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Statics of elastic lattice-type shells

M. KLEIBER (WARSZAWA)

IN THE PRESENT paper the problem of statics of elastic lattice-type shells is dealt with. This
problem is considered on the basis of the theory of discrete elastic Cosserat media. The basic
system of equations of the problem is studied. Compatibility conditions, static-geometric analogy
and stress function are introduced and the equations of shallow lattice shells are shown.

W pracy rozpatrzono szczegblowo zagadnienie statyki sprezystych powlok pretowych. Do ana-
lizy problemu wykorzystano réwnania teorii dyskretnego osrodka Cosseratéw. Sformutowano
podstawowy uklad réwnan, wykazano zachodzenie analogii statyczno-geometrycznej oraz moz-
liwo$¢ wprowadzenia funkcji naprezeri. Przyimujac pewne zalozenia upraszczajace z ogblnego
uktadu réwnan otrzymano uklad opisujacy malo wyniosle powloki prgtowe,

B paGote paccmoTpeHa moApoGHO CTATHUECKasd 3a/jada TEOPHH YNPYTOCTH CTEPXHEBLIX 060~
sloueK. McroymayioTesi OCHOBHBIE YpaBHEHHMsA TeOpHH AUCKpeTHOM ympyroit cpemer Koccepa.
CdopmypoBaHa ONpefe/AIOlaA CHCTEMa YPABHEHMIl, IOKA3aHA CTATHKO-TEOMETPHYECKas
4HAJIOTHA, I0KA3aHA BO3MOYKHOCTS BBeCHHA (QyHIIMM HanpshKeHnit, [N HeKoTOpLIX yIpolna-
IOUIMX IpeJIoyKeHuii H3 OCHOBHOM CHCTeMBI YPaBHEHMIl IOJIyueHa CHCTEMA, OMMChIBAIOLIAS
HNOJIOTHE CTEPIHHEBbIe OBOMOUKH.

LoAD-carrying structures constituting a regular lattice lying on a surface are usually called
lattice-type surface structures or, in short, lattice-type shells. In the present paper, such
structures will be defined as those composed of thin elastic bars, having the following
properties:

1) the axes of bars constitute a triangulation of a given surface;

2) the stress state in a particular bar segment may be described by the shear forces,
longitudinal force, bending moments and twisting moment;

3) the bars are rigidly connected at nodes;

4) the bar segments between any two nodes are prismatic, homogeneous, isotropic
and linearly elastic.

In the literature on structural mechanics, the problem of statics of lattice-type struc-
tures has been investigated in numerous papers, in particular, by Polish authors in [1-6].
However, the methods so far developed in problems of this type do not make it possible
to obtain the basic system of equations in sufficiently simple and clear form. The aim of
the present considerations is to formulate and analyse the statical equations of linear
theory of lattice-type shells. We begin with the equations of discrete elasticity given in
[7-12]. The proposed method appears advantageous in that it enables the known general
theorems of discrete elasticity to be employed. Moreover, the resemblance of the equations
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considered to the equations of the continous shells theory suggest in many cases the appli-
cation of considerations and methods of solution analogous to those known in the classical
theory.

1. The general equations of discrete elasticity

Let D be a countable or finite set of elements d with a difference structure of order m
given by the set of functions f4: Dy — D_4, A =L 1I, ..., m, cf. [7-12]. Denoting by
w* = u*(d), v* = v*(d) the components of a displacement vector of a mass centre of the
body d € D and the components of an infinitesimal rotation vector of this body, respec-
tively (1), the elastic potential of the system considered can be expressed in the form (?)

