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Discrete elastic Cosserat media 

cz. WOZNIAK ~ARSZAWA) 

IN THE LITERATURE, the theory of elasticity problems of Cosserat media has been investigated 
in numerous papers. All those problems have been considered on the basis of the theory of 
continuous media. In the present text, the basic concepts are given of the linear theory of discrete 
Cosserat media. Such media are defined as countable sets of rigid bodies connected by a specific 
system of interactions. The theory of the discrete elastic Cosserat media is a part of a discrete 
elasticity [12]- and is based on the theory of discretized bodies (13]. 

Literatura z zakresu teorii spr~zystosci zawiera wiele prac dotyc~cych osrodk6w Cosserat6w, 
rozpatrywanych wyl~e jako osrodki ci~le. Niniejsza praca zawiera podstawowe poj~ia 
liniowej teorii dyskretnych osrodk6w Cosserat6w, definiowanych jako przeliczalne zbiory cial 
sztywnych, powi~ych pewnymi szczeg6lnymi schematami wzajemnych oddzialywan. Teoria 
dyskretnych osrodk6w Cosserat6w jest c~i~ dyskretnej teorii spr~sto8ci [12] i jest oparta 
na teorii cial dyskretyzowanych [13). 

B JIHTepa-rype no TeopHH ynpyrocrH HMeeTCH MHoro pa6oT, B KoTopbiX cpe~I THIIa Koccepa 
paccMaTpHBaiOTCH HCKJIIOtiHTeJILHo KaK ciiJIOIIIHbie. B A3HHOH pa6ore co~ep>I<aTcH oCHOBHbie 
noiDITIDI JDOieH:Hoit TeoPHH ~cKpeTHbiX cpe~ THIIa Koccepa, onpe~emieMI:.IX KaK cqenn.1e 
MHO>I<eCTBa >I<eCTIQJ;X TeJI, CBH3aHHbiX HeKOTOpbiMH cnei.maJILHbiMH CXeMllMH B3aHMO~ei­
CTBHH. TeopM ~CKpeTHI:.IX cpe~ THIIa Koccepa HBJIHeTCH qaCTbro ,zn~cKpenmi TeopHH ynpy­
roCTH (12), H OllHpaeTCH Ha TeOpHIO ,zniCKpeTH3HpOBaHHbiX cpe~ (13]. 

Notations 

The indices A, tl>, ... run over the sequence I, 11, ... ,m, indices .t, !J, v, ... take the values 1, 2, 3 and 
indices K, L, Af, ... run over the sequence 1, 2, ... , N. We also use the indices k, I, m taking either the 
values l, 2 (in Sec. 4) or the values l, 2, 3. The summation convention holds for all kinds of indices. 
Partial derivatives with respect to variables xK are denoted by a comma and the dot denotes differen­
tiation with respect to time coordinate. The functions encountered in the text are assumed to be con­
tinuous together with their derivatives of the first and the second order. 

1. Introduction 

THis PAPER is based on the concept of discretized bodies, introduced in [13]. The discretized 
body is a pair (D, 8), where D is a set of holonomic dynamical systems de D, which can 
interact only in subsets E e 8, where 8 is a covering of D. An arbitrary discretized body 
is an approximate model of a continuous body, which has only a finite or countable num­
ber of degrees of freedom [13]. In the present paper, we assume that D is a set of free rigid 
bodies. Let us denote by tf(d, -r), a = 1, 2, ... , 6, the six independent generalized coor­
dinates of an arbitrary rigid body de D, where T is the time coordinate. For each de D 
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120 Cz. WoiNIAK 

and each T, the numbers qa(d, r) are coordinates of a vector in a six-dimensional vector 
space [13]. 

The discretized body (D, 8), where each dE D is a free rigid body, is said to be the 
discrete elastic Cossera!_ medium, if for each E E 8 there exists the elastic potential e. 
Introducing in each E, E = n+ I, the coordinate systemf:E-+ (d,fr.d, ... ,fmd) (cf. [13], 
Appendix), we can write: 

(1.1) e = e(d, ~(d, r), LJAqa(d, r)), a= 1,2, ... , 6. 

It was also shown in [13] that the Lagrange equations of the second kind of an arbitrary 
dynamical system dE D(l) have the form: 

(1.2) 

where 

df d ar(d, ... ) oT(d, ... ) 
ra = dT -aq:(d, T)- oqa(d, r)' deD, 

and T(d, ... ) = T(d, ~(d, r), qa(d, r)) is the kinetic energy of the holonomic dynamical 
system dE D. The symbol fa(d, r) denotes the generalized external force acting at d, 
and TaA(d, r), ta(d, r) are generalized internal forces in the subset E4 E 8, dE D* (cf. 
[13]). The generalized internal forces in the elastic discretized bodies are given by the 
formulas [13] 

(1.3) T A(d ) = oe(d, ... ) 
a 'T 0Aqa(d, T)' 

(d ) 
oe(d, ... ) d 

ta ' £ = - aqa(d, T) ' E D. 

If the particles dE D of the discretized elastic bodies are rigid, we have to deal with the 
elastic Cosserat discrete media; the index x'a' in (1.1)-(1.3) take the values 1, 2, ... , 6. 
In what follows, only linear theory of such media will be discussed. 

