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A lower bound theorem for dynamically loaded rigid-viscoplastic 
structures 

W. J. MORALES (TAMPA) 

A LOWER bound· on permanent dynamics deformations of impulsively loaded rigid-plastic 
structures was presented in the author's earlier papers. In the present paper, a proof is given 
that similar lower bound exists also in the case of a rigid-viscoplastic material. This result is 
of a particular value not only because most of the structural materials exhibit some degree of 
strain rate sensitivity but also because corresponding upper bound could not be derived without 
some additional information about the response of the structure. The method is explained on 
the example of a beam for which the exact solution is known. 

Dolne oszacowanie na trwale dynamiczne deformacje impulsywnie obci~zonych sztywno-pla
stycznych konstrukcji bylo przedstawione we wczesniejszej pracy autora. W obecnej pracy udo
wodniono, ze podobne dalsze oszacowanie istnieje r6wniez w przypadku sztywno lepkoplasty
cznego materialu. Rezultat ten ma znaczenie nie tylko dlatego, ze wi~kszosc material6w kon
strukcyjnych wykazuje wraZliwosc na pr~dkosc odksztalcenia ale r6wniez dlatego, ze odpowied
nie g6rne oszacowanie nie mogloby bye wyprowadzone bez dodatkowych informacji o wlasnos
ciach konstrukcji. Metoda zostala wyja.Sniona na przykladzie belki, dla kt6rej znane jest roz
wi~zanie w postaci zamkni~tej. 

B npegbigyr.qeii pa6oTe aBTopa 6hma gaHa Hn>I<HHH on;eHKa ocraTo'liHhiX ge<t>opMall;ltii B gn:
HaMn:'llecKn: MrHOBeHHO Harpy>HeHHOM >HeCTKO-llJiaCTU'tleCKOM COOpymeHHH. ,UaHHaH pa6oTa 
cogep>HUT goKa3aTeJibCTBO Toro, 'tiTO aHanom'tiHhie on;eHKU MO>HHO nocrpon:Th TaK>He B cnyqae 
>HeCTKO-BH3KOllJiaCTU'tleCKOro MaTepu;ana. 3TOT pe3yJibTaT H;MeeT Cyi.QeCTBeHHOe 3Ha'tleHu;e He 
TOJibKO fiOTOMY, 'tiTO 6oJiblll1lHCTBO KOHCTPYKTHBHbiX MaTepu;aJIOB o6JiagaeT 'liYBCTBUTeJibHO
CTbiO K CKOpOCTH; ge<t>opMHpOBaHHH, HO ·:raK>He H; llOTOMY, 'tiTO COOTBeTCTBYIOI.QHe BepXHH;e 
on;eHKH He MOrJIH 6bi 6hiTb HaHgeHbl 6e3 gOllOJIHH;TeJibHOH HH<i>opMan;u;u; 0 CBOHCTBaX coopy
>HeHH;H. Me-rog HJIJIIOCTpu;pye-rcH Ha npHMepe 6aJIKu;, MH KoTopoii U3BeCTHhi 3aMKHYThie 
pemeHHH. 

1. Introduction 

IN EARLIER papers [I, 2], a technique was presented to bound from below the permanent 
dynamic deformations of impulsively loaded rate insensitive structures. The technique 
complemented the displacement upper bound theorem developed by MARTIN [3, 4] provid
ing, through relatively simple calculations, a way of solving a number of problems of current 
interest whose solution, if at all possible, may require involved numerical computation [5]. 

However, the results of experimental and theoretical investigations of dynamically 
loaded cantilever beams [6] suggest that, while elastic vibrations do not have much effect 
on the permanent deformations when the ratio of input kinetic energy to maximum possible: 
elastic energy is of the order of 10, the influence of strain rate on the material yield stress 
was primarily responsible for the deviations between the elementary rigid-plastic theory 
and experiment. The study further showed that the effect of strain hardening decreased 
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with increasing strain rate. The technique presented below provides a mean of comput
ing lower bounds on the deformations of certain class of dynamically loaded time-depend
ent inelastic structures. 

2. Lower bound theorem 

Consider a time-dependent inelastic body of volume V and surface S which at time 
t < 0 is assumed to be at rest. Let a velocity u? be prescribed at all points in the continuum 
at ttme t = 0, and for times t > 0 it is assumed that the displacement rates u; are zero 
on the portion of the surface Su and tractions Ti are zero on the portion of the surface 
Sp. Furthermore, it is assumed that the effect of body forces Fi is negligible in the process 
of deformation. 