1
(L1) S——A *Vive+ B ?ﬂ"fv"'"zf'ﬁ@’é"fa,

where 43, B{® FA® represent the elastic properties of the system,
(12) }’51 = A.Auk-{' efprvrAAwps ’éi‘ = Ad‘vh’ de DAs
and z* = y*(d) are coordinates of the place in the physical space occupied by the centre
of mass of the body d. In static problems, the basic system of equations has then the
form [7]:

1) constitutive equations
- 4 = Ao+ By,
' m? = F{0uly+ Biyh;

2) equilibrium equations

A_A “d +f:¥ - o’
(1.4) _
Aam + et A 497 +my = 0,

where 4, my? and 9%, »% will be called the components of stress and strain, respectively.
Equations of equilibrium will be transformed into the symmetric form if the following
strain components are introduced:

Thd) = At @+ 3 i AP D @)+ (D)
4@ = A, deDy

The elastic potential is now expressed by:

(1.5)

1
(1.6) w= §Aﬁ°n4%+Hﬁ°mxo+ CiiPn
1
kl = BA@_ -'Akr €, pﬂ@p_ zdfrosrplfdp:

() All these components are related to the inertial Cartesian coordinate system (zX)in physical space.
(*) The argument d of the functions considered will be omitted from now on.
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(L.7) Ci® = Fi®+ al—A‘,‘.’eE,,ks_’,,!"PP",

[‘dk = Adﬂ‘,k'
The constitutive equations will be given by:
' = A1+ Hi* %o,

1.8
9 &' = Ci’xo+ Hit' .

By virtue of
1 o
(1.9) &t = mkd'_‘_z_rkAE!pr[ﬁ! ?d) = ¢(f_ad)

(p: D — R is the arbitrary function, the summation convention with respect to A does
not hold), we can transform the equations of equilibrium (1.4) to the form:

%—(Zdtr‘mdr?‘)m =0,
(1.10)

5 g+ Aty + 5 e Ut + Tyin ) b = 0.

The Egs. (1.5), (1.8) and (1.10) are the alternative form of the basic equations of the
discrete elastic media. All the equations given above can be transformed to a more general
form after introducing, for each d € D, the separate Cartesian coordinate system in phys-
ical space, cf. [7].

2. Spatial systems of bars

Let set D be a set of rigid nodes of the lattice composed of thin, linearly elastic bars.
The difference structure on the set D will be determined if we assume d'= f,d when the
nodes d and d’ are connected by a bar. This bar will be called the 4 — bar. Let the di-
mensions of nodes be disregarded and external loads be assumed to act on the nodes only.
Let us calculate the tensors of elastic rigidity A{®, B4®, FA®, HA®, CA®. To this end, let
us denote:

14(d) the components of the unit vector normal to the cross-section of the bar
connecting the nodes d and f1 d,
‘t1A(d), “ty(d) the components of the unit vectors directed along the principal axes of this
cross-section,
la(a) length of the A-bar,
Ali(d) the cross-sectional area of the A-bar,
Ca(d) the torsional rigidity of the A-bar,
Ja(d), J4(d) the moments of inertia with respect to the axes given by the vectors ‘#A(d),
“tiA(d), respectively,
Es(d) Young’s modulus of the A-bar,
Ma(d) the twisting moment in the middle of the A-bar,
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'Ma(d),”Ma(d) the bending moments in the middle of the A-bar with respect to the axes
given by the vectors ‘74, “1,4, respectively,
Pa(d) the longitudinal force in the A-bar,
‘Pa(d),”Pa(d) the shear forces in the A-bar with respect to axes given by the vectors ‘1 A(d),
“t4(d), respectively,
ya(d), ya(d) factors of the influence of the shear forces ‘Pa(d), “Pa(d) on bending of the
A-bar.