2. Equations of motion and constitutive equations 

Let us assume that at the time instant r = r0 and for each dE D, there is e(d, ... ) = 0 
and qa(d, T) = 0, a = 1, 2, ... , 6. Let throughout all the motion both the generalized 
coordinates q (d, r) and the generalized velocities it(d, r) be sufficiently small in absolute 
value, so that the problem may be linearized. We can pute) 

(2.1) 

where uk = tl(d, r) are components of a displacement vector of a centre of mass of the 
rigid body dE D, and vk = vk(d, r) are components of an infinitesimal rotation vector 
of this body; all those components are related to the inertial Cartesian coordinate system zk 

e> The subsets E E 8 are said to be discrete elements and holonomic dynamical systems, dE D are 
calJed particJes of the discretized body. If the discretized body is the discrete Cosserat medium, particJes 
de D can be interpreted as rigid bodies. 

e) In the sequel, the arguments d, T of the functions considered will be omitted. The difference structure 
on (D, 8) is given [13]. 
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DISCRETE ELASTIC COSSERAT MEDIA 121 

in the physical space. The elastic potential and the kinetic energy will be written now 
in the form: 

(d ) - 1 AA~ .. .k l +BA~ k l + 1 DA~ . .k l e , ... - 2 kl r A'Y~ kl YA"~ 2 rkl K:t"~' 

deD, 

where 

(2.2) 
"~ = L1Avk, dE DA, 

and zk = vl(d) are coordinates of the place in the physical space occupied at the time 
instant r = r 0 by the centre of mass of the body de D. The quantities At,~= At,~(d), 
Bt,~ = B~~(d), F~~ = F~~(d) represent the elastic properties and the quantities m = 

= m(d), ikr = ikr (d) represent the inertial properties of the discrete elastic Cosserat system. 
It is convenient to assume that y~(d, t) = ~(d, r) = 0 for d~DA, and A~~(d) = 

= Bt,~(d) = F~~(d) = 0 for d ~ D A or d ~ D~. The form of elastic potential introduced 
above is invariant under an arbitrary rigid displacement and infinitesimal rotation of a 
whole discrete Cosserat system. Denoting T/ = <5a t Tk A+ <5!_ 3 Mt. A, we can express now 
the constitutive equations (1.3) 1 by means of the formulas 

(2.3) 
Mk~ = Fil~;~e~+B~Ay~, dE D. 

The functions Tt.A = TkA(d, r), MkA = MkA(d, r) will be called the components of stress, 
and the functions y~ = ~(d, r), ~ = ~(d, r) are said to be the components of strain 
in the linear discrete Cosserat media. The constitutive equations (1.3h in the linear theory 
reduce to the equalities 

fa = <5!-3 ekp~ TrAL1A"Pp· 

Using the above equalities and after denotations 

fa = b!Jk+ <5!-3nk, 

we obtain from (1.2) the following equations of motion: 

LfATkA+Jk = muk, 
(2.4) 

A M A r 'T' A A p • ••l 
LJ A k + Ekp· .I r LJ A 'ljJ + nk = lkrV , de D. 

The geometrical equations (2.2), the constitutive equations (2.3) and the equations of 
motion (2.4) form the basic set of equations of discrete elastic Cosserat media. Mter 
simple substitutions, we obtain from (2.2), (2.3), (2.4) the following system of ordinary 
differential equations for the six unknown functions tf(d, r), vk(d, r), dE D: 

XA [A~1~(L1~u' + E~pr vr L1~ "PP)+ B~~ L1~v'J + fk = miik, 

(2.5) LfA [Fk';4» L1 ~ v1 + B~A(L1~ u1 + E~pr vr L1~ ~)] + ek;. L1 A "PP [A1:(L1 ~U" + e":sr v' L14» tp') 

+B~:LI~v'"]+nk = it1v1
, de D. 
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122 Cz. Wo:ZNIAK. 

Denoting by tl(d, t), b"(d, t), de oD, the set of known functions, we put 

(2.6) rf = rl, v" = b", de oD c D. 

The Eqs. (2.6) are boundary conditions of the discrete Cosserat system. The basic equations 
(2.2)-(2.4) (or the Eqs. (2.5)) with the boundary conditions (2.6) and with the initial 
conditions given for each de D, make it possible to obtain the basic unknown functions 
rf = zf(d, t), v" = v"(d, t), de D. The uniqueness of the solution results from the fact 
that both quadratic forms e(d, ... ), T(d, ... ) are positive definite. 

If the difference structure on D is regular - i.e., the relations fA!~ d = J~JA d hold 
for each de DA.~ n D~.A [12], it will be possible to represent the basic equations in 
the form of finite difference equations (cf. Sec. 10). If the conditions 

(2.7) A~~= AA~(d)dk, B:ZIP = BA~(d)t5k,, F:,~ = pA~(d)t5"'' dE D, 

hold, the discrete Cosserat system will be called isotropic. 

3. Conditions of compatibility. Static-geometric analogy. Stress functions 

Let us confine our considerations to the case m > 1 . This is the case in which the 
stress components y j, uj are not independent. Let us also confine ourselves to the regular 
difference structures on D. The conditions !Af~d = t~f A, de D A.~ n D~.A, yield [12] 

(3.1) L1[AL1~1lf = 0, 

for each pair A, l/> and for an arbitrary function qJ:D ~ R . By virtue of (3.1), from the 
geometric equations (2.2), we obtain 

A k+k r A p k r A A p (3.2) LJ[.PYA] E.p,U[ALJ~]'f/J = E.p,U[0L1[~L1A]'f/J, 
L1r.pujj = 0, deDA.~nD.P,A · 

The Eqs. (3.2) are called the conditions of compatibility of the linear elastic Cosserat 
media. It may be observed that the additional relations among strain components will 
hold if the difference operators L1 1 , L1 11 , ... , L1m are not independent. This problem will 
not be considered here. 

