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Theory of vibratory bending of unsymmetrical sandwich plates 

Y.V.K.S. RAO and B.C. NAKRA (NEW DELHI) 

THE BASIC equations of vibratory bending of unsymmetrical sandwich plates are developed 
by means of variational methods. Taken into consideration are the effects of flexural and mem­
brane energies in the faces, transverse shear in the core, and rotatory, translatory and transverse 
inertias in both core and faces. The frequency equation obtained for simply supported edge 
conditions gives 5 families of modes which are designated according to displacement ratios. 
Values of frequency parameters are plotted for varying non-dimensional parameters of the 
sandwich plate. 

Opieraj<tc si~ na metodach wariacyjnych wyprowadzono podstawowe rownania zginania wi­
bracyjnego niesymetrycznych plyt sandwiczowych. Uwzgl~dniono efekty energii zginania i efekty 
membranowe w warstwach, poprzeczne scinanie w rdzeniu oraz obrotowe translacje i poprzeczne 
efekty inercji zar6wno w warstwach jak i w rdzeniu. R6wnanie cz~stosci otrzymane dla przy· 
padku zamocowanego brzegu daje pi~c rodzin postaci drgan, kt6re S<! przypisane odpowiednim 
wsp6lczynnikom przemieszczenia. Wartosci parametr6w cz~stosci wykreslono w funkcji r6mych 
zmiennych, bezwymiarowych parametr6w plyty sandwiczowej. 

Ha OCHOBe BapHaQH;OHHbiX MeTO)l;OB Bbffie,ll;eHbi OCHOBHble ypaBHeHJUI TeOpllH BH6paQHOHHOrO 
H3rH;6a HCCHMMeTpwnibiX IDiaCTIUIOK THIIa C3H,Il;BWI. IlpH; 3TOM ytnrrhlBaiOTCH TaKHe 3cPcPeKTbi, 
KaK BJilUUfile H:3rH6HOH ~ MeM6paHHOH 3HepraH B HeCYIQHX CJIO.IIX IIOIIepeliHhiH C)l;BHr B cep,~J;Qe­
BHHe, a TaKme Bpll!QaTeJibHaH, TpaHCJIHIUIOHHaH H IIOIIepeliHaH H;HepQ:QH, KaK B cep)l;ll;eBH;He, 
TaK H B HCCYIQHX cJio.IIX. YpaaHeHH:e qacroT, Bhme,ll;eHHoe )l;J1H cao6o,~J;Ho orrepTOH IIJiaCTHHbi, 
,ll;aeT IIHTb CCMCHCTB MO)];, KOTOpbie CBH3biBaiOTCH C COOTBeTCTBYIOIQHMH K03cPcPHQH:CHTaMH 
nepeMe'l.QeHHii . .ll:aHhi rpa<l>HKH 3HaqeHHif qacTOTHbiX napaMe-rpoB B <l>YHKQHH: 6e3pa3MepHbiX 
reoMe-rpuqecKHX napaMeTpOB rmaCTHHbi. 

1. Introduction 

FLEXURAL vibrations of sandwich plates have been investigated by several authors [1-6]. 
The work reported by Yu [4, 5] and KovARIK and SLAPAK [2] is applicable to symmetrical 
sandwich structures. The analysis as reported in [1, 2, 3] is valid at low frequencies, since 
only transverse inertia effects have been included and rotary and translatory effects have 
been ignored. Though these effects have been included by CHANG and FANG [6], their 
analysis treats faces as membranes only. In the present work, the equations for flexural 
vibrations of unsymmetrical sandwich plates have been derived without any such restric­
tion. It may be noted from a recent survey [7] of work on sandwich structures that work on 
effects of translatory and rotary inertia has received less attention. These effects are found 
to be of importance only at very high frequencies for homogeneous beams and plates [8]. 
RAo and NAKRA [9] have shown that these are of considerable importance at relatively 
lower frequencies in case of sandwich beams. 