According to the known formulae of the theory of structures, we obtain:
MA = & AAﬂkEIA:
Iy

EqJy

’MA = E;iddﬂt"gd, ”MA = i Vi | 'Ukufk ¥
A A
@.1) e E}’"‘A At
A

"

. leAJ:»{ A_dllk'tkd + 2‘Uk+AA9k "y A
ETES VAT A 2 ¥ I
12E(Jy | Ayttt 205+ Aydt
A+12y)03 Ly 2 I
Calculating the elastic potential ¢ in the element d € D (which is a potential of m A-bars

joining the node d with the nodes fyd, A =1,1II,...,m) and bearing in mind (1.1),
we finally obtain cf. [13]:

HPA =

REJY , aoa. 12Exdy 4 A} 1
P Iy f — = t _—
HESVA tariyHE ¢

Iy
GEAJA fA”t A_ GEA‘I 't A”f A}
A+12y05 1 *F T axypg P

Aﬁq} = &A"{EAAAE.AL
(22) B{® =61°
@ = 6“{C“t{‘t"+EAJj¢ 1+ 2 txa"ta

k.= 1412y

1 3 g A A}L
+EAJA|:1+T+12}’;;:| fg f{ !A .

Likewise, from (1.7) we obtain:

Hi® =0,

2.3) o 1
CM = (SAQ{CA‘{}‘AEgA+EA}:1'&AT]A+EAJ””!‘ A”tj'd}l—
A

Having those tensors of elastic rigidity, we are able to solve the basic set of equations
given by (1.2), (1.3), (1.4), or (1.5), (1.8), (1.10).
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Quantities M4, ‘M4, ""M,4, P4,'P,4,""P4 can be determined directly from (2.1) or from
the following relations:

1yt = Py,

nt oM = Py,

nA AN = Py,

m M = M3, gt = My,
mAtAM = 'M3, @'t ="My,
A A = MY, g A = My,

where the symbol “o0” is referred to the cross-section at the node f,d of the given A-bar.

3. The difference geometry of lattice shells

The difference description of lattice shells will now be formulated on the basis of
concepts introduced in [8]. Let the considered structure be composed of three families of
bars, see Fig. 1. By means of the difference structure given on the set of nodes, the direc-

|
fafpd
S
fAd
Alrkfd) Fd 11
W
)
<
(z¥) -
FiG. 1.

tions I, II, IIT are selected according to those families of bars. Let us denote by z*, k =
= 1, 2, 3 the rectangular, Cartesian coordinates in the physical space. The radius-vector
of the lattice of nodes will be denoted by the symbol r* = r*(d).

We have then 4,r* = I%. Let us assume the vector base e,(d),« = 1,2,3 in each

vector space V3 (d) assigned to the node d € D. In the covector space V#3(d), the base
will be denoted by e*(a), « = 1, 2, 3. Let us denote:

ol Ased) = Gud)esd),  Ageald) = Gia(d)ep(d),
Aqe%d) = Gip(d)eb(d), Aae*(d) = Giad)e (@),

6 Arch. Mech. Stos. or 2/73
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3.1) a,f=1,2,3, A=11,1I,
€ =%, € =g, e =n,
el=g!, =g e =n.
For each deD, the vector base gg, n and g5n (K = 1, 2) will be defined as follows:
gx(d) = Hi(d) A r(d), A=LI, I, K=1,2
o HY'd) =0, r[H{] =2,

n(d) — an arbitrary vector linearly independent of gg(d),

() = lg@d)xn@d) . d) = £1@D>8:@)
V@) V@)
where the symbol eg; is that of Ricciand g is a determinant of a matrix of the metric tensor.

These formulae strictly connect the general coordinates introduced with the spatial con-
figuration of the bars. Let us denote the components of metric tensor by

auy = gugy, @ =g"g",
(3.3) dy = gun, a™ = gMn,

- L]
a = nn, a=nn,

and define Ricci’s bivector by
ext = €"gxxgLiMm,
&KL = gHimgK, gl p,,.