Let us introduce the symbols 

1
1 when A-{1) = -1 or A-l/> = 1-m, 

eA~= -1 when A-l/> = 1 or A-{1) = 1-m, 
0 in other cases, 

and let us assume L1~/j ~ I~ for each A,{/) and each de D~.A. 
Equations (3.2) yield 

(3.3) EA~L1Ay~+e~prEA.Pu,1/£ = 0, EAIPL1Auk = 0, 

or 

(3.4) 
L1AykA+ekp'J~u,A = 0, 

L1Au/ = 0, de D', 

where we have introduced the following notation: 

y,/ = dkl E A~y~, UkA = t}kl E A~U~. 
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DISCR.ETE ELASTIC COSSERAT MEDIA 123 

Now, let us recall the form of the equations of motion (2.4) in the quasi-static case and 
without external forces: 

(3.5) 
XATkA = 0, 

lfAMtA+Et/.IJ:.T/ = 0, dE D. 

The analogy between the form of the Eqs. (3.4) and (3.5) can easily be observed; we can 
change the Eqs. (3.4) into (3.5) and vice-versa, using the formal scheme 

(3.6) 

Let us put the geometric equations (2.2) in the form: 

y1A = <51" eA<P (L1<Pu1+e!,,l&v''), 
(3.7) 

""A = <5tr eA<P L1<Pv'. 

According to the scheme (3.6), we can write the formulas 

(3.8) 
M A _ ~ A<P (A l + l [P ') t - ukr E LJ<PfP e.,, <PX , 

T"A = <5tr eA<P X<Px', 

where functions cpk, x" are said to be the stress functions in the linear theory of discrete 
Cosserat media. Substituting the right-hand sides of (3.8) into (3.5), we obtain identities. 
Introducing the notation 

M l _ A '+ l fP r <P - LJ<PfP e.,, <Z>X ' 

we are able to extend the scheme (3.6) 

(3.9) 

at,<Z> = <5tm drp eA"' e<PS ~' 

bt,<P = <5tm<51p EA¥" E<PS b:;£, 

Jfr<Z> = dtm<5rp eA"' e<Z>S /!;~, 

we put the constitutive equations (2.3) into the inverse form 

(3.11) 
YtA = at,<PT~+btr<PM~, 
""A = ffr<PM~+bftAT~. 

In deriving the equations for the stress functions cpk, x", we proceed from the Eqs. (3.4), 
(3.8) and (3.11 ). After some substitutions, we arrive at the equations 

L1A [tlf!r<Z> LJ<PX1+bt,<P(J"41cp1 + e!pr X'/~)]+ Etp~~~ (f..1<P(Lf<Pcp1 + e!,t Xtf~) 

(3.12) +hf,Alf<Px'J = o, 
L1A[ft,<Z>(Lf<Pcp'+e!,,x'l~+b1kA3<f>x'] = o, de D. 
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124 Cz. WoiNIAK 

Equations (3.12) hold in the quasi-static problems in which external forces are equal to 
zero. The analogy between the Eqs. (2.5) and the Eqs. (3.12) will be established if we 
complete the schemes (3.6), (3.9) by the scheme: 

(3.13) 

The formulas (3.6), (3.9) and (3.13) express the static-geometric analogy in the linear 
theory of the discrete elastic Cosserat media. 

4. Plane and plate problemse) 

Let us consider the discrete Cosserat system in which centres of mass of all rigid bodies 
belonging to the set D are placed, at the time instant 1: = 1:0 , in the plane z3 = 0. The 
constitutive equations (2.3) can be rewritten in the form: 

T/ = Afffy~+Aff~yq,+Bfffx~+Bff~"~~'' 

Tt, = A~fy~+A~~y~~'+B~fx~+B~~"~~'' 
M A_ r;rAIZ' r + r;rAIZ' +B~~'A r +B"'A 

k i - c k ' "t~~ c k • "t~~ ' k "~~' • k "~~', 
(4.1) 

MA = F~Tu~+FAt~~"~~'+Bf~x~+B~~"t~~' 
where the index 3 has been omitted. Let us put 

(4.2) 

for each dE D and each A, f/J. It follows that the basic equations of the discrete Cosserat 
media considered can be separated into two independent systems of equations. The first 
of these has the form: 

y~ = Llq,u1 +e!PvLit~~VJ~, "t~~ = Llt~~v, 
(4.3) Ll~ TkA+.fk = miib LI--.,.MA+ep~T,ALJAVJP+n = iv, 

T/ = Afffy~+Bff~"t~~' MA= pA~~'xq,+Br~y~. 

As the basic unknowns in (4.3), Wf! can take the three functions r/', v. The second system 
of equations can be written as follows: 

Y·P = Llq,u+ ep,v' Llt~~VJP, "~ = L1t~~v1, 

(4.4) ifATA+f= mu, LfAMkA+ekpTALJAVJP+nk = ikzV1, 

TA= AA<f'Yt~~+B~fx~, MkA = Ffffu~+B~ffYt~~· 

The three functions u, vk are the basic unknowns in ( 4.4). The problem of the theory 
of discrete Cosserat media described by the Eqs. ( 4.3) will be called the plane problem, 
and that described by the Eqs. ( 4.4) is said to be the plate problem. 

