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Theory of vibratory bending of unsymmetrical sandwich plates

Y.V.K.S. RAO and B.C. NAKRA (NEW DELHI)

THE BAsIC equations of vibratory bending of unsymmetrical sandwich plates are developed
by means of variational methods. Taken into consideration are the effects of flexural and mem-
brane energies in the faces, transverse shear in the core, and rotatory, translatory and transverse
inertias in both core and faces. The frequency equation obtained for simply supported edge
conditions gives 5 families of modes which are designated according to displacement ratios.
Values of frequency parameters are plotted for varying non-dimensional parameters of the
sandwich plate.

Opierajac si¢ na metodach wariacyjnych wyprowadzono podstawowe réwnania zginania wi-
bracyjnego niesymetrycznych plyt sandwiczowych. Uwzgledniono efekty energii zginania i efekty
membranowe w warstwach, poprzeczne $cinanie w rdzeniu oraz obrotowe translacje i poprzeczne
efekty inercji zarébwno w warstwach jak i w rdzeniu. Réwnanie czestosci otrzymane dla przy-
padku zamocowanego brzegu daje pige¢ rodzin postaci drgan, ktore sa przypisane odpowiednim
wspolczynnikom przemieszczenia. Wartosci parametrow czestosci wykreslono w funkgji réznych
zmiennych, bezwymiarowych parametréw plyty sandwiczowej.

Ha ocHOBE BapHAIMOHHLIX METOLOB BEIBE/IEHELI OCHOBHBIC YPABHEHHA TEOPHH BUODAIMOHHOTO
Harnba HeCHMMETPHYHBIX TUTACTHHOK THIIA C3HABHY. IIpH 3TOM yUYHTHIBAIOTCA TaKue 3ddeKTsI,
KaK BIMsiHue HarubHoi ¥ MemOpanHOii 9Hepruil B HeCYILHX CIOAX MoIlepeuHbIH CIBHT B cepaLe-
BHHE, a TalOKe BpalljaTeIbHasA, TPRHCIANHOHHAA M NONepeYHas MHEePLHH, KaK B CEp/LEBHHE,
TaK ¥ B HECYIIHX CJIOSX. YpaBHeHMe YacTOT, BhIBeJIeHHOe /UIA CBOGOMHO ONepTOi IUIACTHHEI,
JlaeT MATh CeMeHCTB MOJ, KOTOphIe CBA3LIBAIOTCA € COOTBETCTBYIOLMMH Ko3bduimeHTaMu
nepemewnenwii. Jane! rpadexu 3HaveHHii YacTOTHRIX napameTpoB B dyHKumK GespasmepHBIX
TeOMEeTPHYECKHX IapaMeTPOB IUIACTHHEI.

1. Introduction

FLEXURAL vibrations of sandwich plates have been investigated by several authors [1-6].
The work reported by Yu [4, 5] and KovARrik and SLAPAK [2] is applicable to symmetrical
sandwich structures. The analysis as reported in [1, 2, 3] is valid at low frequencies, since
only transverse inertia effects have been included and rotary and translatory effects have
been ignored. Though these effects have been included by CHANG and FANG [6], their
analysis treats faces as membranes only. In the present work, the equations for flexural
vibrations of unsymmetrical sandwich plates have been derived without any such restric-
tion. It may be noted from a recent survey [7] of work on sandwich structures that work on
effects of translatory and rotary inertia has received less attention. These effects are found
to be of importance only at very high frequencies for homogeneous beams and plates [8].
RA0 and NAKRA [9] have shown that these are of considerable importance at relatively
lower frequencies in case of sandwich beams.

In the present investigation, the influence of all these inertia effects are included for
the case of a sandwich plate with unsymmetrical faces and the frequencies corresponding
to various families of modes are determined for varying values of non-dimensional para-
meters.
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2. Equations of motion

The plate configuration is shown in Fig. 1. The assumptions made in the foregoing
analysis are:

1. Plane transverse to the middle plane before bending, remains plane and perpendic-
ular to the middle plane after bending;
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F1G. 1. Geometry of sandwich plate
i) plate configuration plate, ii) variation of displacement w, iii) variation of displacement p.

