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On nonlocal continuum theories of elasticity 

D. ROGULA (WARSZAWA) 

Tms PAPER is concerned with examining various possible approaches to nonlocallinear theory 
of elasticity of continuous media. As the governing equations of the theory an equation of the 
form 

Lu = f 

is assumed, where u and fare some tempered distributions and L is a linear operator. Apart 
from some general assumptions, no particular form of L is required. For homogeneous media, 
a classification of the operators Lis given in terms of singular order which is either real number, 
or + oo or - oo. The fundamental solution is discussed and a theorem relating its singularity 
to the operator L is proved. The energy and interaction of point defects, modelled by force 
centers is analysed for various L. 

Praca dotyczy badania rozmaitych form nielokalnej liniowej teorii osrodk6w ci(lglych. Przyj~to 
podstawowe r6wnanie w postaci 

Lu = f, 

gdzie u i f s~ pewnymi dystrybucjami temperowanymi, a L jest operatorem liniowym. Operator 
ten spelnia pewne og6lne zalorenia, nie z~da si~ jednak jakiejs jego szczeg6lnej postaci. Dla 
osrodk6w jednorodnych podano klasyfikacj~ mozliwych operator6w L wprowadzaj~c poj~ie 
r~du osobliwosci operatora; r~d osobliwosci wyra:Za si~ b~dz liczb~ rzeczywist~. b~dz tei: 
r6wna si~ + oo lub - oo. Przedyskutowano rozwi~zanie podstawowe i udowodniono twierdze
nie wi~Zc!ce osobliwosc tego rozwi~nia z rz~dem osobliwosci operatora L. Dla r6znych 
operator6w L przeanalizowano energi~ i oddzialywanie defekt6w punktowych, modelowanych 
przy pomocy odpowiednich centr6w sil. 

B pa6oTe HCCJie.zzyroTcH pa3JIH'IHbie <l>opMbi HeJIOKllJlbHOH TeOpHH CllJIOWHbiX cpeA. OcHOBHoe 
ypasHeHHe npHH.RTO B BHAe 

Lu = f 

rAe u H f HBJI.RIDTCH HeKoTOphiMH o6o6-meHHhiMH <l>yHKI..UiHMH Me,wteHHoro pocTa, a L HBJI.ReTCH 
JIHHeHHhiM onepaTopoM. 3ToT onepaTop YAOBJieTBop.ReT HeKoTophiM o6-mHM npeAJlOJIO>KeHHHM, 
He Tpe6yeTC.R, OAHaKO, KaKOH-JIH6o ero cnel'(H<I>H'IeCKOH <l>opMbi. ,UaHa KJiaCCH<I>HKal'(H.R AO
nycTHMbiX onepaTOpOB L ,wi.R OAHOPOAHhiX cpeA, OCHOBaHHa.R Ha BBeAeHHH fiOH.RTH.R nopHAKa 
oco6eHHoCTH onepaTOpa; nop~oK oco6eHHOCTH .RBJI.ReTCH JIH6o AeHCTBHTeJibHhiM 'IHCJIOM, 
JIH60 paBeH + 00 HJIH - 00. 06cy>KAeHO OCHOBHOe pemeHHe H AOKa3aHa TeopeMa, CB.!l3biBa
ro-maH oco6eHHoCTb 3Toro perneHHH c nopHAKOM oco6eHHocrn onepaTopa L. ,Il)ui pa3JIHliHbiX 
onepaTOpos L npoH3BeAeH aHaJIH3 3Hepnut H B3aHMOAeiicTBHn To'le'IHhiX . Ae<l><l>eKToB, MO• 
AeJIHpyeMbiX C fiOMO~biO COOTBeTCTBYJOI.QHX ~eHTpOB CIW. 

1. Introduction - the integral theory 

ONE MAY hope to achieve a pretty fair description of effects arising from nonlocality of 
atomic interactions in real bodies without giving up the idea of a continuous medium, 
if one chooses an appropriate integral equation as a governing equation of the theory. 
This is the way in which the nonlocal theory of elasticity is usually formulated (KRONER & 
DATTA, 1966, KRONER, 1967). 

