending of circular rigid-plastic plates have been 
devoted, numerous papers a survey of which may be found in [1-4]. The attention of the 

http://rcin.org.pl



470 V. N. MAZALOV AND Yu. V. NEMIROWSKII 

authors was attracted only by homogeneous plates. In this paper is investigated the dy­
namical behaviour of piece-wise nonhomogeneous plates simply supported along the ex­
terior contour and consisting of two parts with different mechanical properties: the circu­
larshaped interior one and ring-shaped exterior. Plates are supposed to be ideally rigid­
plastic satisfying the Tresca yield condition. The further analysis not only gives a direct 
method of calculation of the behaviour of such plates under dynamical loads, but also 
indicates their essentially better dynamical resistance by comparison with homogeneous 
plates of the same radius and weight. It is shown that the maximum of dynamical resistance 
belongs to step-like plates with parameters corresponding to the maximum of static limit 
load. The dynamical behaviour of plates under the action of uniformly distributed rectan­
gular pressure pulse is investigated in detail and the pecularities of the dynamic behaviour 
of plates under the action of arbitrary "blast-like" load [5] are discussed. 

Static analysis of piece-wise nonhomogeneous plates is given in [6, 7]. 

1 

Put the coordinate origin at the centre of a plate, direct the deflection axis along the 
direction of a load, the abscissa along the radius r. 

The dimensionless equations of motion have the form [1]: 

[xQx(x, r)]' +x[p(r)-w(x, r)] = 0, 

(1.1) 
mi = Mi/G0 b2 

... (i = 1,2), w = Wyb5/G0 b2t5, p = Pb~/G0 b2 • 

Qx = b0 Q;/G0 b2
, T = t/10 , x = r/b0 • ex= a0 /b0 ... 0 ~ex< 1, 

where M 1 and M 2 are radial and circumferential bending moments, respectively, a0 and 
b0 are radii of the interior and exterior parts of a plate; y, 2b and Go are, respectively, sur­
face density, thickness and yield limit of the ring-shaped part of a plate, P- the intensity 
of uniformly distributed rectangular pressure pulse of duration t0 , t -time. Primes 
indicate differentiation with respect to x and dots with respect to T. 

In what follows the complete solution of the problem under consideration is ascertain­
ed only for the case in which the interior part of the plate remains rigid in the motion for 
want of space. Essential for our analysis is whether the inequality 

(1.2) k = Yof'Y ~ 1 

or inequalities 

(1.3) O~k<1 

are satisfied. Here y0 indicates the surface density of the central part. 
The necessary initial and boundary value conditions have the form: 

w(x, 0) = W(X, 0) = 0, W(l, T) = w(l, T) = 0, w(ex, T) = Wcx(T), 

w(ex, r) = wcx(r), m1(1, r) = 0, exQcx = -(ex2 /2) [p(r)-kwcx(r)]. 
(1.4) 

The flow law implies that curvature velocities ie 1 and ie 2 up to the positive constants 
multipliers equal to 

(1.5) iei = oFfomi ... (i = t, 2), (ie1 = -w", ie2 = -iv'Jx), 
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where~ = fF(m 1 , m2) is a Tresca hexagon on the m1 , mrplane (see Fig. 1). Limit load 
corresponds to the plastic regime and is equal to (see [6, 7]): 

(1.6) 

The plastic states corresponding to points A and B are realized for x = et and x = 1, 
respectively (Fig. 1). 

A 

D 

FIG. 1. 

The complete solution of the indicated dynamical problem, depending on plate pa· 
rameters and acting load, is the sum of particular solutions, corresponding to various 
sides and vertices of Tresca's hexagon (Fig. 1). Every stress profile is characterized by 
a definite system of inequalities for the functions mi(x, t) in various parts of the plate 
and for various times. In the interests of brevity, these inequalities have not been estimat· 
ed for any part of the plate and any time. The estimations have been made only, where 
these inequalities are indeed not true, but assuming them to be fulfilled in other parts 
of the plate. The set of the values of parameters for which the corresponding system of 
inequalities is not satisfied implies transition of the plate to a different stress profile. For 
the same reason, of all possible plastic states only those have been selected which are 
realizable in fact. It should be remarked that continuity in x and 1: of functions w(x, r), 
w(x, r) and continuity in x of m1(x, r), m2 (x, r), Qx(x, r) is used in the solution of the 
problem. 

2 

The plate is moving in regime A-B (Fig. I). Integrating the equation of motion (1.1) 
and taking into account (1.4)-(1.6), we obtain: 

x-et 6r2 (P-Po) 1-x 
(2.1) m1 =1-x(l-et)P(x,p,k,et), m2=l, w= PoA(k,<X) 1-et' 

et~ x ~ 1, 0 ~ i ~ 1, Po ~ P ~ P* 

X- et 
m1 = 1- x(l-et) P(x, 0, k, <X), m2 = 1, 

6(-r2 +2prfpo-P!Po) 1-x w = --C.----:-:-::--:-----
A(k,et) 1-et 

(2.2) 

6 Arch. Mcch. Stos. nr 3/73 
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where 

1-x [cp(x,k,cx) ] 
lf'= 1+-

1
---2 A(k ) (P-Po)-(l+cx+x), 
+ ex+ ex Po ' ex 

cp = - (1 +ex+ cx2)x2
- ex (I- ex) [6cx(k-l)+ 2cx + l]x- cx2 [6(k -I)(I- cx2

) 

- 2cx2
- 2cx + 1], 

A(k, ex)= (1-cx)[6cx2 (k-I)+3cx2 +2cx+1]. 

Solution (2.1) corresponds to the load acting in the time period 0 ~ r ~ 1 and (2.2)­
to the inertial moving unloading period I ~ r ~ -r1 . Necessary conditions for the regime 
A-B are 

(2.3) lf'(cx,p, k, ex)~ 0, (1-cx)lf''(I,p, k, ex)+ ex~ 0. 