2. Transverse displacement at a section does not vary along thickness;

3. The longitudinal displacements u and v at a transverse section are assumed to
vary as shown in Fig. 1;

4, All displacements are small;

5. There is perfect continuity at the interfaces and no slip occurs there while the plate
is bending;

6. Extension effect in the core is ignored and stresses o, 0, and 7., are considered
negligible in the core.
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Noting that subscript 1 denotes the upper face, 2 the core and 3 — the lower face, we
obtain:

Uy, = Hl'—w"“"—rl N Uy = u3+w'—-—r3 3
2 2
@.1)
ﬂlz = ﬂl_w*r_i 1)32 =9 +w*£
2 3 3 2 ’

where w is the transverse displacement, w' = dw/dx and w* = dw/dy.
The distortion angles in the core are determined by the equation

T T

yx: dx * yz dy »
2.2

— ul_uj _ﬂ_ = vl—va - *i

Vo™ 153 ' = ty = t, ’
where
_ t+1s
c=1t+ P .
For the stresses, we have

(2.3) Txz = G2¥xz,  Tye = Gy,

where G, is the shear modulus of the material of the core. Let z be the distance measured
along the 0z-axis from the middle surface of each face. Then the tangential displacements
in face 1 and face 3 are

u=u—zw and v=v,—zw* inface 1l and

24 .
u=uy—zw' and v =wv;—zw* inface 3.

The strain components in the faces are given by

@5) Exx = Wy —z0", &, = vi—ze**, v, =ul+0i—2ze'*, infacel and
) Exx = Ua—2W'", &, = v§—zw**  y,, = u¥+v3—2ze'*, in face 3,
where ' denotes differentiation with respect to x and * with respect to y.
The corresponding stress components in face 1 are
E,
1—43

Orx = [ty +v, 05— z(w" +v,0*¥)],

E
Oyy = l_—l‘vf' [0f +v, ¥y —z(w** +v,2")],

2.6) Tey = Gy(u¥+v]—2zw'*), and those in face 3 are
E3 ]
Oxy = — [ty +vsvl—z(w” +viw*¥)],
1—3
E3 *% 1
Gy = =2 [v3+vius—z(w** +v,0")],

Txy =G5 (W3 +v3-220™),

8 Arch. Mech. Stos. or 2/73



216 Y. V. K. S. RA0 AND B. C. NAKRA

where G, and G, are the shear moduli, », and »; the Poisson’s ratios, and E, and E, are
the elastic moduli of the faces 1 and 3. The strain energy of the sandwich plate is U, where

@7 2U = f f f (OxxExx+ OyyEyy+ Tuy Vay + Txs¥ 22+ Ty2 Vys) dxdydz.

Substituting (2.2), (2.3), (2.5) and (2.6) in (2.7) and performing the integration over the
thickness of each face and core, we obtain

¥1)
2

W +o2+ 2u“‘vl)}

ey vu=[] [2(’?‘” =u22+v1u;vt+vt=+vlvru;+“

t . i ) '

+ o 2o WU vy us vl 087 +ys 03Uy + '(-—vﬁ(u§2+w32+2u§v3)
2(1-%3) 2

Elrl "2 kR sk 1%32

A0 {w'"?+20, w"w** +w*** +2(1 —»,)w'*?}

E3'r3 "2 ot Kk *%2 %2 Gztg (ul —Us ¢ (‘U;_—“Ug )2
+24(1 v){w + 200" wr* + w2+ 2(1 —v)w'*?} + 3 fz + 0

eV ¢l .- 91—93)}
r2 *2 = ! *
+(@*+w )(tz) 21: (w 7 +w z dxdy.

Assuming that the plate is loaded with a normal load of intensity g, the potential energy
of it is given by
2.9) V=~ qudxdy.

