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Discrete elastic Cosserat media

CZ. WOZNIAK (WARSZAWA)

IN THE LITERATURE, the theory of elasticity problems of Cosserat media has been investigated
in numerous papers. All those problems have been considered on the basis of the theory of
continuous media. In the present text, the basic concepts are given of the linear theory of discrete
Cosserat media. Such media are defined as countable sets of rigid bodies connected by a specific
system of interactions. The theory of the discrete elastic Cosserat media is a part of a discrete
elasticity [12] — and is based on the theory of discretized bodies [13].

Literatura z zakresu teorii spreZystosci zawiera wiele prac dotyczacych ofrodk6w Cosseratow,
rozpatrywanych wylacznie jako osrodki ciagle. Niniejsza praca zawiera podstawowe pojecia
liniowej teorii dyskretnych ofrodkéw Cosseratoéw, definiowanych jako przeliczalne zbiory ciat
sztywnych, powigzanych pewnymi szczegdlnymi schematami wzajemnych oddzialywan. Teoria
dyskretnych ofrodk6w Cosseratow jest czeScia dyskretnej teorii sprezystosci [12] i jest oparta
na teorii ciat dyskretyzowanych [13].

B nmTeparype O TEOPHH YNPYTOCTH MMeeTCs MHoro paboT, B Kotophix cpems! Thna Koccepa
PAacCMaTPHBAIOTCA MCHJIOUMTENEHO KaK CIUTolmHkle. B manHoi paGore cofiep:KaTcs OCHOBHbLIE
TOHATHA JIHHEHHOH TEOpHH JHCKpeTHBIX cpefx THma Koccepa, ompefenAeMbIX KaK CUETHEIE
MHOMECTBA JKECTKHX TeJ, CBA3AHHBIX HEKOTOPLIMH CHELMANLHLIME CXeMAMH B3auMoJeli-
creuit. Teopus muckpernsx cpes Thna Koccepa ABsAeTcA 4acTeio AMCKPETHON TEOPHH yNpy-
roctd [12], u omMpaercsa Ha TEOpHIO AHCKPETH3HPOBAHHBIX cpen [13].

Notations

The indices 4, @, ... run over the sequence I,II, ..., m, indices A, u,v, ... take the values 1,2, 3 and
indices K, L, M, ... run over the sequence 1, 2, ..., N. We also use the indices k, I, m taking either the
values 1, 2 (in Sec. 4) or the values 1, 2, 3. The summation convention holds for all kinds of indices,
Partial derivatives with respect to variables xK are denoted by a comma and the dot denotes differen-
tiation with respect to time coordinate. The functions encountered in the text are assumed to be con-
tinuous together with their derivatives of the first and the second order.

1. Introduction

THIS PAPER is based on the concept of discretized bodies, introduced in [13]. The discretized
body is a pair (D, &), where D is a set of holonomic dynamical systems d € D, which can
interact only in subsets E € &, where & is a covering of D. An arbitrary discretized body
is an approximate model of a continuous body, which has only a finite or countable num-
ber of degrees of freedom [13]. In the present paper, we assume that D is a set of free rigid
bodies. Let us denote by ¢°(d, 7),a = 1,2, ..., 6, the six independent generalized coor-
dinates of an arbitrary rigid body d € D, where 7 is the time coordinate. For each d e D
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and each z, the numbers ¢°(d, 7) are coordinates of a vector in a six-dimensional vector
space [13].

The discretized body (D, &), where each d € D is a free rigid body, is said to be the
discrete elastic Cosserat medium, if for each E € & there exists the elastic potential e.
Introducing in each E, E = n+1, the coordinate system f:E — (d, f,d, ..., fud) (cf. [13],
Appendix), we can write:

(11) &€= £(d, ‘f(d; T)! Aziqn(d) t)): a= 112, seny 6.

It was also shown in [13] that the Lagrange equations of the second kind of an arbitrary
dynamical system d e D(') have the form:

(1.2) AT A, 1) +1.d, 1) +£o(d, 7) = 1(d, ..), deD,
where
" a d 0Td,...) 0T(d,..)
* T dr 9g:d, v)  0q°(d, 7)’
and T(d, ...) = T(d, ¢°(d, 1), 4°(d, 7)) is the kinetic energy of the holonomic dynamical
system d e D. The symbol fa(d, 7) denotes the generalized external force acting at d,
and T,%(d, 1), t,(d, 7) are generalized internal forces in the subset E; €&, de D, (cf.

[13]). The generalized internal forces in the elastic discretized bodies are given by the
formulas [13]

deD,

oe(d, ...)
049°@, v)’
If the particles d e D of the discretized elastic bodies are rigid, we have to deal with the

elastic Cosserat discrete media; the index x'a’ in (1.1)—(1.3) take the values 1,2, ..., 6.
In what follows, only linear theory of such media will be discussed.

oe(d, ...)

(L3) Tad(d: 7) = _W ’

t.d, 1) = deD.