5. Principle of virtual work. Laws of conservation 

Let us consider the set of m functions q;A:D-+ R and put fJA(d) = q;A(f_Ad) for each 
dE D_A (the summation convention does not hold). We have 

(5.1) L1A(q)AC) = q;ALJA c + CLIAq;A, L1Aq5A = J"Aq;A, dE D', 

(l) In the formulas of this Section the indices k,l, ... take the values 1. 2. 
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DISCRETE ELASTIC COSSERAT MEDIA 125 

where C:D--+ R is an arbitrary function; the formulas (5.1) will also be valid if the summa­
tion convention in (5.1) does not hold. 

Let ~0 t/', ~0vk be the variations of the functions rl, vk, respectively, due to a change 
in the functional form of these functions. To obtain the principle of virtual work, we shall 
proceed from the expression 

TkA~oY~ +MkA~o"~ = TkALfA ~ouk+ TkAs~,,~ov' LIA V''+ MkALJA dovk 

= LIA(ftA<50 uk+ Mk11 <50 vk)-LIATkA<50 ti'-LIAMtA<50 vk-s:kp T,Ad0 vkLIA'IJ"'. 

By virtue of the equations of motion (2.4) and the identity (5.1h, we arrive at: 

(5.2) T/<50 y~ +Mt11 <50 x~ = L1 11 (Tk11 <50 uk+MkA<50v~+ (Jk-muk)<50 rl+ (nk-ik1v1)<50vt. 

Let D g n (D A n D -A) ::1= 4> [12]. For an arbitrary subset K £ D', we define now the 

setLIK, called the Ll-boundary of K, assuming de L1Kif, and only if [(de K) A (V f_Ad f; 
A 

f; K)] v [ (d f; K) A {V f-Ade K) ]. It can easily be verified that the following identity 
A 

holds: 

(5.3) 

where 

(5.4) 

1
1 when (df;K) A (f-AdeK), 

NA = NA (d) = -1 when (de K) A (f_Ad f: K), 
0 in other cases. 

By virtue of (5.3), we derive from (5.2) the equality: 

(5.5) .2; (Tkfdoy~+Mt11do~) =}; (r<r><50rl+M<f' dvvk)+}; [(.fk-muk)d0tl' 
k .tJk k 

where 

(5.6) r(r> = T,/NA, M<r> = M-k11NA. 

Let us denote E(K) = 2: e. Since we have <50e = Tk11 <50 y~ +Mk11 <50 x~, it follows that 
k 

(5.7) doE(K) =}; (T<~><50ti'+M<~><50vk)+}; [(.fk-mut)d0t1'+ (nt-ik1v1)<50vk] . 
.tJk k 

The formula (5. 7) represents the principle of virtual work in the theory of discrete elastic 
Cosserat media. 

The conservation laws of momentum and the moment of momentum we can derive 
directly from the equations of motion (2.4), using the formulas (5.3) and (5.1). Introducing 
(5.6), we find that 

(5.8) 
d ,_, (' .,+ r p • ) n (M(N)+ r PT(N))+ ~ ( + r ''/,) dr .L..J lkzV Ekp· 1p mu, = 2.,; k ek,.1J' r L nk Ekp.1p r • 

k iJk k 
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The quantities on the left-hand sides of (5.8) are the time derivatives of the momentum and 
the moment of momentum, respectively. The law of conservation of energy we derive 
from (5.7), by replacing the functions tJoti', tJov", tJo0., tJo~ by the functions u", v", ~' 
~' respectively. The left-hand side of (5. 7) will then be the time derivative 

E(K) = 2 (TiN>u" + M<r>v") + 2 [ (fi-muk)u" + (nk- ikzv1)vk]. 
& k 

In view of 

we obtain finally 

(5.9) d~ 2 ( ~ (md11il'il1+ ~ iuil1il1+•) = 2 (TCf!>U1 +MCf!liJk)+ 2 (J.U•+n1 il'). 
k dk k 

The quantity on the left-hand side of (5.9) is the time derivative of the internal energy 
E(K) = :Ee and the kinetic energy of the set K c D'. 

The laws of conservation can be obtained also from the variational approach 
(cf. Sec. 7). 

6. Principle of Betti. Somigliana formulas 

Let us consider now the quasi-static case, in which on one discrete elastic Cosserat 
system there act independently two groups of external forces. The first group of forces 

• • will be denoted by Ji, nk, and the second by Jk, nk. We denote displacements, rotations 
and stress and strain components induced by these two groups of forces by u1, v1, ~, 

- _1: A A d • " •t •t •t • A ~~A • I B . f (2 3) b . x-...1, Tt , M~: an u, v, /'A,"A' Tk , 1Y.lt , respective y. y virtue o . , we o tam 
the identity 

T"A~+MtA~ = fkA~+MkA~. 
Substituting into the above identity the right-hand sides of the geometrical equations 
(2.2), and using the formulas (5.1), we find that 

L1A(fkAU" + M~;Af;")-~ T"A;,t- LfAMtAf;l + E~pk T/V" L1A1J"' 

..!... A ..!... A~.k\ - • A . .k - • A--" • A k = L1A(Tt U~;+Mt v ,-L1ATk u--L1AMk v-+e~pkTr 'V L1AV'·P· 

But then, according to the equations of motion in the quasi-static case 

-A *k - A *k •t *k ..!... A ..!.. A k • • k L1A(T~; u +Mk v )+fiu +na:v = L1A(Ta: zi'+Mt v )+Jkti'+n~:v , 

and using (5.3), (5.6), we obtain finally the Betti principle: 

(6.1) 2 <r<r>U"+M<r>v")+ 2 (fiua:+nlJ") 
dk k 

= 2 cr<r>u"+M<r>v")+ 2 (hu"+n~;v"), K s;; D'. 
~k k 
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It can be observed that all global theorems proved above - i.e., the principle of virtual 
work, the laws of conservation and the Betti principle - have a form similar to the known 
integral theorems of the theory of continuous Cosserat media [11]. 