In the present investigation, the influence of all these inertia effects are included for 
the case of a sandwich plate with unsymmetrical faces and the frequencies corresponding 
to various families of modes are determined for varying values of non-dimensional para­
meters. 
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214 Y. V. K. S. RAo AND B. C. NAKRA 

2. Equations of motion 

The plate configuration is shown in Fig. I. The assumptions made in the foregoing 
analysis are: 

I. Plane transverse to the middle plane before bending, remains plane and perpendic~ 
ular to the middle plane after bending; 

z t 
r---------------~ 

a X 

(i) 

(ii) (iii) 

FIG. 1. Geometry of sandwich plate 
i) plate configuration plate, ii) variation of displacement u, iii) variation of displacement v. 

2. Transverse displacement at a section does not vary along thickness; 
3. The longitudinal displacements u and v at a transverse section are assumed to 

vary as shown in Fig. 1 ; 
4. All displacements are small; 
5. There is perfect continuity at the interfaces and no slip occurs there while the plate 

is bending; 
6. Extension effect in the core is ignored and stresses a,0 ay and Txy are considered 

negligible in the core. 
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Noting that subscript I denotes the upper face, 2 the core and 3 - the lower face, we 
obtain: 

(2.1) 

where w is the transverse displacement, w' = owfox and w* = owfoy. 
The distortion angles in the core are determined by the equation 

ow ow 
Yxz = (X- dx' )'yz = fJ- dy , or 

(2.2) 

where 

For the stresses, we have 

(2.3) 

where G2 is the shear modulus of the material of the core. Let z be the distance measured 
along the Oz-axis from the middle surface of each face. Then the tangential displacements 
in face 1 and face 3 are 

u = u1 -zw' and v = v 1 -zw* in face 1 and 

u = u3 -ZW1 and v = v3 -zw* in face 3. 
(2.4) 

The strain components in the faces are given by 

(2.5) 
Exx = U~ -zw", Eyy = vt-zw**, Yxy = ut+v~ -2zw1*, in face I and 

Eyy = vJ-zw** Yxy = uJ+v;-2zw1*, in face 3, 
, 11 

Exx = U3-zw , 

where 1 denotes differentiation with respect to x and* with respect toy. 
The corresponding stress components in face 1 are 

(2.6) 

Gxx = I E1 
2 [u'1 +v1vt-z(w" +v1w**)], _,1 

E3 [ * I ( ** ")] Gyy = -
1
--2- v3+v3u3-z w +v3w , _,3 

ixy =G3 (uJ+v; -2ZW1*), 
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where G1 and G3 are the shear moduli, v1 and v3 the Poisson's ratios, and E1 and E3 are 
the elastic moduli of the faces 1 and 3. The strain energy of the sandwich plate is U, where 

Substituting (2.2), (2.3), (2.5) and (2.6) in (2.7) and performing the integration over the 
thickness of each face and core, we obtain 

Assuming that the plate is loaded with a normal load of intensity q, the potential energy 
of it is given by 

(2.9) V = - J J qwdxdy. 

Now, the kinetic energy of the plate is T, where 

(2.10) 2T =((hit +e2t2+e3t3) J J io2dxdy+ J J J ei(u,+~,z;)2dxdydz, 
+ J J J e,(v,+v,zi)2dxdydzl, 

where u1 and v, are the rotations about middle, i = 1, 2, 3 denoting the layers 1, 2 and 3 
and the dot represents differentiation w.r.t. t, the time variable. 

The rotations in the layers 1 and 3 are 

(2.1 1) 

The displacement components in the core are 

(2.12) 

where e1 = (t3 - t 1)/4 and the rotations in the core 

(2.13) 
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where e = eltl +e2t2+e3t3. 
According to Hamilton's principle, the stationery value of iP is equivalent to the equi­

librium problem, where 

t2 

tJ?J = J ( llt- tJU- tlV)dt = 0, 
lt 

where t 1 and t 2 are any two instants of time. 
Performing the variation term by term, the following equations of motion are obtained 

for arbitrary virtual displacements: 

(2.16) 
f ** (1 +v3) '* (1-v3) "} { c * (v1 -v3)} .• 

Y3lv3, + 2 u3 + 2 v3 -r2 ti w - ti -e3t3v3 

(!zfz {·· vl 2t3-tl "*} 0 --3- v3+2+ 4 w = , 

(Dl+D3)V4w-y2~{~(w"+w**)+ (u~-u;) + (vt-v~)}- eltt+e3t~ +(w"+w**) 
t2 t2 t2 t2 12 