2. Equations of motion and constitutive equations

Let us assume that at the time instant T = 7, and for each d € D, there is ¢(d, ...) = 0
and ¢°(d,t)=0,a= 1,2, ..., 6. Let throughout all the motion both the generalized
coordinates g (d, 7) and the generalized velocities g°(d, 7) be sufficiently small in absolute
value, so that the problem may be linearized. We can put(?)

(2.1) =8+ % a=1,2,..,6,

where #* = u*(d, 7) are components of a displacement vector of a centre of mass of the
rigid body d € D, and v* = v*(d, 7) are components of an infinitesimal rotation vector
of this body; all those components are related to the inertial Cartesian coordinate system z;

(*) The subsets E e & are said to be discrete elements and holonomic dynamical systems, d € D are
called particles of the discretized body. If the discretized body is the discrete Cosserat medium, particles
de€ D can be interpreted as rigid bodies.

(?) In the sequel, the arguments d, 7 of the functions considered will be omitted. The difference structure
on (D, &) is given [13].
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in the physical space. The elastic potential and the kinetic energy will be written now
in the form:

8@, ..) = o LYot BS kot o FLO Ak,
1 .k‘l l - 'k'l
Td,...) = —z—méuu u +?:k.v v, deD,
where
(2.2) )’31 = AA’H‘{‘E{‘prﬂrAA‘PP-

"y = AAT)*; de Dy,

and z* = y*(d) are coordinates of the place in the physical space occupied at the time
instant 7 = 7, by the centre of mass of the body d € D. The quantities A{}® = A{%(d),
B{® = B{®(d), F{i® = F{®(d) represent the elastic properties and the quantities m =
= m(d), iy = i, (d) represent the inertial properties of the discrete elastic Cosserat system.
It is convenient to assume that y%(d, 1) = »%(d, ©) = 0 for d¢ D,, and A{®(d) =
= Bi®(d) = F4®(d) = 0 for d ¢ D, or d ¢ Dg. The form of elastic potential introduced
above is invariant under an arbitrary rigid displacement and infinitesimal rotation of a
whole discrete Cosserat system. Denoting 7,4 = 6 *T} A+ 85_3 M, we can express now
the constitutive equations (1.3); by means of the formulas

Ti§ = Ai®yo+ B{i®xs,
M = Fi®xp+Be, deD.

The functions T3 = T,4(d, 1), Mi* = M,"(d, ) will be called the components of stress,
and the functions 9% = y%(d, 1), #4 = »4(d, 7) are said to be the components of strain
in the linear discrete Cosserat media. The constitutive equations (1.3), in the linear theory
reduce to the equalities

2.3)

ta = O sey T, 449"
Using the above equalities and after denotations
fo= Obfi+ i ame,
we obtain from (1.2) the following equations of motion:
ATl +fi = miky,
A M+ 6, TAA 9P+ 1y = i@, deD.

The geometrical equations (2.2), the constitutive equations (2.3) and the equations of
motion (2.4) form the basic set of equations of discrete elastic Cosserat media. After
simple substitutions, we obtain from (2.2), (2.3), (2.4) the following system of ordinary
differential equations for the six unknown functions #*(d, 1), v*(d, t), d € D:

A_A [Aﬁ‘p(do“l+35prﬂrd¢?’p)+Bflt¢Aot’l] +fx = mid,
(2.5)  AAIFAPA50"+ BRA (Ao td + &' 0" Ao y?)] + €1yt A ayP [A22(A o™ + €74 ' Ao ")
+B:,l,?A¢.‘Um] +n = fg;éjl, deD.

(2.4)

2+
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Denoting by d*(d, 1), b*(d, 7), d € D, the set of known functions, we put
@.6) Pmd *mP dedbeD,

The Egs. (2.6) are boundary conditions of the discrete Cosserat system. The basic equations
(2.2)-(2.4) (or the Eqgs. (2.5)) with the boundary conditions (2.6) and with the initial
conditions given for each d € D, make it possible to obtain the basic unknown functions
u* = u*(d, 1), v* = v*(d, 7), d € D. The uniqueness of the solution results from the fact
that both quadratic forms e(d, ...), T(d, ...) are positive definite.

If the difference structure on D is regular — i.e., the relations f, fsd = fof4d hold
for each de Dy o Dg 4 [12], it will be possible to represent the basic equations in
the form of finite difference equations (cf. Sec. 10). If the conditions

@7 A4 =A4"°d)o, Bi® =B'®(d)du, Fi®=F"®d)dy, deD,
hold, the discrete Cosserat system will be called isotropic.