Now, the kinetic energy of the plate is T, where
@10) 2T = (eti+osts+osts) [ [ wdvdy+ [ [ [ oitiu+izydxdydz,

+fff 91('.’1+%Jtzt)zd1dydz, .

where %; and o, are the rotations about middle, i = 1, 2, 3 denoting the layers 1,2 and 3
and the dot represents differentiation w.r.t. 7, the time variable.
The rotations in the layers 1 and 3 are

2.11) u, =u;=w and v, =7v; =w"
The displacement components in the core are

u. 0,40
2.12) u, = u,-:l’: Liwe, U, = ———tuwte,

where &, = (t3—1,)/4 and the rotations in the core

- Uy —uy o' o
(2.13) == ——=—8&, U=f=——->——8,
tz fz t; I

where &, = (t; +13)/2.
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Substituting (2.11), (2.12) and (2.13) in (2.10), we have
0 "2 1 -2 2, o2 O1ti+0st3 5
2149 T= > w dxdy+-2- @it Ui+ o3tz +w e + 0.1, 01

i X Ia r; . . ) 2 . . - 2
+93!39§+w*2———~———91 ’:—293 > +92t2{(u1-52-u3 +w’£1) +(__01-£f)3 +w*sl)

0212

5 (W —is = @'e2)" + (9, — 03— w*e,) "} dxdy,

+

where p = p t;+0212+0315. -
According to Hamilton’s principle, the stationery value of @ is equivalent to the equi-
librium problem, where

12
0B = [ (6t—0U—0V)dt =0,
n

where ¢, and ¢, are any two instants of time.
Performing the variation term by term, the following equations of motion are obtained
for arbitrary virtual displacements:

i 1+ . 1—» c , u —u . &
?‘{"""" i “T'}J"”{‘F“’“"——( = 3)}‘91‘1“1— ezg’{"l
2 2

u; (t3=21) --,}_
Foge—— = =0,

yl {ﬂ?*-‘- (1 ';1"1) ui*-}- (l _?1){]”}-}-?2{—0‘”)*_&:?3_)}_91 rlijl

2 K 12 E

_ 0a2lz {;514_”_3 + (13 —2t) iﬁ*} -

3 2 4
s Loy Aord ol Loy ot i,
51 iz
_ 923‘2 =§3+u_21 + (2t3; f]_) ibf} = 0,

(2.16)

1+» 1-v;) ,, c v, —v =
?3{?’3,*‘*‘ ( 3 3) ut+ ( 5 ) 93}—?z{t—§w*"‘——( lt% 2) }““93‘393

_ szz as ﬁ_’. 2!3—t1 sl
3 {93+2+—_“‘4 W}—G,

@h—u) ('v'f—vs)}_ oiti+os13
t; t 12

+ (i + %)

c c
(Dy+D;3)Viw— ‘}’3r—{1— (" +w*¥)+
2 L 12

- t3=20 e s ST P 1l o
+9w—92f2{—31'2—l(“1+$’f)+ 312 ! (“3'*‘93)4'(3%"'%) (% +w**)}-q=0,
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where
_ Ey _ Ests - - _En . S
nEIS BT G Diepaongy o DS oy

The boundary conditions from the line integrals can be obtained as i) along x = 0 and
x=a

either or
uy =0, y@+r0}) =0,

o =0, B0 -0,

u; =0, ?a(ﬂ'3+1"3‘”§) =0,

=0, U)o,
w=0, D {w"+Q-v)w**}+D{w" +2—v;)w**}
el ¢ (m-u)|, eiuti+estd ..,
@17) ”’rz{“’:z fz }" T

t3=21ty).. 203—11) . ., &
+9212=(312 1)3‘1'{"( 312 1)ﬂ3+w(8§+'i‘;—)}=0a

w' =0, Dy +v,w**)+Di(w" +v;w**) =0,
andii)alongy=0andy = b

either (1= or
— 1‘-—2—L(uf+v;) =0,

Ul - 0! ?1('0?"‘1’1 ui) - 09

502 (4340 = 0,
2.18)
v3=0, ys(@i+ru) =0,

w=0, D {w***+Q2—r)w"*}+Ds{w***+2—v;)uw'"*}

c) . C (v, —v3) 0111 +0313 i
Y2 A {w & & }+ 2 w

t3=2t .. 2Uy—t .. . &
+9232{ 312 Lo+ 312 193+W*(€%+ 'I%)}= 0,

w*=0, D(w**+v,w")+Di(@**+r;0") =0

and for free edge, reaction at the corner

{Dy(1=v,)+Ds(1—v3)}w* = 0.
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3. Solution for simply supported case