9* 
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234 D. ROGULA 

The governing equation can, in this case, be written as a linear integral relation between 
external forces fi(x) and displacements ui(x): 

(1.1) 

with an appropriate kernel (/>ii(x, x') which is a second order tensor function depending 
on two points x and x'. In the important case of a homogeneous medium, the kernel (/>ii 

depends on the difference x-x' only, 

(1.2) ([>ii(x, x') = ([>ii(x- x'). 

Alternatively, instead of (1.1) we can postulate an integral stress-strain relation 

(1.3) 

subsequently making use of equation 

(1.4) (Jij,j + fi = 0. 

In this formulation, we have to choose the kernel Ciik1(x-x') which is a fourth order 
tensor. 

Roughly speaking, under additional conditions which must be incorporated into the 
theory, in order to make it sensible, these two formulations are equivalent. The disadvantage 
of the Eq. (1.3) is that it makes use of the concept of the stress tensor which, for long 
range interactions, has rather vague physical meaning, if any. The disadvantage of the Eq. 
(1.1), on the other hand, is that it makes no sense for dislocated bodies, when the displace
ment field is multi-valued. The last topic we shall discuss separately. 

The use of the integral continuum theory may be justified by the following arguments: 
a. let a typical interatomic distance be a, and a typical range of interatomic forces 

in a given material be /. The idea of a continuous medium may be expected to work at 
distances A which are much greater than a, 

(1.5) A~ a, 

and validity of classical elasticity should be restricted to distances much greater than /, 

(1.6) A~ I. 

Thus, in the case 

(1.7) I~ a, 

there can exist an intermediate range of distances at which the idea of a continuous medium 
is applicable but classical elasticity is not. 

b. The general form of the Eq. (1.1) is quite similar to that of the fundamental equation 
of the lattice theory. The latter can be written as 

(1.8) }; cPij(Xm, Xm,)uj(xm,) = ~(Xm), 
m 

where Xm, x;,. denote the equilibrium positions of the corresponding atoms, fi>ii(xm, x;,.) 

represent the corresponding force constants, and fi(xm) is an external force acting on the 
m-th atom. 
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ON NONLOCAL CONTINUUM THEORIES OF ELASTICITY 235 

This similarity leads one to expect a close relation between the force constants and 
the kernel of the Eq. (1.1 ). Even more, provided that the functions involved are sufficiently 
smooth on the atomic scale, one may expect to estimate the kernel f/Jij(x, x') in terms 
of force constants and, in this way, to derive the integral continuum theory from the 
lattice theory. 

c. Provided that the displacement field ui(x') is sufficiently smooth it can be developed 
into Taylor's series: 

(1.9) 

where 

( 1.1 0) 

ui(x') = uj(x) + ~ -1
-
1 

811ui(x) · (x'- x)~' + the remainder, 
L.J fl· 

l..; i .u i~ N 

If for any reason the terms of orders higher than n, with n ~ N, are not important, they 
can be dropped. Substitution of the remaining terms into the Eq. (l.l) yields a differential 
equation of the form 

(l.ll) 

the coefficients being equal to 

(1.12) aii11 = _2,- J f/Jij(x, x') (x' -x)11d 3x'. 
fl· 

This seems to justify the view that strain gradient theory can be looked upon as an approxi
mation to the integral continuum theory. 

However, as we shall see later, more thorough mathematical discussion does not complete
ly support the above views. The range of applicability of the integral continuum theory 
is a more delicate matter and its relation to crystal lattice theory, on the one hand, and 
to strain gradient theory, on the other, will show themselves to be more complicated. 

We shall begin from discussion of an example which has been given by BARNETT (1969). 
It will illustrate some difficulties which may be encountered in the integral continuum 
theory. 