8* 
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where 

and 

The boundary conditions from the line integrals can be obtained as i) along x = 0 and 
x=a 

either or 
Ut= 0, Yt (u~ +v1vt) = 0, 

'Vt = 0, YtO-vt) (v' +u*;) =0 
2 1 t ' 

u3 = 0, /'3(u3+v3v1) = 0, 

,3 = 0, /'3 (1 -P3) (v' + u*) = 0 
2 3 3 ' 

'W = 0, 

(2.17) 

{ 
(!3-2!1).. (2!3-tl).. ..,( 2 8~)}- 0 

+e2t2 12 Ut+ 12 U3+'W Bt+U - , 

w' = 0, Dt(w"+v1 w**)+D3 (w"+v3 w**) = 0, 

and ii) along y = 0 and y = b 

(2.18) 

either 
Ut= 0, 

w = 0, D1{w***+(2-v1)w"*}+D3{w***+(2-v3)w"*} 

c { * c (vl -v3)} etd+e3ti .. * 
-y2-w-- + 12 w 

12 12 12 

+e212{ 
1·~;1' ;;,+ 

21
•1;

1
' v.+w•(M ;0}= o, 

w* = 0, D1 (w**+vtw")+D3(w**+P3w") = 0 

and for free edge, reaction at the corner 
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3. Solution for simply supported case 

The boundary conditions when all the edges of the plate are simply supported from 
Eqs. (2.17) and (2.18) are 

along x = 0 and x = a 

ii v~ +uT= 0, 
m u; +v3vf = 0, 

(3.1) iv v3+uJ = 0, 

V W = 0, 

vi D1 (w" +v1w**)+D3(w" +v3w**) = 0, 

along y = 0 and y = b 

vn ut+v~ = 0, 

viii vT +v1 u; = 0, 

tx uf+v3 = 0, 

x vf+v3u3 = 0, 

xi w = 0, 

xii D1 (w**+v1w") 

+D3(w**+v3w") = 0. 

The conditions listed above excepting ii) and vii), which can be neglected as per the 
discussion in [10], are satisfied if the solution is assumed in the series form as: 

00 00 

~~ .mnx.mr:y. 
w = L.J L.,; Wm,.sm-

0
-sm-b-smwt, 

m=1 n=1 

00 00 

~~ mnx.nny. 
u1 = ,L.; L.J U1m,.cos-a-sm-b-smwt, 

m=l 11= 1 

00 00 

~ ~U mnx . nny . 
U3 = L.J L.,; 3m11cos-a-sm-b-smcot, 

m=l n=l 
(3.2) 

00 00 

~~V . mnx nny . 
V1 = ,L.; L.J 1 mnsm ·-

0
-cos-b-smwt, 

m=l n=1 

00 00 

~ ~V . mnx nny . d 
V3 = ,L.; L.J 3mnsm-

0
-cos-b-smcot, an 

m= 1 11= 1 

00 00 

~ ~Q . mnx . nny . k. 
q = L.,; L.,; mnsm-a-sm-b-smwt, ta mg 

m=1n=1 

harmonic excitation of frequency eo. Substitution of (3.2) in Eqs. (2.16) yields a system 
of algebraic equations which upon non-dimensionalisation give rise to: 

(AA+AAB) Wm11 -(AC-AAD)Ulm11 +(AE+A.AF) U3m11 - VlmnAG = 0, 

(XA+XBA) Wm 11 - UlmnAG-(AH-ADA)VImn+(AE+AAF)V3m11 = 0, 

(3.3) (AAK-AA)Wm,.+(AE+AAF)Ulmn-(AL-AAM)U3m11 -ANV3mn = 0, 

(AXC-XA) Wm11 -ANU3mn+ (AE+ AAF) V1m11 - (AP-AMA) V3mn = 0. 

(AQ- AAR) Wm,.+ (AA- AAB) U1m11 - (AA+ AAK) U3mn+ (XA -XBA) V1mn 

+(XA+XCA)V3mn = Qmn, 
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where 

Y2.3 02.3 1 [ f3 I-v3 2 n
2 J AK = ---

12 
(2-0~.3), AL = -

1
- 2 m + -

2
-y /3- +AE, 

Yt.3 -v3 m 

l1 nf3y 
AM = Y1.