3. Conditions of compatibility. Static-geometric analogy. Stress functions

Let us confine our considerations to the case m > 1. This is the case in which the
stress components y %, x are not independent. Let us also confine ourselves to the regular
difference structures on D. The conditions fyfed = fof4, d€ Dy Dy 4, yield [12]

@.1) Aiadep =0,

for each pair A, @ and for an arbitrary function ¢:D — R. By virtue of (3.1), from the
geometric equations (2.2), we obtain

(.2 A[@J’ﬁ]+6{‘p;xfddqa]lp’ = sskpr"fOA[WA.d]wpl
Aonf] =0, deDyonDgy.
The Egs. (3.2) are called the conditions of compatibility of the linear elastic Cosserat
media. It may be observed that the additional relations among strain components will
hold if the difference operators 4, 4y, ..., 4, are not independent. This problem will
not be considered here.
Let us introduce the symbols

lwhenA—® = —-10or A—-DP = 1-m,

e®={-1lwhenA-P=1o0r A-P =1-m, I = A"
0 in other cases,

and let us assume A,l% < % for each A, ® and each de Dy 4.
Equations (3.2) yield

(33) €14 ,,y5+ &5, €1®x418 = 0, €1%4,%* =0,

or

Ay +eglhx =0,

Apet =0, deD,

where we have introduced the following notation:

A _ Ao, 1 A __ Ad, 1
7 =0y, ! = 0ye%xg.

3.4)
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Now, let us recall the form of the equations of motion (2.4) in the quasi-static case and
without external forces:

A-—ATkA = 0,
A M+ 65T A =0, deD.

The analogy between the form of the Egs. (3.4) and (3.5) can easily be observed; we can
change the Eqgs. (3.4) into (3.5) and vice-versa, using the formal scheme

(3.5)

(3.6) Agody, plAoMd, xltoTA
Let us put the geometric equations (2.2) in the form:

vt = 0y €1 (o' + €., 150),
A = 8y 1® A0,

According to the scheme (3.6), we can write the formulas
M = 8y €% (do@' +&5151),
T = 8y e*® ZI‘@X’ )

where functions ¢, ¥* are said to be the stress functions in the linear theory of discrete
Cosserat media. Substituting the right-hand sides of (3.8) into (3.5), we obtain identities.
Introducing the notation

3.7

(3.9

b= Ao’ +ep I8y, Th = Aoy,
we are able to extend the scheme (3.6)
(3.9) P, povt, Tled, Mo,
Denoting by [a4?], [f%5] the 3m x 3m matrices, and introducing the notations
[[aﬁ'a]. [bfx'd] N [[Af:"]. [Bfa"]]"
Bhal™,[f4e) ] LIBEST, [FA°1) °

af® = Om0ip €% €% alh,

b{i® = Okmdyp, ¥ €% bEE,

Ji® = Oumbyp €7 € £3E,
we put the constitutive equations (2.3) into the inverse form

7 = ai®To+bi’ My,

o = fEOMY+b3ATS.

(3.10)

3.11)

In deriving the equations for the stress functions ¢, y*, we proceed from the Egs. (3.4),
(3.8) and (3.11). After some substitutions, we arrive at the equations

AP Ao 1" + b2 (Ao @'+ ey 4 I + 4,15 [ f4°(A o' + £l 1'13)
(3.12) +684447 = 0,
A8 (As0" + sf,,x’!5+bﬁ”ﬂ'¢x'] =0, deD.
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Equations (3.12) hold in the quasi-static problems in which external forces are equal to
zero. The analogy between the Egs. (2.5) and the Egs. (3.12) will be established if we
complete the schemes (3.6), (3.9) by the scheme:

(3.13) Fi®oal®, Bilebi®, AiPofi®.

The formulas (3.6), (3.9) and (3.13) express the static-geometric analogy in the linear
theory of the discrete elastic Cosserat media.

4. Plane and plate problems(*)

Let us consider the discrete Cosserat system in which centres of mass of all rigid bodies
belonging to the set D are placed, at the time instant 7 = 7,, in the plane z* = 0. The
constitutive equations (2.3) can be rewritten in the form:

T = A{PyYo+ Al %o+ Bi{xo+ B %o,

Ty = APYo+ A% o+ B{xo+ BPx,,

M = F{Puy+ F{Pxp+ B rlp+ B xg,

M% = FA0uly+ FA%%g+ BP 5l + B® x4,

where the index 3 has been omitted. Let us put

(4‘2) Af@ Fkl = 0’ BkA? = O! Bfl]'; = 0! ik!‘ = 0’

for each d € D and each A, @. It follows that the basic equations of the discrete Cosserat
media considered can be separated into two independent systems of equations. The first
of these has the form:

@.1)

Yo = Aot +e,vley’, %p = Agu,
4.3) A4 T+ fy = mily, A MA e TAA WP +n = i,
T = Ailyo+Bi®xe, M* = F %o+ BP!ys.
As the basic unknowns in (4.3), we can take the three functions «*, v. The second system
of equations can be written as follows:
Yo = Agu+e, 0" doyP, xb = At
4.9 ApTA+f = mii, AZMPA+ e, TAA 49° + 1 = ig?,
T4 = A"+ Bi{np, M = F{{xp+B%y,.
The three functions u, v* are the basic unknowns in (4.4). The problem of the theory

of discrete Cosserat media described by the Egs. (4.3) will be called the plane problem,
and that described by the Egs. (4.4) is said to be the plate problem.