2. A troublesome integral equation 

Consider an integral equation of the form ( 1.1) with the kernel 

(2.1) 

where ciljm is the classical isotropic tensor, 

(2.2) 

and the function f/J(x-x') is given by 

(2.3) </) = ( :n r e-P'Ix-x'l'. 

We can also put this equation in the form (1.3) with 

(2.4) Cijkl(X, X') = Cijklf/J(x- x'). 
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236 D. ROGULA 

For this form of f/>, the parameter p-t can be interpreted as the range of interactions. 
The numerical factor in (2.3) is chosen so that when p-t --. 0, then 

(2.5) f/>(x- x') --. c5< 3>(x- x'), 

and the corresponding equations become purely classical. 
Now, let us try to find the fundamental solution Gii(x): 

(2.6) 

Making use of the Fourier transformation, we obtain the equation 

(2.7) 

for the corresponding Fourier transforms. The Fourier transform of f/>li can easily be 
calculated, 

(2.8) &ij(k)= J d 3xe-ikxrJ>ii(x) = Luk2 c5ij+(A+fl)kiki]e-k214PZ, 

and from the Eq. (2.7), we obtain: 

(2.9) (;. ·(k) = [_!_( c5ij - kikj) _1- kikj J k2f4{J2 
'J ll k2 k4 + A+ 2fl k4 e . 

For 1/{3 = 0, this is the classical result. Otherwise, however, Gii(k) has an exponential 
growth at infinity and cannot be retransformed in a usual way. Therefore, we have to 
conclude that, in the example considered, a Fourier-transformable fundamental solution 
does not exist. 

From the mathematical point of view, the meaning of the last statement is not quite 
clear. It can be made precise in terms of tempered distributions. The tempered distributions 
are defined (see e.g. HoRMANDER, 1964) as continuous linear forms on the space S which 
consists of infinitely differentiable functions <p(x) such that 

(2.10) 

for any two multi-indices 11-, v. It can easily be proved that, if <p e S and u is a tempered 
distribution, then the convolution of <p and u exists, and is again a tempered distribution. 
Moreover, the Fourier transform of this convolution equals the product of the Fourier 
transforms q; and u, and is a tempered distribution, too. Thus, by observing that the kernel 
defined by the Eqs. (2.1)-(2.3) belongs to the spaceS, we see that the Eq. (2.1) becomes 
meaningful in the sense of convolution for any ui which is a tempered distribution. In this 
case, the Fourier transformation method we have just applied to solve this equation is 
entirely justified. The result (2.9), being itself no tempered distribution, cannot be retrans
formed into a tempered distribution. Therefore, the rigorous conclusion is that there is no 
tempered distribution which, in the example considered, could serve as a fundamental 
solution. 

Intuitively, the class of tempered distributions consists of those distributions which 
do not grow too fast at infinity. Thus, even if we were able to find a solution in the class 
of all distributions, it would not be physically acceptable because of its behaviour at 
infinity. 
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ON NONCLOAL CONTINUUM THEORIES OF ELASTICITY 237 

Non-existence of a good fundamental solution, being a disadvantage from the point 
of view of calculational efficiency of the theory, might however be thought to be due to 
too singular a character of the ~-type forces. For smooth forces, the theory might still be 
expected to work and yield smooth solutions. 

To see that this is not exactly the case, let us consider an example of forces 

(2.11) 

where 

(2.12) 

is a function similar to $ but with a different parameter rx. These forces are central, with 
no resultant force or moment, and their magnitude as a function of the distance r is 

(2.13) f = 2a2 re-"''' ( ;,. )' 

The force field (2.11) is infinitely differentiable and, if rx- 1 ~ a, describes perfectly smooth 
distribution of forces on the atomic scale. 