It may easily be shown that for k, satisfying the inequaily (1.2), the conditions (2.3) 
are in fact sufficient, and the second of the condition (2.3) follows from the first one, 
determining the characteristic load 

p* = 6k/(k-k0)(I-cx)2 (I+2cx), k 0 = (1+3cx)/2(1+2cx). 

Time of motion i 1 is determined here and hereinafter from the condition w(x, i 1) = 0. 
In sections 3-6 solutions are derived for the parameter k from (I .2). 

3 

In the load-action period, for loads p* ~ p ~ p 01 the following ~tress profile is realiz­
ed (Fig. I): 

(3.1) ex ~ X ~ 'YJo -+ A-F, 'YJo ~ X ~ 1 -+ A-B. 

By means of (1.5) and (1.4), we obtain the following velocity field: 

(3.2) . ( ) J Wcx(r), 
w x, r = l (l-x)(1-no)-1wcx(r), 

ex~ X~ 'YJo, 
'YJo ~X~ I. 

From the Eqs. (I. I) by means of (3.1), (3.2) and (1.4), the following solution is derived: 

m 1 =I, m2 = I-acx2(k-I)(n~-x2)/2rJ~, w = a-r2 /2, ex~ x ~ fJ0 , 

(3.3) m1 = 1-a(x-n0)2 [rJMx2 -rJ~)+2cx2 (k-I)(l-no)(x+2no)]/I2xn5(1-rJo), 

m 2 = I, w = ar2 (1-x)/2(I-no), 'YJo ~ x ~ I, 

a = p(l + CX
2 fj() 2 (k-1)]-t, 

where the boundary of the regimes 'YJo is connected with the parameters p, ex and k ~ 1 
by the relation 

(3.4) p = 12(1-no)- 2 [n~+cx2 (k-1)][2cx2 (k-1)(1+2no)+n5(l+no)l- 1 . 

Since m2 (cx, r) decreases with increased p, the solution (3.3) is true for loads for which 
holds: 
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- that is, for loads 

(3.5) P* ~ P ~ Po1, 

where p0 1 is a root of the equation l/> 1 = 0. 

After unloading, one part of the plate et ~ x ~ 'YJ moves in regime A, another, 17 
~ x ~ 1 - in regime A - B (Fig. I). The boundary of regimes is a function of time 17 
= 'YJ( r). The solution has the form: 

m 1 = m2 = I, w = a(2r-l)/2, et~ x ~ 'YJ, 

(3.6) m 1 = 1-(X-'Y})2
[ -x2 +2(1-'Y})X+'Y}(4-3fJ)]/x(l-'Y})3 (1 +3'Y)), 

m2 = 1, w = a(1-x)(l-'Y})-t, 'YJ ~ x ~ 1, 

1 ~ T ~ icx, P* ~ P ~ Po1, 

where the function 'YJ( r) is d-etermined from equation 

(3.7) a['Y}0 (1 +'Y}0 -'Y}~)-'Y}(l +1]-1]2)]-12(-r-1) = 0. 

Since i} < 0, at some moment 'YJ( rcx) = et. It follows that the solution (3.6) is true in the 
time interval 

(3.8) 

By means of (3. 7) from (3.6) we obtain the equality: 

1 
(3.9) w(x, r) = 

24 
a 2 ('Y} 0 -'Y})(1-x)(2+3'Y}0 +3'Y})+1p(X). 

Obviously, for 'YJo ~ x ~ 1 

1 
1p(x) = w(x, 1) = 2 (1-x)(l-1]0)- 1 • 

In segment 'YJ ~ x ~ 'Y)o, the function 1p(x) is determined by the continuity w(x, r) at 

X= 1'J· 
Then, from (3.6)-(3.9) is derived the equality: 

1p(x) = 2\ -a[l2-a('Y}0 -x)2 (1 +x+2'Y}0)], 'Y} ~ x ~ 'YJo· 

In the last interval of motion (rcx ~ r ~ r1), the plate is moving in the regime A-B 
(Fig. 1); the stress profile is determined from the solution (2.2). The distribution of re­

sidual deflections is given by: 

1 
(3.10) w(x, r1) = 24 a 2 (l-x)(l-ct)- 1 [A(k, ct)+(l-ct)('Y}0 -ct)(3tJ0 +3ct+2)]+1p(X)~ 

I 
et~ x ~ 1, r1 = rcx+ 

24 
aA(k, et). 

4 

For loads from 

(4.1) 

the stress profile is (Fig. 1): 
Pot~ P ~ Po2, 

(4.2) et~ X~ u0 --+ E-F, u0 ~X~ 1]0 --+ F-A, 'YJo ~X~ I--+ A-B. 
From the flow law (1.5) for the side E-F it follows that 

w(x, r) = Ao(r)lnx+Bo(t), 

6* 
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where A0 ( -r) and B0 ( -r) are arbitrary functions of time. But since 0 ~ m1 (IX, -r) < I, we 
have [I] 

(4.3) w'(!X, -r) = o. 
Hence A0 (-r) = 0. Therefore, the velocity field in this case is determined by the formulae 
(3.2). 

Integration of (1.1) yields: 

I 
m1 = 1-4au51X2 1]0 2 (k-1)(~ -1-ln~), m2 = m1 -I, IX~ x ~ u0, 

(4.4) m1 = 1, m2 = (x2-u5)(rJ5-u5)-1, Uo ~ x ~ 1Jo, 

0 ~ T ~ 1, Po1 ~ P ~ Po2, 
where 

(4.5) ~ = x2u02, u~ = rJHI-2fa!X2(k-I)]. 

And rJo is again determined from (3.4). The stress profile on the segment rJo ~ x ~ I 
and the deflection function w(x, -r) on the whole plate are of the same form as in (3.3). 
Since m1(1X, -r) decreases with increeses of p, therefore p = p02,.m1 (1X, -r) = 0. Hence 
stress profile ( 4.4) is realized only for loads, for which 

f/>2 = 21]5Uo2 -IX2u0 2 -I-ln(u~1X- 2) ~ 0 

- i.e. for loads (4.1), where p 02 is a root of the equation f/>2 = 0. 
In the unloading interval I ~ T ~ T" the dynamical behaviour of a plate is described 

by the formulae of the previous section for this interval of time. The expression for re­
sidual deflections coincides with (3.IO). 