5. Principle of virtual work. Laws of conservation

Let us consider the set of m functions ¢*: D — R and put p*(d) = ¢(f_4d) for each
de D_, (the summation convention does not hold). We have

G.1) A,@%0) = A L+ TA,49%, A" = JAQ’A; deD,
(*) In the formulas of this Section the indices k, /, ... take the values 1, 2.
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where £: D — R is an arbitrary function; the formulas (5.1) will also be valid if the summa-
tion convention in (5.1) does not hold.

Let 8ou*, 8,0* be the variations of the functions #*, o*, respectively, due to a change
in the functional form of these functions. To obtain the principle of virtual work, we shall
proceed from the expression

Tl v+ M0l = T A4 both+ Tk, 0004 497 + M 44 800"

= AA(TP 8ot + My2000%) — A4 T80t — A g MA 860 — &5, TA800* A 49" .
By virtue of the equations of motion (2.4) and the identity (5.1),, we arrive at:
(5.2) T80 yh+M805k = A (T 0u* + M 8,0%) + (fii— mii) 8ot + (my— i1y 9" 8,0*.
Let DL ~ (DynD_y) # ¢ [12]. For an arbitrary subset K < D', we define now the
set AK, called the A4-boundary of K, assuming d € AKif, and only if [ (d € K) A (\/f_,,d ¢

A
¢K)] v [(@¢K) A (\/foadeK)] It can easily be verified that the following identity
A
holds:
(5.3) D Mgt = D) ¢y,
k Ak

where

1 when (d¢ K) A (f_adeK),
(6X)] Ny=N, (d)=1—1when (deK) A (f_4d¢K),
0 in other cases.

By virtue of (5.3), we derive from (5.2) the equality:
(5 D) T derhit Mitdort) = X (TPdou+ MWD 0.0+ > [(fu—mriy) St
k 4k k

+ (. — i ©") 500",
where
(5.6) T = TNy, MY = MN,.
Let us denote E(K) = D, &. Since we have dge = T 8o 7% + Mo %%, it follows that
k

GBI 8EER) = ) (T8 + MPo)+ Y, (e mie) b+ (i)
Ak k

The formula (5.7) represents the principle of virtual work in the theory of discrete elastic
Cosserat media.

The conservation laws of momentum and the moment of momentum we can derive
directly from the equations of motion (2.4), using the formulas (5.3) and (5.1). Introducing

(5.6), we find that
& Y= Srwe S
h Ak k

(5.8)
d X7V u i
= D Gt +eymic) = ) (MO +ey T+ Y (et angy?f).
k 4k k
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The quantities on the left-hand sides of (5.8) are the time derivatives of the momentum and
the moment of momentum, respectively. The law of conservation of energy we derive
from (5.7), by replacing the functions o4, doo¥, 8o7%, 0% by the functions u#*, 9%, 7%,
%, respectively. The left-hand side of (5.7) will then be the time derivative

EK)= ) i+ MO#)+ ) [(fimmiiid+ (= i)
Ak k

In view of
1

mﬁﬂ.lt'i‘l..ﬁ'f)l =y %(fméuﬁ"i‘—f-%-iuﬁ*é‘) s

we obtain finally
c9 - (% (bt + o i+ a) = N @i MPPR+ D) (it ).
k Ak k

The quantity on the left-hand side of (5.9) is the time derivative of the internal energy
E(K) = Ze and the kinetic energy of the set K = D'

The laws of conservation can be obtained also from the variational approach
(cf. Sec. 7).

6. Principle of Betti. Somigliana formulas
Let us consider now the quasi-static case, in which on one discrete elastic Cosserat
system there act independently two groups of external forces. The first group of forces

will be denoted by f;, n;, and the second by fi, :;;. We denote displacements, rotations
and stress and strain components induced by these two groups of forces by u, vy, ¥4,

o, TA, My and i, o, 7%, %4, Ti4, Mi%, respectively. By virtue of (2.3), we obtain
the identity

TP+ M2 = i’xd}’frf'z"}adxf:-
Substituting into the above identity the right-hand sides of the geometrical equations
(2.2), and using the formulas (5.1), we find that

AT+ MDY — A, Tk — A MAS + 0 TAPA 49°
= AA (TIAUg + EkAU‘) = A_A i}ﬁut =, A_Aﬂ}idvk + Sfptfi",."v"AAw.’.
But then, according to the equations of motion in the quasi-static case
ALTHEE+ M)+l + gt = AT+ My o") +f:1~* +rg,
and using (5.3), (5.6), we obtain finally the Betti principle:
61 O TPFELMPH)+ Y (fin+md)
dk k

= D (TP + MPN + D) (ht+iud®), K< D
Ak k
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It can be observed that all global theorems proved above — i.e., the principle of virtual
work, the laws of conservation and the Betti principle — have a form similar to the known
integral theorems of the theory of continuous Cosserat media [11].