Now, applying the Fourier transformation, instead of the Eq. (2.7) we obtain: 

(2.14) 

the solution of which is 

(2.15) 

where 

(2.16) yz-=7---p· 
If rx < {J -i.e., the forces are diffused over a distance greater than the range of interac
tions - then y 2 > 0, and there exists a smooth solution which, by retransformation 
of (2.15), is equal to 

(2.17) u·(x) = __ 1 ___ 1_0. erf(yr) 
' 4n A+ 2,u ' r ' 

where erf denotes the corresponding error function (see e.g., LuKE, 1969). If rx = fJ, there 
exists a singular solution 

(2.18) 
1 1 1 

ui(x) = - ---o·-
4n J.+2,u ' r 

which coincides with the classical solution corresponding to 1p(x) = ~<3>(x). 

In the case of rx > {J, there is no solution in the class of tempered distributions. There 
exists, in fact, a solution given by the Eq. (2.17) with imaginary y derived from (2.16). 
It can be checked by direct computation, the integral being, provided that rx- 1 i= 0, very 
well convergent. This solution, however, grows up exponentially at infinity. 

This is not what can be expected on physical grounds. Although a good solution exists 
when the forces are sufficiently diffused, the necessary degree of diffusion is determined 
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238 D. ROGULA 

by the range of interactions instead of by the interatomic distance. The range p-t can in 
principle be made very large so that the inequalities 

(2.19) 

can be satisfied very well. In spite of that, no acceptable solution exists in this case. 
What has been said in this paragraph refers directly to a particular case of an integral 

equation. Nevertheless, it shows that in formulating nonlocal continuum theories, due 
attention to the mathematical side of the problem is necessary. 

3. Nonlocal fundamental equations 

Now, we shall try to investigate nonlocal theories of continuous elastic media in a slightly 
more systematic way. The very first question we meet here concerns the kind of governing 
equation we should choose. The almost automatic answer that it is an integral equation 
is in many respects not satisfactory. From the mathematical point of view, such an answer 
tells us almost nothing, unless we specify in what sense the integrals involved are to be 
understood. Classical integrals are usually too restrictive, since many singular functions 
of physical interest cannot be integrated in a classical way. Even if we choose some gener
alized notion of the integral, we cannot guarantee that a non-differential equation, if 
acceptable on physical grounds, has to be an integral one or, at least, can be reasonably 
written by means of such integrals. 

The whole question is not unimportant, because the governing equation can forejudge 
physically important features of its solutions. Bearing this in mind, we shall discuss a wide 
class oflinear governing equations which, apart from restrictions of direct physical meaning, 
we submit to some methematical assumptions of rather general character only. 

More specifically, we are going to investigate equations of the form 

(3.1) Lu = f 

or, in index notation, 

(3.1') 

where u and fare the displacement and force fields, respectively, and Lis a certain linear 
operator. Where the fields u and f are concerned we shall consider them tempered distri
butions on the three-dimensional Euclidean space. The operator L will, as a rule, be defined 
for a certain class U of tempered distributions, not necessarily for all of them. This class 
will depend on L, so we do not specify it in advance. 

The basic assumptions on Land U are the following: 
a. The operator L is continuous on U. The continuity we assume here is a sequential 

one in the following sense: whenever a sequence u1 , u2 , u3 , ••• U is convergent to u E U, 

(3.2) 

then 

(3.3) 
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ON NONLOCAL CONTINUUM THEORIES OF ELASTICITY 239 

the arrows indicating the convergence in the space of distributions. The symbols f, ,f1 

f2 , f3 , ... denote the force fields that correspond to the displacement fields u, u1 , u2 , u3 , ... 

by the Eq. (3.1). 
b. The medium is homogeneous. In order to express precisely the homogeneity assump

tion, we make use of the translation operator Tc whose action on an arbitrary field con
sists in translating it by a constant vector c, e.g:, 

(3.4) Tcu(x) = u(x-c). 

We say that the medium is homogeneous if the operator L commutes with the translation 
operators, 

(3.5) 

for an arbitrary c. Thus, the above implies that if u E U, then Tcu E U. 