Let us assume now that at the discrete Cosserat media acts only one external force 

h(d0) = ~k1 , where d0 and I are given. This force induces displacements u" = U<~>(d0 , d) 

and rotations iJk = V~>(d0 , d) of an arbitrary body de D. From the Betti principle we 
derive the expression 

(6.2) tl(do) = 2 (fkUfr>+nkVt1>)+ 2 (TlN>utl)+M~N>V~l))-2 (T~N>rJ+MlN>vk), 
k ~k ~k 

• • • where T1N>(d0 , d), MlN>(d0 , d) are caused by the force fk(d0 ) = c511 • In the same way we 
obtain: 

(6.3) v1(do) = 2 (f"'Utz>+n"'Vtz>) + 2 (TLN>'u<~>+MLN>'Vl~>)- 2 ('T1N>rf+'M~N>v"), 
k ~k ~k 

where I Ufr>(do, d), 'V~)(do, d), 'T1N>(do, d), 'MJN>(do, d) are caused by the couple n~:(do) = 
= c5k1 (d0 and I are given). The Eqs. (6.2) and (6.3) are said to be Somigliana formulas 
in the theory of discrete Cosserat media. If we have rf = v1 = 0 on L1K, and the functions 
U~,(d0 , d), V~>(d0 , d), 'Utl)(d0 , d), 'V~>(d0 , d) have been determined, then the Eqs. (6.2), 
(6.3) will represent the solution of the quasi-static problem of discrete Cosserat media. 

7. Variational formulation 

The equations of motion and the laws of conservation can also be derived using the 
variational approach. The action functional in the theory of linear elastic discrete Cosserat 
media can be assumed in the form: 

(7.1) 

Let ~0"/r be the variation of the action functional due to a change in the functional form 
of the functions rf(d, T), v"(d, T). After performing the operation ~0 on (7.1), we ar­
rive at: 

Tt 

(7.2) ~oil"= 2 J (mc511 ii'~ori+ik1 il"~0 v1 -c50 e)dT 
k To 

~ ~ 

=-2 J (mc5klukc5ou1 +ik,1Jk~0 v1)dT+ 2[m~k1 uk~ori+ik1vkc50v1]!~- 2 J c50 edT. 
k q k k q 
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Calculating (}0 e, we find: 

(7.3) 2; (} 0 e = 2; (TkA(}o~+MkA(}o~) = 2; (T~N)(}0 zi'+M~N>(}0 vk) 
K K .Jk 

- 2; L1AfkA(}ozl'- 2; (LIAMkA-e~kpT,ALJAtpP)(}0 v1 • 
k k 

Substituting the right-hand side of (7.3) into (7.2), we obtain: 

Ti 

(7.4) (}o"fr = 2; f {(LIATkA-m(}klu')(}ozf+(L1AMkA+e~kpT,ALJAtpP 
K TO 

Ti 

- ikzv 1)~ovk} dr+ };[m(}~c,uk(}ou1 +ikzv1(}ov1]~~-}; J (T1N>(}0zf+ M~N>(}ov1)dr. 
K .JK To 

Denoting by (}T the symbol of variation resulting from the variation (}r of the time coordi­
nate: (}-ru1 = il(}r, (}Tvk = iJk (}r, we derive the following expression for (}, 1r 

(7.5) d,ir = ~[(; md,iJU'+; i.,ilV'-e) dTl 
The total variation (}if" is the sum {}0"/r + (},"fr . By virtue of (5.1 h, we obtain: 

7:1 

(7.6) (}"fr = .,2; J { (JATkA-m(}klu1)(}ouk+ (JAMkA+ ekp~T,AL1AtpP- ikzv1)(}ovk} dr 
K TO 

Ti -.2 f (T~N)(}0 zf+M~Nl(}0vk)dr. 
iJK TO 

According to the principle of stationary action in the form given in [15] -i.e., after 
introducing the external forces fk, nk- we derive the equations of motion (2.4). If these 
equations are satisfied, the total variation of the action functional will be equal to 

Ti 

(7.7) dir = - .2 J (fkd0 rl'+n.d0 v")dT+ .2 [ md.,U'd0 u'+i.,ild0 v1 

K q K 

From the invariance properties of the action functional it follows that oil" = 0 for (}r = 

= E (}uk = (} _Jc+ u· k E = Ek+ Ek1111 s.vk = ~ vk+iJk E = _!_ ek E1m where E Ek Ek1 = , 0 u- r" u uo 
2 

.zm , , , 

= - E
1
k are arbitrary infinitesimal constants. Making use of (7.7), we derive the weak 

conservation laws [15] in the form (5.8), (5.9). On the other hand, using (7.7), we derive 
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the strong conservation laws [15), representing the conditions of existence of the weak 
conservation laws. These conditions are satisfied, because the Lagrange function in (7.1) 
is invariant with respect to an arbitrary infinitesimal translation and rotation of the physical 
space and with respect to an arbitrary translation of time [15). 