5 

For loads 

(5.1) Po2 ~ P ~ Po3, 

the following stress profile in the plate is realized; 

(5.2) 
IX~ X~ V 0 ~D-E, v0 ~ X~ u0 ~ E-F, 

u0 ~X~ f}o ~F-A, f}o ~ x ~ I~ A-B; 

the point D is not realized; the equality ( 4.3) is fulfilled as also is (3.2). Hence, as in Sec. 4, 
for 0 ~ T ~ I we have 

m1 = -a<X2(k-I)(v0 -x)(3u~-x2 -v0 x-v5)f6xrJ5, m2 = -I, IX~ x ~ v0 , 

I 
m1 = 4arJQ" 2 cx2(k-I)[v5-x2 -u5ln(v~x- 2)], m2 = m1-I, v0 ~ x ~ Uo. 

Deflections of the whole plate and the stress profile at the segment u0 ~ x ~ I are 
determined by formulae from the solutions (3.3) and ( 4.4) for corresponding segmental 
boundaries of the regimes 'Ylo and u0 , as earlier determined by the formulae (3.4) and 
(4.5); v0 = y.A.0 u0 , where A.0 is the root of the equation 

2rJ5u<>2-A.-I+lnA. = o 
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satisfying the inequality 0 < .1.0 < 1. From the inequalities -1 ~ m1 (a, r) ~ 0, the inter­
val of loads (5.1) is derived for which 

(/>3 = 6vo1Ja-aa2 (k-1)(v 0 -a)(31J5-v5-av0 -a2
) ~ 0, 

where p03 is the root of the equation (/>3 = 0. After unloading up to the full stop of plate 
(1 ~ r ~ r 1), its dynamical behaviour is the same as in Secs. 3, 4 after unloading; for 
residual deflection, the formula (3.10) holds. 

6 

If p~ p 03 , then, though during loading the stress profile (5.2) holds, at x = a the 
point D is realized (Fig. 1 ), and ( 4.3) is not fulfilled; the velocity field in this case is differ­
ent from (3.2) and is by the kind: 

(6.1) 

where 

I 

wa+z(x- a)(v- a)- 1
, 

. ( ) _ Wa+.i[1 +ru ln(xfv)], 
w x, r - Wa+.i[1 +w ln(ufv)], 

(1-x)(1-1J)- 1 {wa+z[l +w ln(ufv)]}, 

w = v(v-a)-t, .i = w(v, r)-w(a, r). 

a~ X~ V, 

V~ X~ U, 

U~X~1J, 

1J~X~1, 

Further analysis is carried out for an arbitrary "blast" -like load [5]. Therefore, from 
the very beginning of the load action, v, .u, 1J are functions <;>f time. Differentiating (6.1) 
by time, substituting the result in (1.1) and taking into account (1.4), the following system 
of five differential equations for Wa, z, v, u, 1J is derived: 

2(v- a)[3a2 (k-1) +v2 + av+ a2]wa+ (v- a)l(v + a)z- (v 2 - a2)v.i 

-2[6v+p(v 3 -!X3
)] = 0, 

3(v- a)2 [u2 -v2 + 2a2 (k-1)ln(ufv)]wa+ (v- a) {[v(v 2 + 3u2
) 

+ 2a3
] ln(ufv)- 3a(u2 -v2

)} z+ {[2(v3
- a 3

)- 3a(u2 +v2
)] ln(ufv) 

-3(v-2a)(u2 -v2)}v.i-3(v-a)l{p(u2 -v2)+4[1 +ln(ufv)]} = 0, 

(6.2) 6(v- a)2 [u2 + a.2 (k-1)]wa+ (v- a.)[v(3u2 +v2
)-2a(3u2 - a2)+ 6vu2 ln(ufv)]z 

+ { (2v- 3a.)(v2
- 3u2)-2a.[a.2 + 3u2ln(ufv)]}v.i- 6(v- a)2 (2+pu 2

) = 0, 

(1J 2 -u2
) { (v- a.Ywa+ (v- a)[v- rx+v ln(ufv)]z- [v- a+ a.ln(ufv)]vz 

+(vfu)(v-a.)u.i}+(v-a.)2 [2-p(1J 2 -u2
)] = 0, 

(1-1})(1 + 31])(1}2
- u2

){ (v- !X)Wa + [v- a +v ln(ufv)] .i} ij 

- (v- a) { (17 2
- u2)[(1-1])2 (1 + 1J)P -12] + 2(1-1})2 (1 + 31J)} = 0. 

Observing the behaviour of the function xQx(x, r) at the segment a. ~ x ~ 1, and 
the obvious identity 

(xy)" = (x2y')' fx 

for every twice differentiable function y = y(x), it is not difficult to show that the profile 
(5.2), corresponding to the system (6.2), is preserved under any loads exceeding p03 • 
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If a rectangular pulse is the loading plate, then during the loading period (0 ~ T ~ 1) 
we must set v = u = ?] = 0, so that the system (6.2) becomes a system of algebraic equa­
tions with the unknowns Wa., z, v0 , u0, rJo. After unloading for the system (6.2), we should 
set p = 0; numerical integration of the system under initial conditions at the time T = 1 
is performed in the time interval 1 ~ T ~ To, where n 0 is determined from the condition 
z(T0) = 0. At moment T0 , the velocity field (6.1) goes into (3.2), and during the interval 
T 0 ~ T ~ T 1 the plate is moving with the same stress profile as in seetions 3, 4, 5 in the 
unloading interval ( 1 ~ T ~ T 1). 