For the sake of simplicity, we assume also that the medium is centrosymmetric. 
This assumption can be expressed in a form similar to (3.5) by writing the inversion 

operator in place of Tc. 
c) The class U, on which the operator L is defined, contains all the functions of the 

form 

(3.6) u(x) = Reaeikx 

with arbitrary real wave vectors k and complex amplitudes a. 

The above assumptions determine the general form of the operator L. The fields u and f 
are Fourier-transformable into some tempered distributions u and], so that the Eq. (3.1) 
can be equivalently written in the form 

(3.7) 

where i is another linear operator. The operators Land i uniquely determine each other. 
On the other hand, the homogeneity assumption implies that, for u given by the Eq. 

(3.6), Lu must be of the form: 

(3.8) Lu = Rebeikx 

with another amplitude b. This amplitude, in turn, must depend on a linearly, so that 

(3.9) 

the matrix Aih together with its dependence on k, being completely determined by the 
operator L. 

Now, we make use of continuity condition. This we do in three steps: 
1. Consider a sequence k 1 , k 2 , k 3 , ... which converges to a certain wave vector k. 

Then 

(3.10) 

and, because of the continuity of L, 

(3.11) 

Thus the matrix Aii is a continuous function of k. 
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240 D. ROGULA 

2. Consider u(x) of the form 

(3.12) u(x) = _ I_ Jd3keikxu(k) 
(2nV ' 

where u(k) is a continuous function of bounded support in the k space. 
In this case, u(x) is given by a Riemann integral which, by definition, is a limit of 

finite sums. These sums are finite linear combinations of eikmx with different km's and 
converge to u(x). Hence, ifu(x) E U, then, by the continuity of L, 

(3.13) ciu)i = Aij(k)uj (k), 

-i.e., the operator L acts as multiplication by the matrix function Aii(k). 
It follows, in particular, that all the fields u whose Fourier transform u are continuous 

and of bounded support can be included into U, which we assume to be done. 
3. Consider an arbitrary u c U. Since any distrubution is a limit of a sequence of con

tinuous functions with compact supports, so is u, the Fourier transform of u. Therefore, 
again by the continuity of L, the extension of this operator from the functions specified 
in 2 onto U is unique. 

Hence we arrive at the conclusion that the matrix function Aii(k) determines the oper
ator L on U uniquely. 

Thus, under the assumptions a, band c, the general form of the Eq. (3 .7) is 

(3.14) 

where Aii(k) has to be a continuous function of k. 
The distributions u(k) and fck), being the Fourier transforms of real distributions 

u(x) and f(x), must satisfy the following relations: 

(3.15) u*(k) = u( -k), i* (k) = i( -k). 

Hence 

(3.16) A~(k) = Aii(- k) 

and, because of central symmetry of the medium, 

(3.17) Aii(- k) = Aii(k) . 

Thus Aii(k) is a real and even function of k. 

4. Energy and stability 

The expression for the total deformation energy of a nonlocal elastic medium can be 
derived from the form of the governing equation. The energy corresponding to displace
ments u(x) produced by forces f(x) equals 

(4.1) W = ~ J d3xuf = + J dxuLu, 

which follows from integrating the elementary work 

(4.2) <5W = J d 3x<5uf, 
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ON NONLOCAL CONTINUUM THEORIES OF ELASTICITY 241 

making use of linearity of the Eq. (1.1). In Fourier representation, the expression (4.1) 
can be written as 

(4.3) 

Now, consider a cyclic deformation process of the form 

u< 2 > (x) 

/" / '\, 
u0 > (x) +- 0 

with some displacement fields u<l)(x), u< 2>(x) and the corresponding force fields fU>(x), 

f<2>(x). The medium being elastic, the work done in this process has to be zero: 

(4.4) 

On transforming this relation to Fourier representation and making use of the Eq. (3.14), 
we obtain: 

(4.5) 

Let us note that the expression (4.3) is well defined for sufficiently many u(k): at least 
for all the continuous functions of bounded support. Therefore, from the relation (4.5) 
it follows that 

(4.6) 

Taking into account the Eqs. (3.16) and (3.17), we have then 

(4.7) 

Moreover, we assume the medium to be stable. According to KUNIN (1968), the stabil
ity condition requires the roots wf(k), w~(k), w~(k) of the characteristic equation 

(4.8) 

to be positive for any real k =1= 0. Thus the matrix Aii(k) must be positive definite for 
k =I= 0 and, in particular, 

(4.9) det(Aii(k)) =1= 0 for k =1= 0. 