The formulae (3.2) can now be written in the form:

(3.4)

gx_l

eXle €kl. g,_
(3.5

| —

Eleymextel.
Let us denote:

12
ayy Gy @ a

a
g=det|a;, a,;, a,|, £ =det|a® a*?* a?|,
a, a, a a, a
Gix=bsx, Gia= 34(:
Gix = hag, Gga = hax,
GM = by, Gg/l = bj,

GA3 = hz‘i, G§A = _hﬁ,

(-6)

Gia = by, ng = Em
G‘;A = hy, éga = }-’A—
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Making use of (3.6), we obtain from the (3.1) the following expressions:
A,48x" = Gliggr*+baxn",
Asn* = Bligl*+bant,
4485 = G g™ +hEr,
(3.7 Ai* = hap g+ b,
Aagxt = Giagi*+baxnt,
Agn* = Bhgi*+bn*,
Aag™ = GEag™ +H5R,
Agr* = hyp g™+ hynt,

for each d e D, or d € D_ 4, respectively. From (3.7), we obtain:

bax = A8 1'0n, E’AK = jﬁgx*ﬁlékh
bl = A,4n*gK5y, Bs = Aun*g®ou,
by = Agn'itdy, by = Ayn*i'dy,

hax = A47'gx'du, };AK = anﬁkgxlaku

Ky = A3g%n'dy, ;5 = ﬁdgx"n‘du,

(3.8)

hd = Adﬁkﬂlan, E.d = A_-A?Ekﬂlau,
Glix = A,8x*¢™ 0, Gka = Aagx*g"du,
éfd = A,85¢0u, (;'fz; == /jAgx'ngéu-

For the sake of further simplicity, let us denote the following operators:

Pho(@) = b5 (d)o(f4d), B9 (d) = b (D)o (f-ad),
Pax9(@d) = bax @9 (f4d),  Baxe (@) = bax @¢(f-49),
Bap(d) = bs(d)o(fad), Bap (@) = ba(@p(f_ad),
149 (@d) = By dp(fad),  The@) = Hi@)e(f-4d),
14x9(d) = hax D@ (fad),  Taxp(d) = hax @) (f-4d),
149(d) = ha@g(fad),  Tap(d) = ha@p(f-4d),

where ¢(d), d € D4 is an arbitrary real-valued function.

(3.9)

6*
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4. Equations of lattice shells in general coordinates

All the equations given in Secs. 1 and 2 will now be presented in the general coordinates
introduced in Sec. 3. Let the components of quantities considered in the general coordinates
be defined as follows:

fkd - IxAgn'i'fA"h fk = fxgxk'l‘f"h

A KA A —_ K
m" = mgritmny, My = mogxx+mny,

I7 = Iigg™+14n",
@“.1) Y4 = Yra8™ 747" = Y5 agx* +yart,
= uga@™* + At = wX a8+ ar,
W = ugg®+ an* = u¥gy* +un®,
o* = v g +0n* = gk +onk.
Making use of the relations (3.9) and denoting, according to (3.3) and (3.4):

k
exm."EM"ENa G = aleyn,
Lk - L
Eim‘ﬂgﬂng nm—eﬁ ’
 FOE,
Ekm. MM G = ely,

exm" Mg = 0,
“42)

Ekm.ﬂnggNnﬁk = demn,
akm‘“gﬁnﬂmﬁk = d%eys,
Etm,"ngnn’;k = aseSMs

skm.nnm‘qn;l* =0,

after simple calculations which can be found in [13], we obtain equations of equilibrium
(1.4) in the form:

"5tk L KA LK = 0,
lg_dtdﬁ“ﬁdxfxd*'ﬁd‘dﬁ‘f: 0,
@3) i
'S am*A 4 BE A+ Xy I 14+ (en¥ 14+ d¥ery 1) 1N 4 mK = 0,

ra_ﬂmd-'-ﬁdxmxd+EAmA+€MH-&;XINA+asesulﬂ‘fd+ﬂgeﬂso’Ade+m =0,

where the symbol '8, denotes the absolute difference operator in the bundles of two-
dimensional subspaces of spaces V;(d), and

"daw*(d) = A,05([d)+ R W (fad), 'daw(d) = A,w(a),
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= (wX, w) — an arbitrary vector field defined on D, see [8]. The geometric equation
will now be presented in the form:

VEA =
(4.4) ?d =
HKA =
’;A =
where
Denoting
4.5

= "8 qug+naxtt+ 1§ aMexs+ LyeMgloy + [I5 dexs + 14 a%sx]v,

’6Aﬁ+qﬁ'ux+7},,z't+ffe”gwu+l§a"e“ﬁ,
'640x+ N4k,

’6Aé+ﬁvx+nd6,

"0 ux(d) = Aqux (d)'!‘éﬁx(d)“d(fdﬂ),
"0u(d) = 4,4ud).

Aﬁagmgu AAOKL B/m KkgL! BA&KL
Aﬁﬁb nl = AA@K’ BAO Kk’;l BA(PK
Adw,;k’;l = AA@ BAI‘D hi3 'l BAQ
Fmgn Ll _ FA@KL
FAQng -4 - FAG*K
Fﬂ@ ol — FA\D’

from (1.3), we obtain:

(4.6)

AAOKL}, + A lw.h' +BA@KL"L0+ BAW X
4 == A4¢Lyw+AAQy¢+BA¢Lwa+BA@’E¢,
KA _ FAOKL,‘L°+FA@K”‘$+ Bmdﬂ'}’u&“}‘ Bﬁdx.;@’

.mA = FAaLxLQ'FFA@;‘ﬁ"'BﬁA }’L@'{'Bw‘i?-@.

Making use of (2.2) and (4.6) and denoting

ut = Mg+ t'ng,

't ="ttty

H’*A xAgKk'i‘”tAHis

we arrive at the following expressions:

12E,J% 12E,J,
AGKL _ 540 (KA LA AVA KAl LA AJ4
i 0 [Ef""‘- L (FRV AT HNESVIA
12E,J 12E,4J;
APK _ sA® KA 34 A7A 1 KA Av A
AT =0 [E"A”-‘ R (P 772 T A (PSP

”IKA quA] _1_
I4

”IKA”IA -_l_
!11 ;
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12E4JY 12E,J 1
i aAO[E A + A A ’ A'IA*}-‘ A”A ”IA"IA]—,
4 A+129) 13 I+ 12913 L

e
BAYKL _ 540 6EAJA 11yKA LA 6EAJA 't””x“],

[(1+12 AT T (123
= §1® __6Eats _ rRAnd_ L SEidd i e
[(ESPAA (1+ 129913 i

@ 6E,J __OEaJa a4 _ 6E4J 4 r‘AntA]

(I+12yj,')!,, A+12y)12

3
APKL _ 540 A 4LA 2 |ryEArLA
F 51®1C 1k 't +E,,JA[ 1127 ]t t

e 3 tr KA LA 1
+EAJA[1+————I+12?:1:| o ¢ }?;

3
APK _ 840 KA A I (7 7 0,
FA9K = 44 {C,,t t +EAJ’A[1 l+l2y;{:lt t
] 3 traEAdrrzA 1
+EAJ’A[1+ T+ 027, 12y'4:| L }1.4’
3 3
AP _ 540, ’ ArgAd ") rrgd e
= § iCAE”g"+EAJA[1+1 3 ,,]r t +EAJA[I+ TF127, ] A ’d}fd
The Egs. (4.3), (4.4) and (4.6) form the basic set of equations for lattice-type shells. The

solution of this set of equations should fulfil the relevant boundary conditions. Those
conditions will be written, see [13] in the form:

Ux = g, u=a vg = bg, v b, de dD,,
“.3) Bt=—ft, B=-f, BY=-m*, B, =-m, dedDy,
D, y @Dy = 4D,

where

Bh= ) M- ' [gr gt + g™,

AeLa AeLd

B= ) '~ Z [ gxi* + 7,

@9) AeLd

Z m- Z (758 g™ + T g™ + (emula®+ exH) 154+ ey I 14,

51 md 2 [_ugn"k‘}' mAﬂgn‘]'{"e”xIth

AEH AcLd

where AeL,ifdeDysand AeLyifdeD_y.
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Now, the geometrical relations (4.4) will be presented in a somewhat different way.