For an arbitrary "blast"-like load, numerical integration of the system (6.2) is per­
formed in the time interval 0 ~ T ~ To with zero initial conditions for the functions 
wa(T), wa.(T), z(T), i:(T). Initial conditions for v(T), u(T), rJ(T) are determined from the 
system of algebraic equations derived from (6.2) v = u = ?] = 0, p ~ p 03 • Though at 
T = To the velocity field (6.1) goes to (3.2), the stress profile (5.2) does not vanish immedia­
tely, as for a rectangular pulse, but is preserved for some time, while the boundary v does 
not reach the rigid part of the plate. Subsequently the stress profile ( 4.2) is realized, while 
the boundary of u, in its turn, does not reach ex. Then the transition of the plate to regime 
(3.1) is realized, and when rJ = ex to regime A-B (Fig. 1 ). If a peak of arbitrary 
"blast" -like load satisfies the inequalities (3.5), (4.1 ), (5.1 ), the analogous behaviour 
holds. 

In conclusion of this section, we point out a number of problems, which are for ex 
and k limit cases of the case considered. Above all, for any fived ex ¥= 0 as k -+ 1 the dy­
namics of the plate for 0 ~ T ~ Ta. is described by the formulae of the known solution 
by HoPKINS and PRAGER [1] for a hinge-supported homogeneous plate, and comple­
tely coincides with it if ex -+ 0 and k -+ 1 . Furthermore, if k -+ oo, for 0 < ex < 1, the 
dynamical state corresponds to dynamical bending of a ring-shaped plate, hinge-supported 
along the exterior contour and clamped along the interior one, if in addition to ex -+ 0 
the problem of dynamical bending of a circular homog\:.: neous plate, hinge-supported 
along the exterior contour and fixed at the central point is derived. In both cases, the 
stress profile (5.2) is realized. Finally, for every pair ex¥= 0 and k > 1, the problem is 
equivalent to that of dynamical bending of a ring-shaped plate, hingesupported along 
the exterior countour and clamped along the interior one, if, furthermore, ex -+ 0, then 
a homogeneous plate is supported in the centre by a pliable point. 

7 

Now, we investigated the dynamical behaviour of the plate for k satisfying the ine­
qualities (1.3). The upper bound of peak load p** in regime A-B is not determinable 
here in an explicit way. But such a quantity p0 < p** can be indicated that in the interval 
of loads 

(7.1) 

the solution of Sec. 2 holds, since the necessary conditions (2.3) for loads (7.1) are at 
the same time sufficient for maintenance of the regime A-B (Fig. 1) in the entire ring­
shaped part of the plate. If the peak load rises, beginning from the load p 0 , then, as was 
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shown by numerical calculations, beginning from some ph > p0, the monotonolity of 
m1(x, 0) is lost. For some p >ph, m1(x, 0) has the form shown at Fig. 2. Hence the 
conditions (2.3) for the regime A-B (Fig. 1) would be sufficient, if 

(7.2) m1 (x1 ,0)~0, m1 (x2 ,0)~1, 

where x 1 and x2 (Fig. 2) are determined from the system of equations 

(7.3) m~(xb 0) = 0, i = 1, 2, ex 1 < x1 < X2 < 1. 

FIG. 2. 

Depending on the parameters ex, k, and growth of the peak load, it is possible that 
one or both of inequalities (7.2) are not satified. Denote by x u, and x 2* the values of 
x 1 and x2 at which the equalities hold in one or both of the inequalities (7.2). 

Then from (7.2), (7.3) and (2.1), we have 

I 
[).(x2*)-1][).(x2*)-,u(x2*)]-t, if m1(x1 ,0) ~ 0, 

P**!Po = 
1 

(1-x1*) [ex3 +xu(l +x1*)] 
1
.f 

+ m1 (x2,0)~1; (1 +ex+ ex2)(xu- ex) [).(xu)- ,u(xu)l 

,u(xi*) = (1-xi*)(1 + ex+xi*)(l +ex+ ex2)- 1
, 

).(xi*)= 1- [(xi.-ex)f(xi*)+6kex2 (1-ex)]A- 1 (k, ex), 

f(xi*) = -xf.+2(1-ex)xi*+ex(4-3ex), i = l, 2, 

where x 1 * and x2* are the roots (ex < xh < x2* < l) of the polynomials. 

xf.(xi* + 2x u + 3ex3
) + ex3 (1 + 2x uHI- 3ex- 6(1- ex)(1- k)] = 0, 

x~.(x~* + 2exx2 * + 3ex2
)- 2ex2 (ex+ 2xaHex+ 3(1- ex)(l-k)] = 0 . 
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The set of values of ex and k - at which with the increase of load the equalities hold 
in (7.2)- determines on the plane ex, k a certain curve k*(ex) (Fig. 3). If a point with coor­
dinates (ex, k) lies above the curve k*(ex), or to the left of the straight line ex = ex* = 0.3342, 
then along the rise of the peak load when x = x2*, the moment m1 achieves its 1imit 
positive value, though at x = x 1 it is still above zero (Fig. 4). Otherwise, if a point (e<, k) 

m1 
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lies below the curve k*(rx) (Fig. 3), then at x = x1*, m1 becomes equal to zero, the time 
as at x = X2 still being less than I (Fig. 5). On the curve k*(rx), as the load, rises the equa­
lities in (7.2) are satisfied simultaneously (Fig. 6). In Figs. 7, 8 are plotted the dependences 
p0

, p**' xi*' m 1 (xi*' 0) (i =I, 2) on the parameter of "washer's" mass k at rx = 0.3; 
0.7. It is of interest to remark that on the curve k*(rx) (Fig. 3) p** takes its maximum value. 

8 
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X111 
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Let the parameters rx and k satisfy the inequalities (Fig. 3): 

m1(x21f,OJ 
m1(x11f,O) 
X211 
x11f 

0.20 

aoo 
1.0 
k 

(8.I) 0 ~ k < I at 0 ~ rx < rx*, k* < k < I at rx* ~ rx < I. 
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In the interval of loads p** ~ p ~ Pu, the following velocity field exists: 

. _ {wcx-(x-tx)(17-tx)- 1 (wcx-Wfl), tx ~ x ~·17, 
(8.2) w(x, r)- (l-x)(1-17)-twf/, 17 ~ x ~ I' 

wf} = w(17 , r). 