So far we have made no assumptions concerning the relation between nonlocal and 
classical elasticity. We assume that the Eq. (3.14) agrees with its classical counterpart in 
the limit k-+ 0. Thus 

(4.10) Aii(k) = Cujmkikm+O(k2
) when k-+ 0. 

This completes the list of assumptions concerning the operator L. 

5. The singular order of the operator L 

Let p be a real number. We define the following quantity 

(5.1) 
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242 D. ROGULA 

where 

(5.2) trA(k) = A 11 (k) +A22 (k) +A23 (k) = wi(k)+w~('k)+w~(k) ~ 0. 

From the definition (5.1) it follows immediately that 

(5.3) IILIIP' < IILIIP for p' > p. 

Therefore, the set of numbers p, for which the inequality 

(5.4) 

holds, can conveniently be characterized by the quantity s(L) defined as 

(5.5) s(L) = inf p: I ILl lP < oo. 

With that we understand that, if I ILl lP < oo for all real p, then s(L) = - oo. In the case 
in which I ILl lP = oo for all real p, we define s(L) = + oo. The quantity s(L) will be called 
the singular order of the operator L. 

If s(L) = s, where s is finite, then either 

(5.6) IILIIP{:: for p ~ s, 
for p > s, 

or 

(5.7) IILII,{:: for p < s, 
for p ~ s. 

If we want to stress the difference, we shall say that the singular order of the operator 
L is "exactly s" in the first case, and "almost s" in the second. 

By definition, 

(5.8) almost s < exactly s. 

One can easily observe that, if L = L' +L" and s(L') > s(L"), then 

(5.9) s(L) = s(L'). 

If Lis a (positive definite) differential operator of order m, then 

(5.10) s(L) = exactly m+ 3. 

Hence the singular order can be regarded as a generalization of the order of differential 
operators, shifted by 3 for convenience. 

6. The convolution equations 

Consider first the case in which the matrix function is a tempered distribution (i.e. all 
its components are tempered distributions). Then we have 

(6.1) 

where ~ii(k) is the Fourier transform of a tempered distribution !/>ii(x). 
The fundamental equation (3.1') can now be written in the convolution form 

(6.2) 
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ON NONLOCAL CONTINUUM THEORIES OF ELASTICITY 243 

with the kernel t/>,i(x). The class uj(x), for which this equation is defined, still depends on 
a particular form of t/>ii. In any case, we consider the Eq. (6.2) equivalent to the Eq. (3.14) 

with Aii(k) given by (6.1). 
We have the following 
THEOREM 6.1. In order that Aii(k) be a tempered distribution it is necessary and sufficient 

that 

(6.3) s(L) < +oo. 

Pro of. If Aii(k.) is a tempered distribution, then, by (5.2), tr A(k.) is a positive tem
pered distribution. According to GELFAND and VILENKIN (1964), such a distribution is 
given by a tempered measure, which implies inequality (5.4) for a certain real p. In conse
quence, we have inequality (6.3). To prove the converse, let us note that, the matrix A1i(k.) 
being at least positive semi-definite for all k, the inequality 

(6.4) !Aii(k.)l ~ 2 tr A(k.) 

holds for any pair of indices i,j. Thus, if the condition (6.3) is satisfied, then there exists 
a real p such that 

(6.5) 

which shows that Aii(k) is a tempered distribution. 
The singular order of a convolution equation provides a measure of the singularity of 

the kernel t/>1i. The following theorems reveal the corresponding relation. 
THEOREM 6.2. The kernel t/>1i(x) is a continuous function, if and only if, 

(6.6) s(L) ~ almost 0. 