Let us assume now that at the discrete Cosserat media acts only one external force

f:(do) = 8y, where d, and / are given. This force induces displacements % = U(do, d)

and rotations ©* = V§;(d,, d) of an arbitrary body d e D. From the Betti principle we
derive the expression

62  w(do) = D (fiUky+mVi)+ D (TUs+ MOWh)— 3 (T 4 MiVob),
k Ak Ak

where T (dy, d), ;’l}}")(do, d) are caused by the force fi(d,) = dy,. In the same way we
obtain:

63)  o*do) = D (UL +m Vi) + D (TN UL+ MPVE) - 3 (T 4+ M0,
k Ak Ak

where 'Ufiy(dy, d), 'V{y(do, d), TNy, d),"M™(do, d) are caused by the couple my(d,) =
= dy; (dy and [ are given). The Eqgs. (6.2) and (6.3) are said to be Somigliana formulas
in the theory of discrete Cosserat media. If we have «* = v* = 0 on 4K, and the functions
Ufiy(do, d), V)(do, d), 'Uli(do, d), 'V3y(do, d) have been determined, then the Egs. (6.2),
(6.3) will represent the solution of the quasi-static problem of discrete Cosserat media.

7. Variational formulation

The equations of motion and the laws of conservation can also be derived using the
variational approach. The action functional in the theory of linear elastic discrete Cosserat
media can be assumed in the form:

(7.1) W(K) = Zx: ;!. (%-ménl?f{'-l- ‘%iﬂf.}lél—s)d'r.

Let 8,%" be the variation of the action functional due to a change in the functional form
of the functions #*(d, 7), v*(d, 7). After performing the operation 8, on (7.1), we ar-
rive at:

(12)  8# =) [ (Mol +iui*det'— g e)dr
k T0

= = [ mditoo' +iu*do0dr+ ) [mbyitdord +ini*de0Ta— D, [ doede.
k 1 k k o
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Calculating d,¢, we find:
13) D doe = ) (Tidavht Mytdod) = ) (T so1+ MM 8,0
K K 4k

— D 44T 00t = D) (A4 M — i, T, A 497) 807"
k k

Substituting the right-hand side of (7.3) into (7.2), we obtain:

(74) 60'#? = 2 f {(Ad?gd—ma”ﬁ‘)éoﬂk’*‘(dAEA'{' S:kp T,.Addwp

K 19

— i) 8ot dr+ ) [mbuitdot +in@*de 0= D [ (T808uk+ MEOS, M.
K

AK 1y

Denoting by d, the symbol of variation resulting from the variation 7 of the time coordi-
nate: &,u* = i*d7, 6,9* = o* o7, we derive the following expression for &, %

1 11%1
(7.5} 6,’#’ = Z II(% mﬁut}"ﬁl-l* —;— i'mf.)tf.ll*-s (5‘5'] i
K H ]
The total variation 6%  is the sum é,% +6,# . By virtue of (5.1),, we obtain:
T
0.6 0% = ) [ {@uTit~mbuiiyoat + @M+ T4 19~ i) 300}
K 17

T1

+ 2 i[m 6“2?60"’ +fkﬂ.)*607.)l + (%’ m(s“l?:l.‘! + % ikﬂ-’*‘él = 8) 51.']
K

To

-2 f (T8, 1+ M3, %) d.

4K 1g

According to the principle of stationary action in the form given in [15] —i.e., after
introducing the external forces f;, n, — we derive the equations of motion (2.4). If these
equations are satisfied, the total variation of the action functional will be equal to

T |
a1 oW = -2 f (ﬁﬁow“+mﬁoﬂ")d‘r+Zﬂméuﬁ"éou‘+fﬂé"5°v'
K 1 K

7y i
+ (-;.- mogi*ut + —;llv itk — s) 61’] — Z f (TN §ou* + MN 8,05 dr.

K 1
From the invariance properties of the action functional it follows that %" = 0 for d7 =

=€, 0t = Sout+it e = e+ My, v = fpvt+ite = é—sﬂm ™ where g, €, e =
= — € are arbitrary infinitesimal constants. Making use of (7.7), we derive the weak

conservation laws [15] in the form (5.8), (5.9). On the other hand, using (7.7), we derive
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the strong conservation laws [15], representing the conditions of existence of the weak
conservation laws. These conditions are satisfied, because the Lagrange function in (7.1)
is invariant with respect to an arbitrary infinitesimal translation and rotation of the physical
space and with respect to an arbitrary translation of time [15].

In general considerations, the action functional of the discrete Cosserat media can be
assumed in the form:

1

(7.8) Y K) =D [ L@d 1, A, 4,0, idiNde.

K 7o
Denoting

oL oL

A4 _ _ F -
3 A= A M 04 4
we obtain:

“lfoL (oLY - oL [oLY
a0 o= [ i[m‘—(aﬁ) ”AT*“]“O"” +[€J‘(‘a€'7)
K 1
+LM:‘] worbde= 3 [ @osyit s mpataes Y, ha% bt
4K 19 K

+ %;» a.,#ua:l .

From the principle of stationary action it follows that
— oL LY oL oL\
(?ll) AATkA'f‘—aF'['ﬁ;: (“é;;) ) AAM;-A'F ‘55;"]'?11 = (‘aft;r) .