In general considerations, the action functional of the discrete Cosserat media can be 
assumed in the form: 

Tt 

(7.8) "'f"(K) = ,2 J L(d, r, ti', vk, L1Ati', LJAv", ii'iJk)dr. 
K To 

Denoting 

(7.9) 
A iJL 

Tk = - iJL1Ati'' 

we obtain: 

(7.10) dil' = ~ l {[ ~~-( :~ r +LfATkA] 00 u'+ [ ~- ( :~ r 
+LM,A] o.u'}dT-2 j' <nN>O.u'+M1NlO.v')dT+ 2[!~ o.u' 

.dK To K 

From the principle of stationary action it follows that 

(7.11) 

Substituting the external forces .fi" nk into (7.10), we obtain: 

~ ~ 

(7.12) ~"'f" = -2 J (Jk~0 ti'+nk~ovk)dr-2 J (T~N>~0 ti'+M~N>~0 vk)dr 
K To .dK To 

If we put ~T = E ~ uk = ek+ek1
111 -ii E ~ vk_!__ ek Eml_iJk E into (7.10) and (7.12), 

' 0 1l ' 0 2 ·lm 

we shall obtain ~"'f" = 0 for the arbitrary parameters ek, ek' = - e'k, E. From (7.12) 
follow the weak conservation laws: 

(7.13) 
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(7.13) 
[cont.] 

Cz. WOZNIAIC 

+ .2; (/~:+ e1P~ vf'n,)} dr, 
K 

and from (7.10) the strong conservation laws [15]: 

(7.14) 

I
T• ~., oL 

L.J aT dr = 0. 
To K 

By virtue of (7.14)1 ,2 , the equations of motion (7.11) may also be written as follows: 

(7.15) 

and from (7.14)1, 3 we find that the Lagrange function L(d, ... ) does not depend on T 

and rl. The conservation laws (7.13) and (7.14) have to be satisfied for an arbitrary subset 
K c D' and for arbitrary time instants r 0 , r 1 • 

8. Equations in general coordinates 

Equations of discrete Cosserat media can be transformed to a more general form 
after introducing, for each de D, the separate Cartesian coordinate system in the physical 
space [12]. Let the Cartesian coordinate system assigned to the body de D be obtained 
from the Cartesian coordinate system zl by the 3 x 3 non-singular matrix [A: (d)]. 
Ue obtain the equations in such bundles of coordinate systems by replacing the 

indices k, I, ... by..\, p,, ... , and replacing the differences L1v, JA by the absolute dif­

ferences <5A, ~ [12, 13], where 

(8.1) • <5Av,.(d) = t1Av,.(d)+GAf(d)v,([Ad), de D,h 

dAv,.(d) = LfAv,.(d)+??AA(d)v,(f-Ad), de D_A, 
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and where G4, o;~h G~, a;A are called connexion objects. The connexion objects 
can be calculated using the formulas: 

GJJ.(d) = A~(d)L1AA~(d), Gjl(d) = A~(d)L1AA~(d), dE DA, 

(8.2) [<5~+ G~,(d)]G".u(d) = GA;,(f-Ad), dE D A() D_A, 

[&;+G.f.(d)JGiA(d) = Gjl(f-Ad), de DAn D-A· 

The concept of absolute differences was first introduced in (2] and then generalized 
in [13]. 

The equations of motion (2.4) and the geometric equations (2.2) transformed to the 
general coordinates have the form: 

(8.3) ~ATAA+h. = mu,h dAMAA+EAJc!T/dA'f/Jn+n). = i~?, dE D', 

and 

(8.4) r~= <5Atl+e~lrpvP<5A1p•, ~ = <5AvA, dE DA. 

The constitutive equations (2.3) can be rewritten in general coordinates by means of known 
transformation formulas 

Tl = At:~+B~x~, 

MAA = Ff,_,~x~ + B:f~, de D. 
(8.5) 

Other equations considered in preceding Sections can be transformed in a similar way. 
The static-geometric analogy holds also in general coordinates because <5£A d~1 zl' = 

= <5[A t5~1v" = 0 [13]. It is convenient to apply general coordinates solving some special 
problems of discrete elasticity. In considerations concerning the fundamentals of the 
theory, it is not necessary to introduce general coordinates. 

9. Alternative form of basic equations 

The equations of motion will be transformed into the symmetric form, if we introduce 
the following strain components: 

(9.1) 
r/A(d, r) = L1Arl'(d, r) + ~ e~, [v'(d)+v'(fAd)]L1A1J"'(d), 

x~(d, r) = L1Avl(d, r), de DA. 

By virtue of TJ~ = ~ +-} e~p,xAL1A'f/JP, the strain energy function (the elastic potential) is 

now represented by the expressions: 

(9.2) 

_ I AA~ k , +HA~ k t I cA~-.1: , 
7C - T Id TJATJ~ kl TJA"~ + T kl ""A."~' 

HA~ _ BA~ 1 AA~ r /~P 1 AA~ r /AP 
kl - kl - 4 kr E.pl - 4 kr E.pl , 

CA~ _ l:'A~ + 1 AA~ t s /~P/Ar 
kl - rtl 4 st E.pkE·rl • 
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Let us introduce the following stress components: 

A 01'C 08 
T~c =--le= --le' 

O'YJA oyA 

the summation convention with respect to the index A does not hold. The constitutive 
equations will be given by 

(9.3) 

By virtue of 

(9.4) 

T~r.A = A:,~'Y)~+Hft~~~, 

G~cj = Cf,~~~ + Ht:Ay~. 