For m 1 , we have side by side with (1.4) the following conditions: 

(8.3) m1(17-0, r) = m1 (17+0, r) = 1, mH17-0, r) = m~(rJ+O, r) = 0. 

It is obvious that m2 = 1 in the whole segment a ~ x ~ 1 ; the expressions for m 1 we de­
termine from the motion equations (1.1) by means of (1.4), (1.6), (8.3) 

(8.4) 

m
1 

= { 1+(1-a/x)\~Qcx+(x-a)[A(x2 +~ax+3a2)+2(B-p)(x+2a)]/12}, 
1 + (x-17)2 [C(x2 + 217x+ 3172

)- 2(C +p) (X+ 217)]/12x, 

where A, B, C are derivatives of the expressions: 

C( ~ X~ 1], 

17~X~l, 

(8.5) A = (tx-17)- 1 (wcx-Wf/), iJ = (17- tx)-l (17Wcx- awf}), c = (1] -l)-1wf}. 
The unknown functions wcx( r), w!J( r), 17( r) are determined from the following system of 
differential equations: 

ailw2+ai2w'l+oi31J = bj, i = l, 2, 3 

a11 = 172 + 2a17+ 3a2 -6a2 (l-k), a12 = 1]2- tx2
, a13 = (17+ a)(wcx-w'l), 

(8.6) h1 = 2(172+an+a2)p, o21 = 1J2+an+a2-3a2(l-k), o22 = (n-a)(217+a), 

a23 = (2n+a)(wcx-w'l), h2 = 31J2p, a31 = 0, a32 = (I-n)2 (1+3n), 

a33 = (1-n)(l+317)wf/, h3 = 2[(1-n)2 (1+217)p-6]. 

When the rectangular pressure pulse acts on the plate, during its action (0 ~ r ~ 1) 
we have to set 17 = 1Jo = const. Then the system of differential equations (8.6) becomes 
the system of algebraic equations with the unknowns Wcx, w

110
, 1Jo· For the independent 

parameter it is convenient to take 17o. Then wcx, wfJo' p are found from the system as func­
tions of the parameter 1Jo. 

m1 
1.00 F=====+===:::::F~""'i1::::::::::-:-G~-r"S(l' 

X 

F'Io. 9. 
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If the peak load rises from the valuep**' then m 1(xu 0) decreases, as shown in Fig. 9. 
Obviously, the velocity fields (8.2) would be preserved while the first of the inequalities 
(7.2) holds. Denote by ph, 17o*' xu values of p, 170 and x 1 at which the equality holds 
in the first inequality of (7.2). The qualities indicated are plotted in Fig. I 0 as functions 

w-2Piflf flo~t ,x1• 
25.------.------~-----.------r---~~ 1.0 

a-aa 
0.9 

0.8 

0.6 

0.5 

0 02 04 0.6 
0.4 

OB 1.0 
k 

FIG. 10. 

of kat a = 0.3. For other values of ·7., the dependences are identical. Under zero initial 
conditions, from (8.2), (8.6) is derived the deflection in the loading phase (0 ~ r ~ 1): 

(8.7) 
. ( ) _ { [aa-(x-a)(170 -a)- 1 (aa-a170)]r2 /2, a~ x ~ 170 , 

w x' r - ( ) ( ) 1 2/2 a110 1-x l-170 - r , 17o ~ x~ I, 

Oa :: Wa, 0 170 :: W110 • 

After unloading at the segment a ~ x ~ 17, the regime A is realized, and at 17 ~ x ~ 1 
the regime A-B (Fig. 1); 17 = 17( r). Clearly, 

(8.8) 

From the Eqs. (1.1 ), taking into account (8. 7), (8.8), we obtain the 'deflection: 

w(x, r) = [aa-(x-a)(rJ0 -a)-1 (aa-a170)](r-1/2), a~ X~ 17· 

On the segment 17 ~ x ~ I, m1 ~oincides with the second line of (8.4), after setting in the 

expression for C from (8.5) 

(8.9) w1] == W(17, 1) = Ocx-(17-C<H17o-a)- 1 (acx-a1]), C( ~ 17 . ~ 17o· 

By means of (8.9) we determine from the third equation of the system (8.6) the known 
relation (3. 7) for 17( r). The characteristic time ra is determined by the formula (3.8). In 
the expressions (3.7), (3.8) it should be set: 

a= [(1-a)a170 -(l-17o)acxl(17o-a)- 1
• 

On the segment 17 ~ x ~ 1 , the deflection equals to 

w(x, r) = (a/24)(1- x)(170 -1])[2a0 + (17 0 + 17)(b0 + 3a0 ) + 2b0 (175 + 17o 1J +17 2
)] + tp (x), 

ao = (17oaa.- rJi1170H17o- a:)-1, bo = - (acx-li110H17o- C()- 1
• 
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This is deduced analogously to (3.9); and 1p(x) is equal to 

(x) _ (1/2)(1-x)(1-n0)-
1a110 , 

'tJ' - (lf24)[12(a0 +box)-a2 (1] 0 -x)2 (1+2no+x)], 
1]0 ~ x ~ 1, 
1] ~X~ ?]o. 

In the last stage of motion ( 'l'cx ~ r ~ r 1), the stress profile is determined from the 
solution (2.2). The expression for residual deflection has the form: 

w(x, r1) = (1-x)(1-o:)- 1 {a~A(k, o:)+a(1-o:)(n0 -o:)[2ao+Cno+o:)(bo+3ao) 

+ 2b0 (1]~ + 0:1] 0 + o:2)]} /24 + 1p(x), o: ~ x ~ 1. 

For arbitrary "blast"-like load, the numerical integration of the system (8.6) proceeds 
in the time interval 0 ~ r ~ r 0 ; the initial conditions at r = 0 for the functions wa( r), 
w11(r), w11(r), ivu(r) are zero, and for n(r) are n(O) = 1]0 , where ?Jo is determined as the 
solution of the algebraic system of equations derived from (8.6) at i] = 0, and p = p(O), 
p(O) is the peak load. The characteristic time r 0 is determined from: 

(8.10) (1-o:)w11(ro)- [1-n(ro)]ivcx(ro) = 0. 