Substituting the external forces f;, 7 into (7.10), we obtain:

T T
(1.12) oW = —2 f (ﬁdau*+nkéov‘)dr—2 f (T3, + MM 8,2%) d
K 1

AK 1o
1 e

+ 2 .
I3 =g

If we put ér = g, dou* = ¥ +ely,—iF €, éu‘z)"—-s;,,,e'"’ ¢* € into (7.10) and (7.12),

6L oL

ik Do+ ==

Sov*+ LT

we shall obtain é#" = 0 for the arbitrary parameters €, € = —€* e. From (7.12)
follow the weak conservation laws:

(7.13) [2 aukJ’* f T(N) ¥ Zf,‘) dv,
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(.13) [Z(av,m,. )|= f { D o+ errzo)
Vs

[cont.]

+ D htay gv"n,)} %
K

[Z (% i+ %’;if—f,)]: = fl {; (T + MMF) + ;‘ (ﬁﬁ‘+n0é*} i,

and from (7.10) the strong conservation laws [15]:

f“Z%‘“ IZ( "haa uf“'”"")dt:o
10 K

(7.14) .
oL
[ Xsa=o
10 K
By virtue of (7.14),,,, the equations of motion (7.11) may also be written as follows:
- L\ - LY
(7.15) AT 41y = (%; y  AaMP+ e, TAA 9%+ = (EUT ,

and from (7.14),,; we find that the Lagrange function L(d, ...) does not depend on ©
and «*. The conservation laws (7.13) and (7.14) have to be satisfied for an arbitrary subset
K < D' and for arbitrary time instants z,, 7;.

8. Equations in general coordinates

Equations of discrete Cosserat media can be transformed to a more general form
after introducing, for each d € D, the separate Cartesian coordinate system in the physical
space [12]. Let the Cartesian coordinate system assigned to the body d € D be obtained
from the Cartesian coordinate system z* by the 3x3 non-singular matrix [A4}(d)].
Ue obtain the equations in such bundles of coordinate systems by replacing the

indices k, /, ... by A, y, ..., and replacing the differences 4,, 4, by the absolute dif-
ferences 8,4, 84 [12, 13], where

8400(d) = AP D+G A Du(f4d), deDy,
5418(d) = A4 (d)+Ghady(f_d), deD_y
840(d) = 4,40, d)+G 4 @wu(fad),  deDy,
840:(d) = A40,(d)+ Giy(@)u,(f_ad), deD_y,

(CRY
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and where G4}, Giy, (.?,,;‘,, G?4 are called connexion objects. The connexion objects
can be calculated using the formulas:

GAWd) = 4D,  GHW@) = 4D 4d), deD,,
(3.2) (654 G4(@D]Gia(d) = GA(f-ad), deDsn D_y,

[+ GA@DIGiad) = Ghi(f-nd), deDsnD_y.
The concept of absolute differences was first introduced in [2] and then generalized
in [13].
The equations of motion (2.4) and the geometric equations (2.2) transformed to the
general coordinates have the form:

(8.3) AT +fi = mily, S oAMiA+6:.PT, 8,9 +n, = iy, deD’,
and
(8.4) Yh= Ot + 4, 098,y%, o = 8,08, deDy.

The constitutive equations (2.3) can be rewritten in general coordinates by means of known
transformation formulas

Tt = ALy + Bidws,
Mt = F{2x4+ B2, deD.

Other equations considered in preceding Sections can be transformed in a similar way.
The static-geometric analogy holds also in general coordinates because Jp40q4" =
= 0;4104;2" = 0 [13]. It is convenient to apply general coordinates solving some special
problems of discrete elasticity. In considerations concerning the fundamentals of the
theory, it is not necessary to introduce general coordinates.

8.5)

9. Alternative form of basic equations

The equations of motion will be transformed into the symmetric form, if we introduce
the following strain components:

hid, 1) = Aaib(d, D+ o [V DI 1Dy @),
"ﬁ(d! T) == Advl(d’ T), de DA'

©.1)

By virtue of 7% = %4+ —;— &¥pr 2y 4 497, the strain energy function (the elastic potential) is

now represented by the expressions:

7 = - AfPrfor+ H{Pws + - CEPRits,
1 1
9.2) H{® = B{i*— ry ApPer, 1%~ TA;‘,%{,,MP, 1% = A9,

C® = FiP 4 Al etpet I,
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Let us introduce the following stress components:

on O 4 On O 1 de

il e i s = =
T = ont ok’ £ oxk ~ oxk 2 oyk enday’;

the summation convention with respect to the index A does not hold. The constitutive
equations will be given by

Tt = Afnli+ HEo,

.3)
= Ci®xp+ H}'vo.
By virtue of
9.4) Gl = MA- % T uls,  15(d) =15(f-ad) = A49°(d)

(the summation convention with respect to /A does not hold), we can transform the equa-
tions of motion (2.4) to the symmetric form:

=3 (AA A+ AT +fi = mily,
©.5)

% (AaM+ A, M) + -;— en (AT + 1 Tu®) + 1y = I

The equations (9.1), (9.3) and (9.5) are the alternative form of the basic equations of the
discrete elastic Cosserat media. In some special cases, we obtain Hg® = 0 [9, 10].