3
f3m + YA, AN= 2(l-v

3
) , XC= AKYB, 

).{I) 

o=1Jl1.3 = a1.3= 01.3 =1.0, 
'/J3=0.3, '02.3=0.5, m=n=1 

FIG. 2. Variation of A with p. 

I 

V 

N 

m 

II 

AE=~, 
02.3/3 

XA = AAYB, 

- Qmn 
Qmn = ( . ) ' 

11(11-"'') 
10-2 

E3 m1t 
a 
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10-7 

81.3=05, Br.s=2.5, f3=0.0125, lJa-0.3 

m=n-1 , "t= cx1.s=1jJ1.3 -=J1.3 =10 

h3=05 

10-8~ 

m -
If 

).{JI-Y) 

10-1 

10-l 

J1o-3 

J10_.., 

10-9 I I I I I I I I I' I I I I I I I I' I I I I I I J 10-5 
w~ w~ w~ ~ 

~j 

FIG. 3. Variation of A with 152 •3 • 

), (!) 

10-8 

..., •v 1 ' ... 

7x10-9~~ "' 

cx1.3= 1/)1.3 "" ~1. 3 ~10, 1J3=0S, 81. 3 =05 

m=n=1 , <Jz.3=10-~ /3=0.0125, oz.3=0.5 

....... 

/t(IIJIIJ'I.V) 

3.5)110-.f 

3.1x1o- .f 

-, 2.1x10-4 

~ ~1.1)(10-.f 

6x1o-9 I 1 1 1 1 = 1 1 1 1 1 1 1 1 1 L0 -s 
1 s w w ro 

Bz..3 

FIG. 4. Variation of A with 82.3· 
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p = nt3 
a ' 

For the case of the free vibrations, i.e. Qm,. = 0, the system of Eqs. (3.3) reduces to a fifth 
order polynomial in A. The roots of this polynomial have been computed on I.C.L. 1909 
Computer for varying values of t52 •3 , p, 81. 3 and 02 •3 and are drawn in Figs. 2-5. 

). (I) 
a1.s•t1.9=1/)1.3""1-1.0, tJs,..03, 8z.s=2.5 
c!2.3s10-5

, {3•00125, m-n-1, ~2.3=05 

FIG. S. Variation of A with 0~.3 • 

). (II,m,N,v) 

V 
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4. Discussion 

For a given combination of modal numbers m, n, 5 values of A. are obtained and thus 
5 families of modes would exist. For each family of mode, the values of displacement 
ratios U1m,.fWm,., U3 m,./Wm,., V1m,.fWm,. and V3m,.fWmn can be computed from Eqs. (3.3) 
and the corresponding family of mode may be designated from the nature of these ratios. 

In Table I, values of frequencies corresponding to the five families of modes for various 
values of m and n are given, while in Table 2, the displacement ratios for the five families 
for m = n = I are given. It was observed that the mode corresponding to the lowest 

Table 1. Frequencies of sandwich plates 

a:1.3 = 'Y = 'Y1.3 = '1'1.3 = 1.0, 'Y2.3 = 0.5, «52.3 = 0.00001' p = 0.0125, 81.3 = 0.7. 

,3 = 0.3, 82.3 = 10 

Modal number Non-dimensional frequency parameter ). for various families of modes 

m n Ix 108 IIx 104 

Transverse all inertia 
inertia terms terms 

1 0.730 0.730 0.295 
1 3 7.224 7.220 1.473 
2 5 45.64 45.623 4.270 
5 5 125.75 125.67 7.362 
4 7 207.16 206.99 9.37 