The boundary conditions when all the edges of the plate are simply supported from
Egs. (2.17) and (2.18) are

alongx =0and x = a alongy=0andy =5
i uy+v,0% =0, vii uf+9; =0,
i vi+ut =0, viii v%¥+v,uf =0,
i wy+rav3 =0, ix wi+v3=0,
(G.1) iv vs+ut =0, X v3+vus =0,
v w=0, xi w=0,

vi Dy(w" +v,w**)+Di(w” +v,w**) =0, xii D,(w**+»,u")
+D3(w** +v3w') = 0.
The conditions listed above excepting ii) and vii), which can be neglected as per the
discussion in [10], are satisfied if the solution is assumed in the series form as:

o0 o0
. mmux . nmy .
w= E E Wmsm——a—sm by sinwt,

m=1n=1
oo =]
21 z‘l max . nmy .
u, = U, mnCOS sin ysmwr,
a b
m=1n=1
o0 [++]
mnx . Hmwy .
Uy = § EU;,..,,cos sin y sinwt,
a b
m=1n=1
(3.2) o o
. mnux nmy .
U= § EV,msm cos ysmwr,
a b
m=1n=1
oo (=]
. mnx nwy
03 = 5 EV,,,.,sm - cos by sinwt, and
m=1n=1
oo o
. mmx . nmy . ;
g = E EQ,,,.sm 5 sin by sinwt, taking
m=1n=1

harmonic excitation of frequency w. Substitution of (3.2) in Egs. (2.16) yields a system
of algebraic equations which upon non-dimensionalisation give rise to:

(AA+ AAB) Wipy— (AC— AAD) Uy n+ (AE+ AAF) Uspn— V1 ma AG = 0,
(XA+XBA) Wy~ Uy pngAG— (AH— ADA)Vy mn+ (AE+ AAF) Vo = 0,
(3)  (AAK—AA)Wn+ (AE+ AAF) Uyn— (AL~ AAM) Uspy— ANV 3y = 0,
(AXC—XA) Wiy~ ANUspn+ (AE+ AAF) Vg — (AP— AMA) V3 = 0.
(AQ — ZAR) W+ (AA— AAB) Uy — (AA + AAK) Uy + (XA —XB2) V
+(XA+XC)Vsmn = O,
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where

( 1+613) AB = Y23 923
L.

oy.301.3 —Y;.3%3) ] 0.3 0.3
AC = ———— +—————~ 2 +AE, AD=—=4+YA, AE-=
l_?’z.:ﬂ'a[ d ﬁ ﬁ 6,.3p
YA Y23 023 .30, 3nBy n
AF = YA=""=——, AG=——"—"""_ YB=—y, XA= AAYB,
3 Vi 3pm 21—y, .373) m’
2 — -
XB = ABYB, AH = al.ﬂfl.Sz __n_?Zﬁ+ (1 1P1.31l3) ﬂm +AE, an - Qnuu 3
I—ypiqsvs | m 2 (m:m)
Ea —
a
AK = ;” = 92 2 (2-0,,), AL = 1 [mﬁ+ L W T L ]+AE,
1.3
1 nfy
AM = —1 _4Y4, AN=_—""_, XC= AKYB,
?’1.3ﬁm 2(1—v3)
i;{lﬁ“ﬂ 643705, B,3=25, Gp3=10"° ! kH{'_g-?}
C =P =®q3=Y5=10, ] .
: 1?3"0.3. a‘zj:as, m=n=1 :
i v
i i i
.m-'F :_ T ':]10‘3
L ]
08 0™
08 i 1 1 I 1 1070
0 aor o a5 aed a5