To arrive at w(x, r), it is obviously necessary to integrate (8.2) by r in the interval 
0 ~ r~ 'l'o 

(8.11) 

For the segment ?Jo ~ x ~ 1, 1p(x) = 0, since w(x, 0) = 0. Further, 

~ ~ 

(8.12) ( ) - oc ) ( ) J iv2(n)-iv~(n) d (1 ) J iv~(n) d 
'tjJ X - Wcx X+ X-0: ijO(?J-0:) 1]+ -X ijO(l-1]) 1], 

X X 

1] ~X~ ?Jo, 

where iv2(?J), w2(?J), iv~(?J), 1}0 (1]) are known functions of 17 as a result of integration of 
the system (8.6). In the last stage of motion (r0 ~ r ~ r1), the regime A-B is realized 
in the plate (Fig. 1). For deflection, we have the equation 

(8.13) w(x, r) = 12(1-x)(p-p0)/p0 (1-o:)A(k, o:), o: ~X~ 1, r 0 ~ r ~ r1. 

Thus, by means of (8.10)-(8.13), we have 

(8.14) w(x, r) = (1-x)(l-o:)- 1 [(r-r0)wcx(r0)+12A- 1 (k, o:)x 

where r 1 is the root of the equation 

Tl 

Wcx(r0)+ 12A-1 (k, o:) J (pp0
1 -l)dr = 0. 

To 
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If the peak load exceeds p u, then for ex and k from (8.1) the following stress profiles 
are realized in the plate (Fig. 1): 

cx~x~~1 ~A-B, ~1 ~x~~2 ~B-(C)-B, 

~2 ~X~'Y}~B-A, 'YJ~X~1~A-B, 
(8.15) 

(X~ X~ ~1 ~A-B, ~1 ~X~ ~~B-C, 

(8.16) ~~x~~2 ~C-B, ~2 ~X~'YJ~B-A, 

'YJ ~ x ~ 1 ~A-B. 

The stress profile (8.15) is realized in the interval of the loads Pu ~ P ~ P2*, where 
P2* is determined from the condition m1 (x1, 0) = -1 and the stress profile (8.16)­
for loads with peak P ~ P2*. 

Solutions, corresponding to profiles (8.15) and (8.16) are not presented here because 
of their cumbersomeness 

9 

The parameters ex and k satisfy the inequalities 

(9.1) 

- i.e., a point with coordin~tes ex and k lies under the curve k*(cx) (Fig. 3). In the interval 
of the loads 

(9.2) 

the following stress profile holds (Fig. I): 

(9.3) 
(X~ X~ ~1 ~A-B, :~1 ~X~ ~2 ~ B-(C)-B, 

~2 ~X~ I~ B-(A)-B. 

From (1.5), (I.4), by means of the conditions [I] 

(9.4) w'(~i-0, T) = w'(~,+O, r), i = I' 2, 

the following velocity field is derived: 

(9.5) I Wcxco- 1 (cx+co-x), 
w(x, r) = wcxco- 1 {cx+co-~r[I +ln(x/~1)]}, 

(~1 Wcx/~2 co)(1-x), 

eo= ~1~i 1 [I+~2ln(~2/~1)]-cx. 

cx~x~~1 , 

~1~x~~2' 
~2 ~X~ I' 

By means of (I.4), (9.3}-(9.5), and also the conditions 

m1(~,-0, r) = m1 (~1 +0, r) = 0, i = I, 2, 

from (l.I) we derived the stress profile: 

(9.6) + (~t/2) [(1-ln~1)C+ p-D]} ln(x/~1), 

I 

(I/4)(x2 -~D [1>"-p- (1-lnx)C]+ {1 +~1Q~, 

m
1 = x-1 (x- ~2) {1 + ~2 Q~2 +(I /12)(x- ~2)[E~~2 + 2x~2 + 3~~) 

-2(E+p)(x+2~2)]}, 
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J 1, CX ~X-~ ~~, ~2 ~X~ 1, 
m2 = 

\1+mt, ~.~x~~2 , 

~~ Q~ 1 = cx.Qa+ (1/6)(~1 - cx)[2A. (~i + CX~ 1 + cx 2
) + 3 (B-p)(~ 1 +ex)], 

~2Q~ 2 = ~~Q~ 1 +(1/2)(J5-p) (~~-~i)+(C/4)[~~(2ln~2 -1)-~i(2ln~1 -1)]. 
On the segment ex.~ x ~ ~ 1 the expression for m1 coincides with the first line of (8.4). 

The quantities ri", n: c, D, E are derivatives of the expressions 

The functions of time wa{t), ~ 1 (r), ~2 (r) satisfy the system of equations: 

(9.7) wai 1 Wcx+Wa~2- 1 [(~.-cx)ai2ft+~t~2 1 (1-~2)a;3 ~2] = w2 bh i = 1,2,3, 

a11 = (~ 1 -cx){2w[~i+cx~1 +cx2 -3cx2 (1-k)]-(~ 1 -cx) 2 (~ 1 +cx)}, a12 = (~1 -cx)2 (~ 1 
+cx)[l-~2+~2ln(~2/~.)], a 13 = -(~1 -cx) 3 (~ 1 +cx), b1 = 2[(~~-cx3)p-6~t}, 

a21 = 3~t~2 1 (~~-~i)-2[2~~+cx3 +3cx2w(l-k)]ln(~2 /~ 1 ), a 22 = 3(~~-~i)+2[(l 

-~2)(~.-cx)(2~. +cx)-3~i-~2(~i+cx~. +cx2)ln(~2/~.)]ln(~2/~ 1 }, a23 = 3cx(~~-~D 

-(3~.~~+~~+2cx3)ln(~2 /~ 1 ), b2 = 3[(~~-~i)p-4ln(~2/~.)], a31 = ~~~2 1 x 

x[3~2 (1+~ 1)+(1-~2) 2]-2[cx3 +2~~+3cx2w(l-k)], a32 ~ 3(2-~2)(~~-~D+(l 

- ~2)[2(2~i- ex~.- CX
2) + (1- ~2)(1 + 3~2)]- 2~2C~i + e<~t + cx 2)ln(~2/~.), a33 = 3~~ x 