3 8 258.83 258.59 10.748 
2 9 347.099 346.73 12.515 
5 8 379.38 378.96 13.103 
7 7 457.27 456.72 14.428 

lO 484.84 484.24 14.870 

Table 2. Displacement ratios for various families of modes 

a:1.3 = /'1.3 = Y = '!'1.3 = l.O, Y2.l = 0.5, 

82.3 = 10, "3 = 0.3, «52•3 = 0.00001, 

Number of mode U1 
family w 

I -0.159 X 10- 2 

11 -0.353 X 107 

III 0.438x 105 

IV 0.107 X 104 

V 0.991 X 103 

81.3 = 0.7 

p = 0.0125, 

Ulmn 
Wmn 

-0.407 x 10- 3 

-0.212x 107 

-0.517x 105 

0.635 X 103 

-0.117x 104 

illx104 IVx 104 Vx103 

0.623 0.842 0.176 
3.069 4.207 0.875 
8.878 12.197 2.534 

15.297 21.032 4.369 
19.884 27.342 5.679 

22.329 30.707 6.377 
25.998 35.754 7.425 
27.221 37.437 7.775 
29.973 41.223 8.562 
30.889 42.484 8.822 

m=n=1 

Vlmn 
Wmn 

0.159x 10- 2 -0.38 X 10-3 

0.212 X 107 

0.517 X 105 

0.635 X 103 

0.353 X 107 

-0.438 X 105 

0.107 X 104 

0.991 X 103 -0.1l7x 104 
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frequency is of predominantly flexural type, the corresponding values of all displacement 
ratios are small. This mode is also obtained when only transverse inertia effects are included. 
In Table 1, the frequencies for the first family of modes are given for both the cases, viz. 
when all inertia effects are included and when only transverse inertia effects are considered, 
the frequencies obtained in the two cases are not significantly different. 

Because of inclusion of rotary and translatory inertia, in addition to transverse inertia, 
four additional families of modes are obtained. For families of modes designated as belong­
ing to 11 and IV families, the displacement ratios U1mn/Wmn and U3 mnfWmn are of same 
sign and so are the ratios V1mn!Wmn and V3 mn/Wmn· All these ratios are large and so these 
families of modes may be classified as of predominantly extensional types. For Ill and V 
families of modes, the ratios U1mn/Wmn and U3 mn/Wmn are of opposite signs and so are 
V1 mnfWmn and V3mn/W mn· These ratios are large and these families of modes may be classified 
as of predominantly thickness shear types. It was found that for the parameters listed 
in Table 1, frequencies for the first family, viz. flexural modes, for m = 10, n = 12 are 
A = 0.274 x w- 4 and for m = 10, n = 13 are A = 0.332 x 10- 4

, while the frequency for 
the second family, viz. extensional mode corresponding to m = n = 1 is 0.295 x I0- 4 • 

Thus, beyond flexural mode corresponding to modal numbers m = 10, n = 12, the higher 
families of modes exist. To get an idea of the relative frequencies, the frequencies for 
various families of modes for m = n = 1 and for parameters given in Table 1 were com­
puted, taking t 3 = 1"/8, £ 3 = 107 lb/in2 and e3 = 0.000259lbin- 4 sec2

• These frequencies 
are seen to be: 21.4, 1360, 1990, 2310 and 3320c.p.s. for the five families of modes, respec­
tively. It may be noted that the frequencies for higher families of modes are not very 
high and are thus of practical interest. 

In Fig. 2, the frequencies corresponding to various modes are plotted against {J. The 
frequencies for all the five families of modes are seen to increase with increase of {J. As seen 
from Fig. 3, a stiffer core would increase all the frequencies, though the increase would 
be very small for 11 and Ill families of modes. Increasing the thickness of the core, as seen 
from Fig. 4, lowers the frequencies for all the families of modes. This is due to the fact 
that increase in generalized stiffness due to increase of 02 . 3 would be less marked compared 
to increase in generalized mass of the sandwich plate. As seen from Fig. 5, if one of the 
faces is considerably thicker compared to the other, i.e. for lower values of 01 . 3 , frequencies 
for higher families of modes are reduced, though for the flexural mode, the frequency 
decreases up to a particular value of 0~. 3 and increases thereafter. 

5. Conclusions 

Equations of bending vibrations of unsymmetrical sandwich plates have been derived 
using variational methods. Frequency equation for simply supported edge conditions 
gives five families of modes, which have been designated according to the nature of dis­
placement ratios. Inclusion of rotary and translatory inertia effects, in addition to transverse 
inertia, gives rise to higher families of modes which occur at frequencies of practical interest. 
These modes occur at reduced frequencies when 02•3 is large, l52 •3 and fJ are small and 
the sandwich plate has a high degree of unsymmetry. 
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