F1G. 2. Variation of 4 with f.
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AN 614=05, 6p3=25. 00125, %y=03 AIY)
T m=n=1, y=aus=Yas=tas=10 i
o Y25=05 3
07° 107
oL g3
1078 74'/ 0™
m'g 1 1 lllllll 1 1l llllll L L1 ll]l'l _s
10 07 1073 10
G23

F1G. 3. Variation of 4 with &, 5.

gx107%

gx1079

7x107%

6x1079

A13=Wy3=Y13=10, V3=03, B;3=05
m=n=1, 83=10", B=00125, y,3=05 A IIY)

35x1074

E

21x10™*

111074

L L L L | L I L ! | L L m“-‘

823
FiG. 4. Variation of 4 with 0;,;.
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1 nt ., (1-7)

=)
el i+
AQ = mp [{IZ(I—w?.aV§)+l2(1—v§) 12 ) +(5) 7
1{1 n 146, 5 \?
4 Fz-(?- + ;{:?2)63‘3 0.1 (1 + 232_133 ) ]!

3 2
AR= ""_‘3(_1:T + %y’) {(B?.ﬁ- ?l )+ Susdas (i40, -81.3)}

12 \m 1.3 Y1.3
+—1"‘(31 3+0; 312'—3‘1‘L)
pm\ Ty sl
1 G, t t,
¢13=E—3, az.3="—";", 623:?:’ 613=!—;, 923='";;',
_ @ty _ _a
=2 WamL Vg

For the case of the free vibrations, i.e. O, = 0, the system of Eqs. (3.3) reduces to a fifth
order polynomial in A. The roots of this polynomial have been computed on I.C.L. 1909
Computer for varying values of 8,4, 5,0, 5 and 6, 5 and are drawn in Figs. 2-5.

Al
P Q3= Y13=Yrs=)=10, 1y=03, G,3=25
11&10.6'[ Gp3 =10, B=00125, m=n=1, y,4=05
121078} AA(D,mmy)
108108 4 29x1074
10078 25071
0| 21x1g7*
967 171074
a9} —~13x107
m
9
agr? - ~a9x107¢
I
g
aged- ~{05%107
ar? 1 I ] ] ] ] 1 -§
] 0z 04 06 8 g, =

F1G. 5. Variation of 4 with 0, 3.
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4, Discussion

For a given combination of modal numbers m, n, 5 values of A are obtained and thus
5 families of modes would exist. For each family of mode, the values of displacement
1atioS Uymn/Wens Usws/Wens Vimn/Wma and Vapa/Was can be computed from Egs. (3.3)
and the corresponding family of mode may be designated from the nature of these ratios.

In Table 1, values of frequencies corresponding to the five families of modes for various
values of m and n are given, while in Table 2, the displacement ratios for the five families
for m = n = 1 are given. It was observed that the mode corresponding to the lowest