In order to generalize the uniaxial experimental observations to combined state of 
stress, DRUCKER [7] formulated a criterion of stability for a large class of engineering materi
als in terms of the work done by the stress increment on the plastic deformation increment. 
Denoting the generalized stresses acting at a section of the body by Qk (k = I, ... , n) 
and the associated generalized strain rates by qk (k = I, ... , n), if dQk represents a stress 
increment and dqk the corresponding strain rate increment from some initial state Q~, 
q~, Drucker's definition of a stable plastic material requires that, 

(2.1) dQkdqk;;?; 0. 

Hence, if the state of stress of a material element is changed from Q~ to Q: with an 
associated change in strain rate from q~ to iJ:, Eq. (2.1) may be written as, .. qk 

(2.2) f (Qk-Q~)dqk;;?; 0. 
• 0 qk 

In the nine-dimensional stress space, the components of the stress vector Qk can be 
visualized as the component of a stress or "force" vector in an n-dimensional Euclidian 
stress space. Therefore, in the stress space, Qk is represented by a point while (Q:- Q~) 
is represented by a path. Consider now the path from a third stress point Qk to Q: passing 
through Q~ as shown in Fig. I. Therefore, from Eq. (2.2), 

•• • 0 •• qk qk qk 

(2.3) f (Qk-Qk)dqk = I (Qk-QDdqk+ f (Qk-QDdqk;;?; 0 . 
• s • s • 0 qk qk qk 

But if Q~ and Q: are two stress points which lie within the yield surface, the path between 
the two points is reversible. Therefore, 

• 0 • s qk qk 

(2.4) f (Qk-QDdiJ.k = f (qk-iJZ) dQk 
•s •O qk qk 

and .. qk qk 

(2.5) J (Qk-Qk)dqk = f (Qk-Q~)dqk- (Qk-Q~) (q:-q~), 
• 0 • 0 qk qk 
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(Stress S{Xlce) 

FIG.l. 

where Q~ remains constant along integration path to stress point Q: lying outside yield 
surface. 

Replacing Eqs. (2.4) and (2.5) into (2.3) 

(2.6) 

The integrals in Eq. (2.6) denote integration along paths from stress point Q~ to Qk 
and Qt, respectively. It is to be noted that the integration can be carried out independently 
of each other and hence in stress space the above equation represents two independent 
stress paths from an initial state Q~. If the material is assumed to be stressed from the 
virgin state, Q~ and q2 are set equal to zero and Eq. (2.6) becomes 

Qk q• 
(2.7) f qkdQk+ f Qk dqk ~ Qkq:. 

0 0 

The result shown in Eq. (2.7) enabled MARTIN [4] to establish a minimum principle 
for viscous continua which was then used to develop the displacement upper bound theorem 
by noting that the s and * system are completely independent of each other. The same 
condition will be employed to derive the displacement lower bound theorem for dynamic
ally loaded rigid-viscoplastic continua. 

Let the s-system represent a statically admissible stress field and the *-system be a ki
nematically admissible strain field. Furthermore, let the response of the system for times 
t > 0 be characterized by displacement, velocity, acceleration, generalized stresses and 
strain rates given by ui, ui, iij, Qk, qk, respectively. Since the complete solution is both 
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statically and kinematically admissible, the true state can be associated with either the 
s or the * system. Let the true state be associated with the s-system and let ut, qt be any 
time dependent kinematically admissible field. Integrating Eq. (2.7) over the volume V 
of the continuum, we hawe 

Qk q: 
(2.8) J dV J qk dQk+ J dV J Qk dqk ~ J Qkq:dv. 

V 0 Y 0 V 

From the principle of virtual velocities, 

(2.9) J Qkq:dv = f TJ4dS+ f FJJ~dV- f euJJtdV 
V S V V 

and since Fi = Tt = 0, 

(2.10) J Qkqk av = - J euiurav. 
V V 

From (2.10), Eq. (2.8) become 

Qk qk 
(2.11) J dV J qkdQk+ J dV J Qkdqk ~ - J euJ1~dV. 