G A- M A 1 '7'A l I" 
k - k - T .L 1 e.pk. ~b 

(the summation convention with respect to A does not hold), we can transform the equa­
tions of motion (2.4) to the symmetric form: 

~ (LtATk~+L1AT~cA)+f~c = mu~c, 
(9.5) 

The equations (9.1), (9.3) and (9.5) are the alternative form of the basic equations of the 
discrete elastic Cosserat media. In some special cases, we obtain Hf,~ = 0 [9, 10]. 

10. Classes of discrete Cosserat media 

Let EN, N ~m, be theN-dimensional space of points x, with the vector basis t1 , ... , tN. 

Denote by tA = tX~tK the set of m different vectors, where tX~ = o~ for A ~Nand tX~ for A> N 
are integers. 

Let K c D, where K,A ~ n (K,A n K,-A) #- (/> (cf. [12, 13]). 
Let us assume next that there exists the mapping ~- 1 : K ~EN having an inverse 

~' ~0~-l =id, and Satisfying the COnditionS (~-l(d) =X)==> (~-l(fAd) = x+tA) for each 
dE KA and each A. The mapping ~ is said to be a parametrization of the subset K c D 
with respect to a difference structure given on (D, G). If for each dE D there exists the 
subset K c D satisfying the conditions given above and dE K, the basic equations of 
discrete elasticity will be represented in the form of finite difference equations. The argu­
ment din the Eqs. (2.2) (2.3), (2.4) can then be replaced by the argument x = ~- 1 (d) 

(where dE K,A in the Eqs. (2.2), (2.3) and dE K' in the Eqs. (2.4) (and .JAtp(x) = 
= tp(x+tA)-tp(x), X E ~- 1 (KA); L1Atp(x) = tp(x)-tp(X-tA), X E ~- 1 (K_A)· 

Let us consider now the whole class of discrete elastic Cosserat media described by 
the following finite difference equations: 

~ (x, T) = L1Azi'(x, T) + e~p,.v"(x, T)L1A"PP(x), 

~~(X, T) = L1..tvk(X, T), X E QA, 
(10.1) 
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(10.2) 

(10.3) 

TkA(x, r) = Atf(x)y~ (x, r)+Bk\<P(x) x~(x, r), 

MkA(x, r) = Fk\<P(x)x~(x, -r)tB~(x)y~(x, r), 

LiATkA(x, t)+/k(x, -r) =m (x)uk(x, t), 

x efJ, 

LiAMkA(x, -r)+ekp~T,~(x, r)LlA~(x)+nk(x, r) = ik1(x)v1(x, r), x e !J', 

133 

where QA, Q = U(QA u Q_A), fJ' = n (QA n Q_~ are regions in EN, and (x e Q_A) .-. 
<=> (x-tA e QA) for each A. Moreover, let us assume that all functions in (10.1), (10.2), 
(10.3) are differentiable functions of the point x and satisfy the conditions: 

(10.4) L1A q>(x) ~ q>,x(x)t~, q>(x±t~ ~ q>(Ax), x e fJ'. 

The functional finite difference equations (10.1)-(10.3), defining the class of discrete elastic 
Cosserat media considered, can be written now in the form of partial differential equations 
[12]. By virtue of (10.4), we obtain from (10.1)-(10.3) the following set of equations: 

(10.5) 

(10.6) 

(10.7) 

y}. = U1,L+e!prV'1J'~L' 
xi= v',L; 

Tl = Af,Ly}. + Blfx}., 

Mk K = Ff,Lx}. + Bfkxri; 

Tkx,x+Fk = Muk, 

where we have denoted 

(10.8) 

A KL _ 1 tKtLAA<P 
kl -V A (!) kl ' B KL _ 1 tK tLBA<P 

kl -V A (!) kl ' 

M= m 
V' 

r;rKL _ 1 KtL r;rA<P 
rkl - VtA <Prkl ' 

l 
1 . 

kl = v'k' 
and V is the volume of the parallelopiped in EN given by the vectors t1 , •.. , tN. The partial 
differential equations (10.6)-(10.8) describe the whole class of discrete elastic Cosserat 
media and have to be satisfied in the region [J c EN. On the boundary of the region fJ, 
values of the functions uk(x, r) vk(x, r) can be given, cf. [12]. By virtue of the conditions 
(10.4), we obtain rJ~ ~ y~; it follows that e ~ n, GkA ~ M1/, and the difference between 
the equations given in Sec. 2 and Sec. 9 can b~ disregarded. 