10. Classes of discrete Cosserat media

Let EY, N < m, be the N-dimensional space of points x, with the vector basis t,, ..., ty.
Denote by t, = aXty the set of m different vectors, where a¥ = X for 4 < Nand of for A>N
are integers.

Let K< D, where K4 £ n (K4 nK,_)# D (cf. [12, 13)).

Let us assume next that there exists the mapping £ !: K — EV having an inverse
£, 8,671 = id, and satisfying the conditions (£-*(d) = x) = (£7'(f4d) = x+t,) for each
de K, and each A. The mapping & is said to be a parametrization of the subset K < D
with respect to a difference structure given on (D, &). If for each d € D there exists the
subset K c D satisfying the conditions given above and d € K, the basic equations of
discrete elasticity will be represented in the form of finite difference equations. The argu-
ment d in the Egs. (2.2) (2.3), (2.4) can then be replaced by the argument x = £~1(d)
(where de K 4 in the Egs. (2.2), (2.3) and de K’ in the Eqgs. (24) (and A,¢(x) =
= p(x+1)—p(x), x € £71(Ky); 449(x) = ¢(X)—p(x~14), x € E~1(K_4).

Let us consider now the whole class of discrete elastic Cosserat media described by
the following finite difference equations:

J’}A(x! 1:‘) = Atlu*(xs r)+£’:prﬂ'(x} T)AA'P’(X),

(10°1) ,"{‘l(x’ 1;) = AA%’*(X, T), X E‘QA!
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T(x, 7) = AP (X)ye (x, 1)+ Bi°(X) xa(x, 7),

102 prax, ) = FIP®)b(x, )+ BRM)Ph(x, 1), x€L,
A TAX, 1)+, 7) = m(X)ii(x, 1),
(10.3)

ZAMkA(xs ‘r)+£l',p: Tl'il(x! I)AA"P{,(X)+HK(X! 1") = ikl(x)i:’l(x’ 1)5 XeE 'Q's

where 24,02 = UQ,u 2_,),2'= n (24 n 2_,) are regions in EY, and (x e 2_,) &
<> (x—t, €2, for each A. Moreover, let us assume that all functions in (10.1), (10.2),
(10.3) are differentiable functions of the point x and satisfy the conditions:

(10.4) Adap(®) = px(X)th, @&x+t) = o(dx), xe.

The functional finite difference equations (10.1)-(10.3), defining the class of discrete elastic
Cosserat media considered, can be written now in the form of partial differential equations
[12]. By virtue of (10.4), we obtain from (10.1)-(10.3) the following set of equations:

I _ 4 I o
VL= “,a.[-"'s-prTJ ’Pfx.,

(10.5) oy

- TX = AfFyL+ B,
MX = Fi,+ BifyL;

107 TE x+F, = Mii,

ME x+ &gl T X9 x + Ny = I,
where we have denoted

A= S iNALS, B = LiKEBE®,  FEE= LOGFL,
(10.8)
Ry Mmooy el e
k—‘?ﬁu 2= V”k; =7 K=l

and V is the volume of the parallelopiped in EV given by the vectors t;, ..., ty. The partial
differential equations (10.6)-(10.8) describe the whole class of discrete elastic Cosserat
media and have to be satisfied in the region 2 = EV. On the boundary of the region 2,
values of the functions #*(x, 7) v*(x, 7) can be given, cf. [12]. By virtue of the conditions
(10.4), we obtain % ~ 9%; it follows that ¢ & =, Gy & M;*, and the difference between
the equations given in Sec. 2 and Sec. 9 can be disregarded.

Let us consider now the special case N = 3. We can now take as independent variables
in the Egs. (10.5)-(10.7) the Cartesian coordinates z¥, using the differentiable mapping
Z* = p*(x),x = £~(d) e Q. Denoting ag; = ¢ 9/ 0, a = detag;, K, L, ... = 1,2,3,
we transform the Eqgs. (10.5)-(10.7) to the form:

¥y = U+ e o™,

(10.9)

Ky = lp,
(10.10) Ty = Ail;my'm+ Byl Pm,
l Mkl = Fif;"""’m'l‘gp":'ik?"m
(10 11) Tl'm+b.k = .‘ui;k!

M 1+ e,"TP+hy = o®,  zep(Q),
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where
aom_ 1 i »
Aiy" = 7—;‘455‘5”3'!’"&» By = ﬁﬂfo"tvfx'ﬂ Ls
(10.12) N Y .
Fpm = —=Fiyyxy™, b= —, h=—%, p=—=, ou=-—1.
'/.E l/a a '/a ’/a

The Eqgs. (10.9)-(10.11) have to be satisfied in the region y(£2) of the physical space, and
independent variables in these equations are Cartesian coordinates in the physical space.
It can easily be observed that the case N = 3 leads to the equations of the Cosserat linear
elastic continuous media [11].