Making use of the quantities y%4, #%,, 4, %4 instead of the quantities x4, #x4, Y4, %4,
we arrive at the following formulae:

V& 4 = "0 ,uF + BB u+ (IfaResy + L er™) o™ + 15 €550,

ya = 0 qu+Baru®+ Bau+ (I5desy + 1 a°eps)v™ + 15 a¥ensv,
x4 = "0,0%+plo,

%4 = '0,0+Bx0*+P40.

(4.10)

Between y%4, ¥4, #*4, %4 and yga, Y4, #&4, #4 the following connections take place:
2y = np 0"+ %405,

%4 = XpaQ 4 %40,
Y54 = 704"+ F4d5,

Ya = yara +74a.

@.11)

Let us now consider the plane problem, and assume that the plane on which we form
a structure is the plane of elastic symmetry. From (4.3), (4.4), (4.6) it is easy to obtain
two independent sets of equations referring to problems of lattice-type discs (also called

plane problems) and plates, respectively. Assuming in (3.8) n* = n*, we obtain:

bux =bE=by=byg=..=hy=0,
and from (4.7):

BAPKL _ pA® _ JAOK _ FAOK _ ()
The set of equations for the plate problem has the form:
4 = 4995q+ BOL,
mKA = FAOKLy, o o BOAKy,
@.12) ) o e
"t +f =0, ' ymEr4 Kyt +mE =0,

Ya = "8qu+15eMgvy,  xga = '84vx,

and for the plane problem, the form:

”
tEA S AA@KL}’“_}. Bd@xxv’

md = FA% + BoAL .
@.13) ® Vio

'SAKAL K = 0, G m+ennIMtY4+m =0,
VYEA = ’adﬂx'f'fifxsi’, 924 = '646.

All our considerations in Sec. 4 apply to the set of equations (1.2), (1.3), (1.4). Obviously,
the analogous formulae can be obtained from the alternative set of equations (1.5), (1.8),
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(1.10). In the constitutive equations, the following tensors of elastic rigidity will then
appear:

CA\!’!L e a/m [CA_!“"i!M +EAJA'tKA 'IM+EAJ_:1”'1KA ”IM]I—I-,
A
4.14) % = 5‘“{C‘,11“f‘+EAJ,'1’r“’f"+E,,J,’,”'r“”t"]—;—,
A

CAO - M‘DICA_{A!A+EAJ:1'tA,fA+EAJX”tA”IA]IL'
4

5. Compatibility conditions, static-geometric analogy and stress functions
Let us assume regularity of the difference structure considered. The following identities,
see [8], then hold:
'5[4’5@:]“(‘0 =0,
"0padgy0(d) = 0,
'6[4'5¢]ux(d) = ﬁ[KAbG]L (d)“l'(fafd>d):
'5[4'66’3”‘(“') = ﬁﬁabql.(d)vl'(lefwd)-
Let us introduce the symbols:
+1 when -4 =1 or @P-A=-2,
€e?={—-1 whenA-P=1 or A-DP= -2,
0 in other cases,
?K.d g GAQ),.KO, xKA - AQ?‘KQ’
7=, 2=,
and let us assume 4,15 < I% for each pair 4, @ and each d € Dy, o. By virtue of (5.1),

introducing components of the strain state connected with components of the displacement
state through relations (4.10), we obtain the following system of equations:

'8 7544 B = 0,
"8 4%+ Bax ¥+ Bt = 0,
'édyx“+ﬁﬁy"+exuﬂ‘fx‘1+[axeuyff+eﬂxf‘,]x"‘d = 0,

5.1)

6.

"84+ B YEA+ By A+ [Aern i + ensl ) x84+ aSesylx? = 0.