Let us consider now the special case N = 3. We can now take as independent variables 
in the Eqs. (10.5)-(10. 7) the Cartesian coordinates zk, using the differentiable mapping 
zk = 1J'k(x),x = ~- 1 {d)efJ. Denoting axL = 1J'~xVJ~Lt:5k,a = detaxL,K,L, ... = 1,2,3, 
we transform the Eqs. (10.5)-(10.7) to the form: 

(10.9) 

(10.10) 

(10.11) 

7'1 p = u!p + E~pmVm, 
x

1
P = v~P' 

Tk' = Ai!;mypm+Bi~;mxPm, 
Mk' = F,;!;mxp m+B;'!'ikyP m' 

Tk1,p+bk = p,uk, 

Mk',,+ekp~T/+hk = r!k,v', z e 1J'(D), 
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where 

(10.12) 
M 

~'- = va, 

Cz. WoiNIAK 

The Eqs. (10.9)-(10.11) have to be satisfied in the region 1p(!J) of the physical space, and 
independent variables in these equations are Cartesian coordinates in the physical space. 
It can easily be observed that the case N = 3 leads to the equations of the Cossernt linear 
elastic continuous media [11]. 

Let us now consider the second special case, in which N = 2 and Q is a region in E 2• 

The functions i' = 1p"(x), x = ~- 1 (d) e Q, determine now the surface in the physical space. 
Let us denote by aKL = 11,K"P!L l5kl, K, L, ... = I, 2, the components of the first funda­
mental tensor of the surface 1p(!J), and let bKL be the components of the second funda­
mental tensor of this surface. After some calculations given in [14] (p. 47-50), we trans­
form the Eqs. (10.5)-(10.7) to the form: 

(10.13) 

(10.14) 

(10.15) 

'YKL = uLIK-b~u+e~v, 'YK = uiK+b~uL+EKLvL, 
uKL = vLIK-b~V, UK = 'l'IK+bfvL; 

PKL = A~iAfN'YMN +A~iM'YM+B~i!tfNuMN +B~iMuM, 
PK = A~~Ny,./ +AKMyM+B~~uMN +BKMuM, 

mKL = F~i~NuMN +F~iMuM+B!.fN~LYMN +B"fiK'YM, 
mK = F~"!NuMN +FKMuM+Bitf;/uMN +BMKuM; 

K I b K b .. p L K.- LK p + L = !J-U L, 
lCI b·L K b .. p K + K p L + = !J-U , 
K I b K. K I "K •• m LK- LKm +ELKP + ZL = !!LKV +!!LV, 
Kl + . L K +b. L K h .. .. K K L 1 2 n ml K EK p L Km L + =(!V+(!KV ' ' = ' 'X E :.~, 

where the vertical lines denote the covariant derivative in the metric aKL, EKL are compo­
nents of the Ricci bivector, and 

AKM - 1 AKM_lt. I 
- va kl -vv , ... , 

d k 1 LM-k I m a= etaKL, 'V = T E C~lm"P ,L"P ,M, 

(10.16) _1F,k b 1 vk 1 k 1 vk 
bL = Jl d k"P ,L, = yaFk , hL = yaNk1p ,L, 1z =yaNk , 

1M 1/ k I I k I 1 v"l 
p. = ya ' !!KL = ya ki"P .K"P ,L, !!K = valki"P ,K'V' e = ya Ikl 'V' 

UK = !J-1pk,K, U = Utvk, Vt = _Vk'll,K, V = Vkvk. 

The Eqs. (10.13)-(10.15) represent the two-dimensional Cosserat continuous media, 
immersed in the physical space. The continuous Cosserat media considered describe cer­
tain classes of discrete elastic Cosserat systems. 
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11. Applications 

The theory of discrete elastic Cosserat media can be applied, among other problems, 
to that of lattice-type structures; [1, 3-10]. The set D of rigid bodies is then a set of the rigid 
nodes of the lattice constructed of thin linear elastic rods. The difference structure on the 
set D will be determined if we assume d' =fAd when the nodes d, d' are connected by a single 
rod. In what follows, we shall consider a special case assuming that we can disregard the 
dimensions of nodes, all rods are prismatic, external loads act on the nodes only, and the 
mass of the whole structure can be approximately replaced by the masses concentrated 
at the nodes only. For this case, the elastic potential has been calculated in [9, 10]. Let 
us denote by t~(d) the components of the unit vector normal to the cross-section of the rod 
connecting the nodes d,fAd, and let 't~(d), "t~(d) be the components of the unit vectors 
directed along the principal axes of this cross-section. Let us denote by AA(d) the area of 
the cross-section and by CA(d), /;,_(d), l'A(d) the torsional rigidity, and the moments of 
inertia with respect to axes given by the vectors 'tA(d), "tA(d), respectively. Using the known 
approximated formulas of the theory of structure, we obtain: 

F,A~ _ t5A~ A tA tA+ A A 'tA'tA+ A A "tA"tA ( 
C 4E I' 4E I" ) 

kl - I;; k I ---y;- k l --y;;- k l • 

For the equations considered in Sec. 9, we have [10] 

(11.2) 

In the special case in which equations of lattice type structures are finite difference 
equations, the problem considered has been analysed in, among other works [1, 3]. The 
Eqs. (11.1) and (11.2) are valid only if the material of each rod is isotropic and homo­
geneous, EA(d) being the Young's modulus of the rod connecting the nodes d,fAd. A more 
general form of (11.1) and (11.2) has been given in [9]. 

The form of constitutive equations for classes of lattice type structures can be obtained 
from (11.2) or (1 1.1) by virtue of (10.8), (10.12) and (10.16) [4, 5, 10]. Classes of lattice­
type structures described by partial differential equations (cf. Sec. 10) have been analysed 
in several papers [4-10, 14], in the case N = 2, which corresponds to what are called 
lattice-type plates and shells. The full list of references can be found in [14]. 

3 Arch. Mecb. Stos. nr 2173 
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