V 0 Y 0 V 

Integrating Eq. (2.11) from t = 0 tot = tb the response time of the ~tructure, 

'J Qk 1/ q: 1/ 

(2.12) j dt j dV f qkdQk+ j dt f dV j Qkd(Jk ~ - J dV f euJ1i*dt. 
0 V 0 0 V 0 V 0 

Adding a positive definite quantity to the left side of Eq. (2.12) will not affect the 
inequality, and since 

~ Qk ~ qk ~ 

(2.13) J dt j dV f qkdQk+J dt j dV j Qkdrjk = j dt f QkqkdV 
0 V 0 0 V 0 0 V 

then, 
11 11 Qk 

(2.14) J dt f QkqkdV ~ j dt j dV f qkdQk 
0 V 0 V 0 

for all terms in Eq. (2.13) are positive definite quantities. 
Hence, from Eqs. (2.14) and (2.12) 

11 ~ q; 11 

(2.15) J dt f D(qk)dV+ j dt f dV f Qkdqk ~ - f dV f eiiiurdt, 
0 V 0 V 0 V 0 

where D(qk) is the rate of dissipation of internal energy and is defined by 

(2.16) 
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Since a rigid-viscoplastic continuum is a totally dissipative medium, the internal and 
external dissipation rates can be equated 

(2.17) ~ f ~ euJ~;dV = - f D (iJk)dV. 
V V 

Integrating (2.17) between t = 0 and t = t1 , 

If 

(2.18) ~ J eu?u?dv = J dt J D(qk)dV, 
V 0 V 

since by definition it; = 0 at t = t, and il; = u? at t = 0. 
Substituting (2.18) into (2.16), 

The term on the right side of Eq. (2.19) is next integrated twice by parts with respect 
to the time variable as follows, 

(2.20) 

~ If If ~ 

- J eu; ut dt = - eu; ut I + eut u; I - J eu· tu; dt. 
0 0 0 0 

But at t = 0, U; = 0, U; = u?. Hence, 

(2.21) 

11 11 

- J eu;utdt = eu?ut I +eutu; j - J eu.tu;dt. 
0 t=O t=~ 0 

Replacing Eq. (2.21) in (2.19), 

'I q; 
(2.22) ~ J eu? u? dV + J dt J dV J Qk dqk ~ J eit? ut I dv + J eut u; j dv 

V 0 V 0 V t=O V t=tf 

'I -f eu'tu;dt. 
0 

The assumed kinematically admissible velocity field ut is then chosen in such a way 
as to cause the vanishing of the last term on the right side of (2.22). If ut is assumed to be 
representable by a product of a time-independent function Ut(xt) and a time-dependent 
function T*(t), then 

(2.23) 

If T* is chosen to be of the form, 

(2.24) T*=(tj-t)ft;, O~t~t;, 

T* = o, t ~ tj, 
where tj is a constant yet to be determined, lit will vanish. 
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Substituting Eq. (2.24) into Eq. (2.23), 

Since the objective of this theorem is to obtain a lower bound on the maximum per
manent deformation that a structure undergoes at time t = t 1 when subjected to a dy
namic loading, i.e., 

(2.26) ( Ui)max I ~ lower bound. 
t=t, 

Equation (2.26) can be put in this form by recalling the extended mean value theorem 
of integral calculus [8], that if f(x) and g*(x) are two continuous functions in the interval 
a :s;; x :s;; b and if the maximum value of f(x) in this tange is denoted by M, then, provided 
g*(x) does not change sign in [a, b], 

b b 

(2.27) J f(x)g*(x)dx :s;; M J g*(x)dx, 
a a 

where M~ f(x) for all x in [a, b]. 
Denoting the three components of ui and Ut as u, g, w and U*, G*, W*, respectively, 

the left side of (2.28) can be written as 

In order to obtain lower bounds on each of the three components of ui, three separate 
choices of the components of the assumed kinematically admissible field U~ must be 
made. For example, if a bound for w is desired, Ut can be assumed to have components 
U* = G* = 0 and W* :1= 0. Under these conditions, Eq. (2.28) becomes 

(2.29) 

Applying the result of Eq. (2.27) to Eq. (2.29), 

(2.30) J eW*w I dV :s;; Wmax I J eW*dV. 
V t=tf t=tf V 

Hence, from Eqs. (2.25) and (2.30), a lower bound for wmax is obtained from 

Two other similar expressions are needed to bound the umax and Kmax components of de-

http://rcin.org.pl



A LOWER BOUND TIIEOREM FOR DYNAMICALLY LOADED RIGID-VISCOPLAmC STRUCTURES 497 

formation of a body resulting from an impulsive loading. Therefore, the result of Eq. (2.31) 
can be generalized to 

(2.32) 

if the stated limitations on the assumed velocity components are recognized. 
In order to use the previous expression, information regarding the last term is 

needed, for at this stage both t1 and t1 are unknown. However, MARTIN [4] obtained 
a lower bound on the response time in the form 

(2.33) 

where ut denotes a time-independent kinematically admissible velocity field and ~ the 
corresponding generalized time-independent strain rate field. If t1 is chosen equal to the 
right side of Eq. (2.31), i.e., 

then 

(2. 35) 

Then, since iJt is zero for t ~ t1, the last term of Eq. (2.32) can be evaluated as, 

tj q: 
= J dt f dV f Qkdqt. 