Table 1. Frequencies of sandwich plates

Ga=Y=Y1.3=¥i13=10, %23=05, 0&;;=000001, pB=00125, 6,5=07,
V3 = 0.3, 82,3 =10
Modal number Non-dimensional frequency parameter 4 for various families of modes
m n Ix10® mx10* IIx10* IvVx10* Vx10°
Transverse all inertia
inertia terms terms
1 1 0.730 0.730 0.295 0.623 0.842 0.176
1 3 7.224 7.220 1.473 3.069 4.207 0.875
2 5 45.64 45.623 4.270 8.878 12.197 2.534
5 5 125.75 125.67 7.362 15297 21.032 4,369
4 7 207.16 206.99 9.37 19.884 27.342 5.679
3 8 258.83 258.59 10.748 22.329 30.707 6.377
2 9 347.099 346.73 12.515 25.998 35.754 7.425
5 8 379.38 378.96 13.103 27.221 37.437 7775
7 7 457.27 456.72 14.428 29.973 41.223 8.562
1 10 484.84 484.24 14.870 30.889 42.484 8.822
Table 2. Displacement ratios for various families of modes
CGa=Pia=Y=¢13=10, 7,3=05, ©0,3;=07
0;3=10, v3=03, 6&;.3=000001, f=00125, m=n=1
Number of mode U Us mn Vimn Vamn_
family W Womn Won Wmn
I —0.159%x 102 —0.407x 1073 0.159x 102 —0.38x 1073
II —0.353x 107 —-0.212x 107 0.353x 107 0.212x 107
Il 0.438 x 10* —0.517x 10° —0.438x 10° 0.517 x 10%
v 0.107 x 10* 0.635x 10° 0.107 x 10* 0.635x 10°
A 0.991 x 10° —0.117x 10* 0.991x 10° —-0.117 x 10*
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frequency is of predominantly flexural type, the corresponding values of all displacement
ratios are small. This mode is also obtained when only transverse inertia effects are included.
In Table 1, the frequencies for the first family of modes are given for both the cases, viz.
when all inertia effects are included and when only transverse inertia effects are considered,
the frequencies obtained in the two cases are not significantly different.

Because of inclusion of rotary and translatory inertia, in addition to transverse inertia,
four additional families of modes are obtained. For families of modes designated as belong-
ing to II and IV families, the displacement ratios U mn/Wms and Ujpn/Wp, are of same
sign and so are the ratios ¥y /W, and Vip/Wp,. All these ratios are large and so these
families of modes may be classified as of predominantly extensional types. For III and V
families of modes, the ratios U, mm/Wmn and Usp./Wa, are of opposite signs and so are
V s mn| Wnn @0d Vo [W . These ratios are large and these families of modes may be classified
as of predominantly thickness shear types. It was found that for the parameters listed
in Table 1, frequencies for the first family, viz. flexural modes, for m = 10, n = 12 are
A =0.274x10"* and for m = 10, n = 13 are 4 = 0.332x 10~%, while the frequency for
the second family, viz. extensional mode corresponding to m =n =1 is 0.295x 104,
Thus, beyond flexural mode corresponding to modal numbers m = 10, # = 12, the higher
families of modes exist. To get an idea of the relative frequencies, the frequencies for
various families of modes for m = n = 1 and for parameters given in Table 1 were com-
puted, taking 73 = 1"'/8, E; = 107 Ib/in® and p; = 0.0002591bin~* sec?. These frequencies
are seen to be: 21.4, 1360, 1990, 2310 and 3320c.p.s. for the five families of modes, respec-
tively. It may be noted that the frequencies for higher families of modes are not very
high and are thus of practical interest.

In Fig. 2, the frequencies corresponding to various modes are plotted against . The
frequencies for all the five families of modes are seen to increase with increase of 8. As seen
from Fig. 3, a stiffer core would increase all the frequencies, though the increase would
be very small for IT and III families of modes. Increasing the thickness of the core, as seen
from Fig. 4, lowers the frequencies for all the families of modes. This is due to the fact
that increase in generalized stiffness due to increase of 6, ; would be less marked compared
to increase in generalized mass of the sandwich plate. As seen from Fig. 5, if one of the
faces is considerably thicker compared to the other, i.e. for lower values of 6, 5, frequencies
for higher families of modes are reduced, though for the flexural mode, the frequency
decreases up to a particular value of 0, 5 and increases thereafter.

5. Conclusions

Equations of bending vibrations of unsymmetrical sandwich plates have been derived
using variational methods. Frequency equation for simply supported edge conditions
gives five families of modes, which have been designated according to the nature of dis-
placement ratios. Inclusion of rotary and translatory inertia effects, in addition to transverse
inertia, gives rise to higher families of modes which occur at frequencies of practical interest.
These modes occur at reduced frequencies when 6, 5 is large, 8, 5 and § are small and
the sandwich plate has a high degree of unsymmetry.
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