Let us now consider the second special case, in which N = 2 and @ is a region in E2.
The functions 2* = y*(x), x = §~'(d) € 2, determine now the surface in the physical space.
Let us denote by ag; = ¥ ¥'L0u, K, L, ... = 1,2, the components of the first funda-
mental tensor of the surface ¢(f2), and let by, be the components of the second funda-
mental tensor of this surface. After some calculations given in [14] (p. 47-50), we trans-
form the Egs. (10.5)-(10.7) to the form:

vt = uHg—bkut+elv, yx = ulg+bfuy+ex 0%,

(0.3 xx" = vbx—bgv, xg = v|x+bgvy;
x:. = A5 My + A Mys+ BE M vy + BE My,
(10 14) p AKMN‘}JMN'FAKMYM‘}'BFL!?‘MN'{' BKHXM,

' m®y, = FiMyun®™ + Fi M+ BY 35 yu® + BY i ym,
m® = FXM oo + F¥Moop + BMyiKop™ + BMEotyy
P*ilx—buxp*+by = piiy,

(10.15) PXlx +bi" "L +b = pii,

mEp|g—byxm®+ e xpX+hy = o x5 +0,9,
mK|x+ e P+ b mE + h=00+0x0%, K,L=1,2,x€8,
where the vertical lines denote the covariant derivative in the metric ag., €g; are compo-
nents of the Ricci bivector, and
1 1
A-KLMN = == A*K‘ka Lw‘ N» A-KE.M === Akxluwkgla?l’ AKM === A ’*"l

Va e Va }/a

a = detag;, vk = %’ ELM&J-IM'PI.L?JM»M!

(10.16) 1 1 1
==—_.F M b=—:F‘I’*, h _N y h:—:Ni’i,
by, Va ) Va k L= I/ (27 = k

1 | 1 1
p=—=M, pgL= *—:!u?’k.x'ﬂ'.t.- O = '——-lki'}’k,x"l- 2= ‘_:!kl”k”l)
}/a l/a |/a a

ug = uytx, u=upt, v =vy'x, ©v=0vpk
The Eqgs. (10.13)-(10.15) represent the two-dimensional Cosserat continuous media,
immersed in the physical space. The continuous Cosserat media considered describe cer-
tain classes of discrete elastic Cosserat systems.
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11. Applications

The theory of discrete elastic Cosserat media can be applied, among other problems,
to that of lattice-type structures; [1, 3-10]. The set D of rigid bodies is then a set of the rigid
nodes of the lattice constructed of thin linear elastic rods. The difference structure on the
set D will be determined if we assume d’ = f,d when the nodes d, d' are connected by a single
rod. In what follows, we shall consider a special case assuming that we can disregard the
dimensions of nodes, all rods are prismatic, external loads act on the nodes only, and the
mass of the whole structure can be approximately replaced by the masses concentrated
at the nodes only. For this case, the elastic potential has been calculated in [9, 10]. Let
us denote by t%(d) the components of the unit vector normal to the cross-section of the rod
connecting the nodes d, f,d, and let ‘t%(d), "'t%(d) be the components of the unit vectors
directed along the principal axes of this cross-section. Let us denote by 4 ,(d) the area of
the cross-section and by C,(d), I;(d), I';(d) the torsional rigidity, and the moments of
inertia with respect to axes given by the vectors ‘14(d), "'t 4(d), respectively. Using the known
approximated formulas of the theory of structure, we obtain:

g = a0 Eta gayg, PEAlsgana, VEAGed ) _ e
Ia I; B3
(ll.l) Bkl = §1® iEAz_‘.'ﬂ ”IA"IA_ P_Eﬁid_rtdnrl)
I3 12

= §1® ( ?‘ i+ 4E;“"‘ T+ 4E;’ Ls ”t"”r’)

For the equations considered in Sec. 9, we have [10]

Aﬁ@ - 6&Q (EAAA IZEAL:.I "rA”fA IZEAI td)

o T
L, 3 k 5

(11.2) H{® =0,

Cle = 3¢ (C" ifrpy Ealangg, Bals Edl ”r"”r,)
I4 Ia Iy

In the special case in which equations of lattice type structures are finite difference
equations, the problem considered has been analysed in, among other works [1, 3]. The
Egs. (11.1) and (11.2) are valid only if the material of each rod is isotropic and homo-
geneous, E4(d) being the Young’s modulus of the rod connecting the nodes d, f4d. A more
general form of (11.1) and (11.2) has been given in [9].

The form of constitutive equations for classes of lattice type structures can be obtained
from (11.2) or (11.1) by virtue of (10.8), (10.12) and (10.16) [4, 5, 10]. Classes of lattice-
type structures described by partial differential equations (cf. Sec. 10) have been analysed
in several papers [4-10, 14], in the case N = 2, which corresponds to what are called
lattice-type plates and shells. The full list of references can be found in [14].

3 Arch, Mech. Stos. nr 2/73
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