Proof. If the inequality (6.6) is satisfied, then the inequality (6.5) holds for p = 0-
i.e. the function A 1i(k) is summable. By the Rieman-Lebesque theorem, the kernel t/>1j{x), 
which is the Fourier transform of Aii(k), is continuous. Conversely, if t/>ii(x) is a contin
uous function, then 

(6.7) 

is a positive definite continuous function and, according to Bochner's theorem (GELFAND 

and VILENKIN, 1964), its Fourrier transform is given by a finite measure. 
This implies the inequality (5.4) for p = 0 and, in consequence, the condition (6.6). 
THEOREM 6.3. If 

(6.8) s(L) ~ almost -m, 

where m is a positive integer, then t/> (x) has continuous derivatives up to order m. 
Proof. Condition (6.8) implies the inequality (6.5) for p = -m. Taking into ac

count the inequality 

(6.9) 

we conclude that the derivatives iY't/>ii(x) with l,ul ~ m have summable Fourier transforms, 
and therefore, by the Riemann-Lebesgue theorem, are continuous. 
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Re m a r k. For even integers m, the theorem converse to (6.3) is true. This can be 
shown by considering the kernel 

(6.10) cp;j = (1-Ll)ml2(_f)ij' 

which defines an admissible operator L' with the matrix A~/k) given by 

(6.11) A;J(k) = (1 +k2 )m12 Aij(k). 

If the derivatives (}ll C/>iJ are continuous for l,ul ~ m, then the kernel C/>;1 is continuous and, 
by Theorem 6.2, 

(6.12) s(L) = s(L')-m ~ almost -m. 

From this remark and from Theorem 6.3, the following theorem follows immediately: 
THEOREM 6.4. The kernel C/>i1(x) is an infinitely differentiable function, if and only if, 

(6.13) s(L) = -oo. 

Moreover, we have 
THEOREM 6.5. If trC/>(x) is a bounded function in a certain neighbourhood of x = 0, 

then .the kernel C/>il(x) is a continuous function everywhere. 
P r o o f. If the assumption of the theorem is satisfied, then trC/>(x) can be represented 

in the form: 

(6.14) 

where f 1 is a bounded function, 

(6.15) 1/t(x)l < C 

and f 2 is a tempered distribution such that 

(6.16) f 2 (x) = 0 for lxl ~ E, 

where C and e are certain positive constants. Let "P« denote the function defined by the 
Eq. (2.12) for a certain value of the parameter ex. Then 

(6.17) 

and there exists a polynomial P( ex) > 0 such that 

(6.18) 1(/2 , "P«)I ~ e-«lel P(ex«). 

Thus 

(6.19) lim sup l(trC/>, V'«) I ~ C. 
«-.oo 

On the other hand, 

(6.20) 

and 

(6.21) lim (trC/>, 1f'«) = IILIIo ~ C, 
«-.oo 

where the last inequality follows from (6.19). Thus s(L) ~ almost 0 and, by Theorem 6.2, 
the kernel C/>iJ(x) is continuous. 
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THEOREM 6.6. If 

(6.20) s(L) ~ almost m, 

245 

where m is a positive integer, then the kernel (!Jii(x) can be expressed as a finite sum of con
tinuous functions and their derivatives of order not greater than m. 

Proof. We shall prove this theorem by the construction of corresponding represen
tations of the kernel (/Jii. 

Let 

(6.21) q =I ; 
m~l 

for even m 

for odd m. 

Let lf'i1(x) be a tempered distribution whose Fourier transform is 

(6.22) 

The distribution lJ'ii(x) represents the kernel of an admissible convolution operator M 
of singular order 

(6.23) s(M) = s(L)+q ~almost m-2q. 