x (2cx- ~I)-~~- 2cx3
- (~1 - ex)( I- ~2)(1 + 3~2)- ~~ (1 + 2~2 + 3~~)ln(~2/~ 1 ), 

b3 = 2[(1+~2+~~)p-6]. 
When beginning from the value p = p** the peak load rises, the quantity m1(x1 , 0) 
(~1 < x1 < ~2) decreases monotonously, tending to -I, as has been shown by numerical 
calculations. The quantity m1 (x 1 , 0) (~2 < x < I) can, depending on ex and k, either 
increase monotonously up to I or stay constant or decrease, tending to zero. In this way, 
in the region (9.1) is determined a certain curve k 1 (tx) (Fig. 3) such that 

(9.8) for 

For point (ex, k) belonging ~o (9.1), but lying above the curve k 1 (cx) as is shown at Fig. 3, 
the characteristic load p 1 is determined from the condition 

(9.9) 

If a point (ex, k) lies under or on the curve k 1 (ex) fcorresponding to fulfilment of (9.10)] 

(9.10) 

the p 1 is determined from the condition: 

(9.11) ~2(0) = 1. 
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Denote by ~u, ~H' mt(Xt*' 0), x2*' p 1 the characteristic values of the quantities 
~ 1 , ~:, mdx1 0), x2 , p(O) at which the equality (9.9) is satisfied under the increase of 
load. These quantities are plotted in Fig. 11 depending on kat rx = 0.5. For rx and k from 
(9.10) by the non positivity of the derivative (9.8) with rise of peak load, the equality (9.1) 
holds. Denote by~'*' x 1*, m1(xu, 0), p 1 the values of the quantities obtained above. 
In Fig. (12), these quantities are plotted fork from (9.10) at rx = 0.8. For other values of 
rx, the dependences are identical with those plotted in Figs. (11) and (12). It must be re­
marked also that in the whole interval of loads (9.2) in the region (9.1) m1 (x 1 , 0) > -1. 

FIG. 1 I. 

260 

210 

P1 

~~----~~------~a~w~------~a1~5~~0 

k 
FIG. 12. 

For a tectangular pressure pulse in the loading phase (0 ~ 1: ~ I), in the system (9. 7) 
it should JUt 

(9.12) ~~ = ~o 1 = const, ~2 = ~02 = const. 

For nunerical solution of system obtained of transcendental equations the following 
reception nay be recommended. From any two of equations of the system, express Wa. 
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and p by ; 01 and ; 02 • Substituting these values into the third equation, we may solve it 
with respect to one of the unknowns ; 01 and ; 02 , considering the left unknown as an 
independent parameter. When motion proceeds by inertia, numerical integration of the 
system (9. 7) is performed in the interval of time 1 ~ r ~ r 1 , where r 1 is determined by 
the condition ; 1 ( r 1) = ; 2 ( r 1). Further motion ( r 1 ~ r ~ r ) proceeds in the liegime 
A-B (Fig. 1). 

For an arbitrary "blast"-like load [5], the system (9.7) is integrated in the time interval 
0 ~ r ~ r 1 • The initial conditions at r = 0 for wcx( r) and wcx( r) are zero conditions, 
and for ; 1 (-r) and ; 2 (-r) are determined from the system of transcendental equations 
derived from (9.7) under the conditions (9.10). 

P2 
370 ~-----,------.-----~ 

322 

274 

FIG. 13. 

In conclusion of this section, it should be pointed out that under the rise of peak load 
from the value p =Ph the stress profile (9.3) may pass on to the profile (8.15) and further 
into the profile (8.16), if the parameters cc and k lie between the curves k*(cc) and k1 (cc) 
in Fig. 3. 

10 

If cc and k satisfy the inequalities (9.10), then in the interval of loads p 1 ~ p ~ p 2 

the following stress profile holds (Fig. 1): 

(10.1) C( ~X~ ;1--+ A-B, ~1 ~X~ 1--+ B-(C)-B. 

The characteristic load p 2 is determined from the condition m1 (x 1 , 0) = -1, (; 1 < x 1 < 1) 
(see Fig. 13). The velocity field, and also m1 (x, r), m2 (x, r) are derived from (9.5), (9.6) 
by setting ; 2 = 1. 

The unknown functions wcx(r), ~1 (-r) are determined from the first two equations of 
the system (9.7) at ; 2 = 1. Numerical integration of the system derived is performed in 
the intervals of time 1 ~ r ~ r 01 , 0 ~ r ~ Toh respectively, for a rectangular pulse and 
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an arbitrary "blast"-like load [5]. The characteristic time r 01 , in general different for 
different loads, is determined from the condition m~(l, r 01) = 0. In the time r = r 01 
from the exterior contour of the plate its propagation begins inside a region B-(A)-B 
bounded from the interior side by the moving boundary ~2 (r), and from the exterior 
one - by the exterior contour of the plate. Thus in the entire ring-shaped part of the 
plate the stress profile (9.3) is realized, which, in turn, is preserved only up to the moment 
when the boundaries ~1 ( r) and ~2 ( r) merge on into the other. Further motion ( r 1 ~ r ~· r.1) 
holds in the regime A-B (Fig. 1). 

11 

Let the p ~ p2 parameters rx and k satisfy (9.10). In the initial phase of motion, the 
following stress profile holds (fi~. 1). 

(11.1) rx ~ x ~ ~1 --.A-B, ~1 ~ x ~ ~--.B-C, ~ ~ x ~ 1 --.C-B. 

The velocity field may be expressed: 

. {~e+zw.- 1 {~1[1+lna/~1)]-x}, 
w(x, r)= w;+~1zw- 11n(~/x), 

w;(Inx)fln~' 

rx ~ x ~ ~1, 
~1~x~~' 
~~x~1, 

z = wcx-w;, w = ~1-rx+~1ln(~/~1), w; = w(~, r). 