0 V 0 

Therefore, the lower bound theorem becomes, 

3. Example problem 

Consider a cantilever beam of length L and mass m per unit length with a point mass M 
attached at the tip. At time t = 0, the mass M is given an initial velocity V0 in the vertical 
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direction, while the remainder of the structure remains stationary. The beam will be assumed 
to be rigid-viscoplastic with constitutive equation 

(3.1) 

l- = (~ -1)5 
ko Mo 

k0 = 0 

where the curvature rate k and bending moment M are the only non-zero generalized 

strain-rate and stress, respectively, and k0 , M0 are constants having the dimensions of 
curvature rate and bending moment, respectively. 

To determine a lower bound on the permanent deformation, a kinematically admissible 
velocity field U* must be assumed. Thus, if the assumed mode shape U* is given by 

(3.2) U* =A( !-cos ;; ) , 

where A is a constant amplitude, 

(3.3) k* = ksT* = -- = T*-- =A - cos- 1-- . . . . d2u* . d2 U* ( n )2 nx ( t ) 
dx2 dx2 2L 2L tj 

Then 

* . * • . • • 

(3.4) J dV! dt l Q,dq, = 1 dx f dt j Mdk = 1 dx! Moko{ ~ (!: f' 
V 0 0 0 0 0 0 0 

( 
k* )} . L { 25 ( ks )6! S 1 ( k8 

)-} 

+ ko dt = Mokot* f 66 ko +T ko dx, 
0 

(3.5) f dV l dt / Q,dq, = Moko LtJUz ( ~ )"'' (~ r (/~2 )"" 
V 0 0 0 

Neglecting the mass of the beam compared to the point mass M, 

(3.6) Jeu:u~dv = AMVo. 
V 

Substituting Eqs. (3.5), (3.6)1 and (3.6h into (2.37), 

(3.7) u ~ -- AMV0 - -MV0 -M0 kLtj- - - -.--tj ~ 1 2 • [ 5 ( n)12;s(A )6;s( V0 )
6
1

5 

AM 2 22 4 V0 koL2 

+·~ (~)(k~;2)}. 
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Utilizing the response time lower bound theorem, Eq. (2.33), MARTIN [4] obtained 

(3.8) t1 ~ 0.552MLV0 /M0 , 

where 

(3.9) 

Hence, from Eq. (2.35), 

(3.10) tj = 0.552MLV0 /M0 • 

Therefore, substituting (3.1 0) into (3. 7), 

499 

0.552ML 2 {(A) 1 { 5 ( n )
12

1
5

( A )
6

1
5

( V0 )
6

1
5 

n (A)} 
(3.11) u;;. (~ )M• v. v. -2-0.552 22 4 v. k.u +4 v. . 

Eq. (3.11) can be optimized numerically with respect to (A/V) utilizing Eq. (3.9) 

(3.12) 

The upper bound on u has been obtained by MARTIN as 

(3.13) 
ML 2 u ~ 0.36 Mo V0 • 

Therefore, 

(3.14) 
ML 2 ML 2 

0.28 Mo V0 ~ u ~ 0.36 Mo Vo. 

The exact solution to this problem was given by CowPER and SYMONDS [9] as 

ML 2 (3.15) u = 0.33 Mo Vo. 

Utilizing the mode approximation technique introduced by MARTIN and SYMONDS [10], 
an approximate end deflection was determined by SYMONDS [11] as 

(3.16) 

4. Conclusions 

Through the use of energy methods and basic inequalities inherent in the theory of 
plasticity, a technique is presented to bound from below the permanent deformations 
of impulsively loaded visco-plastic structures. This method complements the displacement 
upper bound theorem introduced by MARTIN providing by means of relatively simple 
calculations a way to bracket the response of a number of engineering problems whose 
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solutions, if at all possible, require long running numerical solutions. It is in this respect 
where this technique becomes a powerful tool for preliminary design. 

The lower bound theorem is applied to a sample problem and the result compared 
to the exact solution, Martin's upper bound result and to the amplitude of the mode 
approximation technique. Good results are obtained with both the bounding and the 
approximate methods. However, without denying the usefulness of the approximate 
technique, the bounding method constitutes in many instances a more powerful method 
to a number of engineering problems requiring preliminary assessment of the capabilities 
of a structure and possible design for the upper bound yields a consistent conservative 
estimate and the lower bound allows for the close bracketing of the exact structural response~ 
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