The Eqgs. (5.2) are called the conditions of compatibility of the linear theory of elastic
lattice shells. For the plane problem, the system (5.2) splits up into two independent systems.
These are the compatibility equations referring to the discs and plates, respectively. Now,
let us recall the form of the equations of equilibrium (4.3) without external forces. From
a confrontation of these equations with the compatibility equation just derived, there
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follows an analogy of their structure. We can change (5.2) into (4.3), and vice-versa,
using the formal scheme:

(5‘3) 'SA ST "54- [LZ N xxd, 4 e xd, mE1 o yKA,
m* e y*, Bi B4 Bax - Bax BAHﬁA-
According to this scheme, we can write the formulae:
mX4 = 40 8o 0 + BE o+ (I3 a¥esn + exlp)v™ + X5 lSy),
€[ 0@+ Pox ¥ +Bop+dens ISy + (Gesy 15+ aRerrl ) v,
€*®['Soy™ + B3],
t4 = e'®['do+Box v* + Byl
where the functions ¢, ¢, v, K are said to be the stress functions in the surface problem

of discrete elasticity. Making use of (5.4), we are able to satisfy the homogeneous equilibrium
equations (4.3). In this way, we can extend the scheme (5.3) by the formulae:

m4

I

(5.4)

‘K/I

(5.5) Ko, gpgou ek oo,

To each equation of the theory in which the components of stress state or stress functions
occur there corresponds an equation in which occur the components of the state of strain
or components of the state of displacement, according to (5.3) and (5.5). From the relations
given above, two fundamental systems of equations can be derived. In one of them, as the
basic unknowns we shall take the functions #%, u, v%, v and in the other — the functions
&, @, &, . The analogy in the form of those equations can easily be observed, see [7].

6. Equations of shallow lattice shells

In this section, various approximations of lattice shell equations derived in previous
sections will be considered for the case of shallow shells. Some advantages resulting from
the presentation of the above given equations in the general coordinates (Sec. 3) will now
be seen. Let us confine ourselves to the cases in which the direction of the vector n differs
only slightly from the direction of vector g; x g,. The mathematical consequence of this
assumption consists in adapting the approximations a, ax < a**, ax,. Moreover, to the
system of equations formulated above the other following aproximations will be applied,
resulting also from the assumption of the shallow shells theory, and being known as a gen-
eralization of simplifications familiar from the classical (i.e. continous) theory of shallow
shells, cf. [14-16]:

1) the functions X, ux will be treated as considerably smaller than the functions , u;

2) the functions », © are also much smaller than the functions vy, v¥;
3) the components /, are much smaller than the components /%;

4) the quantities bA,EA,hA,EA are much smaller than the quantities b“,_bm,bﬁ,
bné} hd.l’ }_’A.Ks hﬁ! };ﬁ.
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In view of those simplifications, we reduce the geometric equations (4.11) to the form,
see [13]:
vh = "0,5 + BRu+I5a%es o™ + 15550,
ya = "8 u+15desyo™,
#Eq = "8,05,

Xy = ,5Aﬂ+ﬁ_4xﬂx.

(6.1)

From the Eqs. (5.4), after application of approximations similar to 1) and 2) concerning
stress functions, we obtain:

KA — GAQ'(S;QK,

11 = &[S0y +Poxy"],
m*A = 10 5,05 + S g+ I3a% esuy™ + 1355y,

m* = €[ bpp+I5espay™).
The equations of equilibrium (4.3) take the form:

BatEALfE = 0,
'3t 4 Baxt™+f = 0,
'8 ,mEA 4 BEmA + X M 1A+ [ex®l + ad¥ern I¥]tN+m = 0,
"8 amA+aepy MtV +m = 0.