The expression for m1 coincides with the first line of (8.4) in the interval rx ~ x ~ ~h 

and with the second line of (9.6) in the interval ~1 ~ x ~ ~; in the interval ~ ~ x ~ 1 
it has the form: 

m1 = -1- (1/4)(x2- ~2)[p+ (1-lnx)E] + (~2 /2)(p- (1-ln ~)Ejln(x/~). 

A", jj, C, D, E are derivatives of the expressions 

A= -zw-t, J3 = w~+~ 1zw- 1 [1+ln(~/~1)], 

c = -~1zw-I, D = w;+~1 Z.w- 1 ln~, E =w~(ln~)- 1 . 

The functions wcx(r), w;(r), ~ 1 (r), Hr) are determined from the system of equations: 

(11.2) wai1ibcx+wai2w;+z(~1-rx)ai3 i1 +z~1 ~- 1 ai4 g = w2bj, i = 1, ... ,4, 

au = (~1-rx){2w[~i+rx~1 +rx2 -3rx2 (1-k)]-(~1-rx)2 (~1 +rx)}, 

a12 = C~1-rx)2 (~1 +rx), a13 = (~1 -rx)2 (~1 +rx)ln(~/~1), a14 = C~1-rx)3 C~1 +rx), 

b4 = 2[(~f-rx3)p-6~1], a21 = 3~1(e-~D2- [3rx2w(1-k) +2~f+rx3]ln(~/~1), 

a22 = 3rx(~i-e)+(3~1~2 +~f+2rx3)ln(~/~1), 

a23 = 3[e-~i-2~iln(~/~1)]-2(~i+rx~1 +rx2)1n 2 (~/~1), a24 = a22, 

b2 = 3{(e-~i)p-4[1+ln(~/~1 )1}, a31 = 3~1 ~2 -~f-2rx3 -6rx2w(l-k), 

a32 = 3e(~1 -2rx)+~f+2rx3 +6~1 eln(~/~1 ), a33 = 3(e-~i)-2(~i+rx~1 +rx2)ln(~/~1), 

a34 = 3e(~1-2rx)+~i+2rx3 +6~1 ein(~/~1), 

b3 = 6(ep-2), a41 = 0, a42 = ~w- 1 [l-e+2e(l-ln~)ln~]ln~, 

a43 = 0, a44 = -w;wa42/z~ 1 ln~, b4 = -H4+(1-e+2ein~)p]ln2~. 

7 Arch. Mech. Stos. nr 3/73 
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As in previous cases for rectangular pulse, at the time of load action (0 ~ -r ~ 1) we 
have a quasi-static problem, so that 

~1 = ~o1 = const, ~ = ~0 = const. 

The system (11.2) becomes a system of transcendental equations with respect to the 
unknowns iD(u we, ~01 , ~0• The latter is easily solved by reducing to one equation relative to 
one ofthe unknowns ~01 or ~0 • 

Numerical integration of the system (11.2) for rectangular load is performed in the 
time interval 

(11.3) 

For an arbitrary "blast"-like load [5] unit in (11.3) should be replaced by zero. The 
necessary initial conditions at -r = 0 are determined as in previously considered cases. 
Time r * is determined from the equation: 

wwe+~lZin~ = 0. 

Further motion in the interval r* ~ r ~ r 1 proceeds by the same scheme as in the previous 
section in time intervals 1 ~ -r ~ r1 and 0 ~ r ~ r" respectively, for the first and the 
second types of load. 

In conclusion, we would point out that if in the solution of this section we set 

we= we= we= 0, ~ = 1, 

then we obtain a solution corresponding to the dynamical bending of a piece-wise in­
homogeneous plate with rigidly clamped exterior contour (with 0 ~ k ~ 1). If, further­
more, (X--+ 0, then we have the known solution [2]. 

It should be remarked also, that for (X and k from (9.11) and p > p 1 , the stress profiles 
(10.1) and (11.1) are similar in quality, as in the problem with local load investigated 
in [4]. 

12 

Numerical calculations were performed by means of the electronic computer M-220, 
making use of previous results. In Fig. 14 is shown the influence of the mass parameter 
k on the maximum residual deflection in the plate. It will be seen that by enlarging the 
mass of the "washer", deflections may be reduced in an essential manner (making the 
dynamic resistance better); the time as static load capacity remains the same. 

Figs. 15 and 16 enable us to compare the maximum residual deflections of piece­
inhomogeneous and homogeneous plates of the same radii and volume, of the same 
material -i.e., when the jump of mechanical properties follows from the jump in the 
thickness the plate. The condition of volume equality V = V0 is equivalent to the following 

(12.1) 

where 2<5° is the thickness of a homogeneous plate. It is more convenient to express the 
dimensionless quantities by the parameters of a homogeneous plate, such that 

p = P2po, w = 'I'Wo, po = pbMao<5o2, wo = Wyob~fao <5o2t5. 
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Let M 01 and M 02 be limit moments of exterior and interior parts of a plate. Then at static 
load, the interior part of a plate remains rigid [7]: 

(12.2) 

Since pk2 = I, there follows the equivalence of (12.2) to the inequality: k ~ k 1* = p,J. 1
' 2• 

Admitted were only such loads the central part of which remains rigid. Numerical 
calculations were performed for various~ and k, satisfying (12.1). It should be remarked 
that deflections were maximum at ~ = 0. 79 and k = k 1 * = 1.49 (Fig. 15)- i.e., for those 
parameters of the plate at which load carrying capacity is maximum [7]. 

From Fig. 15 it follows that redistribution of the plate material to the central part 
to improve its dynamic resistance is permissible only up to a certain limit, the exceeding 
of which leads to a negative result. 

In Fig. 16 are shown the analogous dependences in the case in which the load capacity 
of both types of plates is the same- i.e., under the condition v2 (1- ~3) = l. It should be 
remarked that in this case, the maximum of dynamic resistance is reached at ~ = 0.79. 
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