Let us confine ourselves to a simple case in which the lattice considered is composed
of two families of bars only. Denoting by [/¢] the 2x 2 matrices, and assuming /5/¢ =
= 69 from (6.1), and (6.2),, we arrive at the equations

(6.2)

(6.3

= « 1
'PM = [edgrn‘——'é;g)]ls’em-é—,

(6.4)
M = [eqort—"dpu] 185 L
a

Taking into account (6.4),, from (6.2); we obtain:
4 = ﬁdglﬁna'gomn—'gqt'gs?’]fssésxi.,
a

65)
A = €89ey g~ g BgulI§EE -
a

The fundamental system of equations assumes, from (6.1) and (6.2), the form:
'341A+ﬁ_dxfm+f= 0,
'8 smEA4 BEmA 4 Ko 1M1+ aRepy MtV 4 X = 0,
"%+ Bax ™" = 0,
845+ BEYA 4 Xy 1Y 2+ dReyn M4 = 0.

(6.6)
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The other equations of equilibrium and conditions of compatibility are fulfilled because
of (6.5). Let us take the functions u, @, y* and m* as the fundamental unknowns, which
appears very expedient for the asymptotic approach applied further on. Then, let us substi-
tute the relation 14 = A4%,9%, 4% = A" €pz into (6.6),, thus eliminating ¢4 Taking
into account the relation m*4 =C4,5, %™ = C4,X €®%50%, CXL = C*K e,z and (6.1),
we eliminate m*4, by means of the relations (6.5), we eliminate #*4 and, finally, similar
relations are applied to &, x* and %4 Accordingly, we arrive at the following system
of equations:

"3404%, o1+ B-Ax [ff i '}“9’“” do(eosm® "0 ‘P)] +f=0,
a

'84lce?m®] _‘_34‘[133 ESKITGMJ&(%S?Q— '&s")] =0,
a
6.7) &
'8 A[CA5OK " 5 (€ngy?— ' d5ui))+ PimA+ Ky I Ao y®— —'bom®+mE = 0,
a

5 - = at
"84 [A¥=OK " §4(€gm® — '"05@)]+ By + Eu i g m®— "._!5&?’# =0,
a

where

5 1
, G498k _ g 4 K Eo.s;snésl.,&_-

EADE K _ CAOIL e—.v.s ]? éS’L

Re | =

This system consists of 6 partial finite difference equations of the 12th order in six unknown
functions , ¢, y*, m4, A = I, II. Introducing the notations

Glm) = Héx" 5 B — B axl§E - eMeng/Som? —li‘éx“i;'&’&m’.
a a

. - - 1 - ax
G(y*) = Ifex" 8 4B%y" — Barl§e™ —€*®eng' 0oy —If ex"—'04'007%,
a a

CA?G.!' = If exLCV.BUK’ E.A?@E - If éxL&WEOK’

we represent (6.7) in the following form:
84" 851C172%" 8 o(ensy” —"851)] + Puax [lfé“:i g 50’5.#]
+1gex 6 ,m* —f+G(m*) = 0,
(6.8)  'BlCA=K"§ o (e0sy® —" 85u)] + BEmA + exMIY 445y — i‘;&,m%m‘ =0,

'84'8,[3*7%%" b p(€sm®—'8z9)] +ﬁ4x[f§é"‘% e"“”ﬁo'é.gu] +G(yY =0,
a

- - as
'8 4[@*5K 8o (€sm? —' 85 @)+ BE Y + ex Y cotm® — “&— doy® = 0.
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The solution of the boundary-value problem consists in finding such six functions
u, @, ¥4, m* which within the domain D satisfy the system (6.8), and at the boundary
of this region appropriate boundary conditions. The number of these conditions, in the
general case, is equal to six and their form is dependent on the manner of loading and
the support conditions of the edges of the lattice-type shell. The very complicated form
of the basic set of equations leads to a search for possibilities of simplifications of this
system. In the next paper [17], we shall consider these possibilities, resulting from the
occurrence of small parameters in difference operators of higher order in the fundamental
set of equations.
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