If m is even, then by Theorem 6.2 the kernel lJ'ii(x) is continuous and 

(6.24) (/Jij = (1- .1)4lJ'ij 

is a representation of the desired form. If m is odd, then by Theorem 6.3 the kernellJ'iJ 
is continuously differentiable, so that lJ'iJ and 

(6.25) xu1 = a,"PiJ 
are continuous functions. Hence the representation we are looking for can be written as 

(6.26) 

It follows from Theorem 6.5 that whenever the singular order of a convolution operator 
is negative (or exactly 0), i.e., 

(6.21) s(L) ~ exactly 0, 

then at x = 0 the corresponding kernel has a singularity which cannot be represented by 
a bounded function. 

This singularity, however, can be represented by derivatives of continuous functions, 
and Theorem 6.6 gives the dependence between the singular order of the operator and the 
necessary order of these derivatives. 

The following Table 1 gives a few simple examples of singularities of admissible kernels 
at x = 0, and specifies the singular order of the corresponding operators. 

Table 1. 

s(L) 

0 < a.# 2, 4, ... 
r« 

-a. 

-logr 

0 

r-cx 
a.>O 

a. 

~(3) (x) 

3 

All the singular orders listed in this Table are of the "exactly" type. 

s 
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7. The fundamental solution and the singular hardness of an elastic material 

Consider now the inverse matrix Aij 1 (k). According to ( 4.9), this matrix is well defined 
at any k =F 0. Considered as a function of k, this matrix is continuous fork =1= 0 and has 
a singularity at k = 0. 

However, as follows from the condition (4.10), this singularity is summable. Hence 
Aii(k) uniquely defines a locally summable function on the k-space, and it will be under
stood in this sense. 

By the equation 

(7.1) 

the function Aij 1 (k) defines an operator from L [ U] into U which will be denoted by L - 1 : 

(7.2) 

In the case in which Aij 1 (k) is a tempered distribution (and this depends solely on its 
asymptotic behaviour for k --+ oo), there exists a tempered distribution Gii(x) whose 

Fourier transform 

(1.3 ) 

In this case, the distribution Gii(x) satisfies the equation 

(7.4) LijGjm(X) = ()im()<J>(x) 

and will be called the fundamental solution. 
The function .Aij 1 (k) being locally integrable, the definitions (5.1) and (5.5) make sense 

for the operator L - 1 • Moreover, all the theorems of paragraph 6 apply to the operator 
L - 1, provided that the following substitutions are made: 

(7.5) 

l/>ii --+ Gii' 

Ail--+ Ai/, 

s(L)--+ s(L- 1
). 

In particular, the fundamental solution 

if and only if, 

(7.6) 

respectively. 
The quantity 

(7.7) 

a exists, 

b is continuous (bounded), 

c is infinitely differentiable. 

a s(L- 1
) < +oo, 

b s(L- 1) ~almost 0, 

c s(L- 1) = -oo, 

h(L) = -s(L- 1
) 

will be called the singular hardness of the corresponding elastic material. 
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The idea here is that if the material is "singular hard", the singularity of the displace
ment field created by applying a concentrated force is weak. And if the material is "singular 
soft", a concentrated force creates a strong singularity in the displacement field. The 
quantity (7.7) provides a numerical measure of this property. 

8. The relation between s(L) and s(L- 1
) 

Now, we shall prove the following fundamental inequality between the singular orders 
of the operators L and L -l : 

(8.1) s(L- 1
) ~ 6-s(L). 

The proof is based on the for owing inequality: 

(8.2) J tr(A 2)(1+ k2)-Pf2 d' k J tr(B2)(1+ F)-P'/2 d' k ;;, (J itrABI(l +F)- P+J' d' k r' 
which can be obtained from Schwartz's inequalities for traces and integrals and is valid 
for any measureable matrix functions Aii(k), Bii(k) and arbitrary real numbers p, p'. 

By substituting A = A 1' 2 and B = A -lf2 into (8.2), we obtain 

(8.3 ! 

Thus, whenever 

(8.4) 

then 

(8.5) p'> 6-p, 

the right-hand side of the inequality (8.3) being, on the contrary, divergent. Hence 

(8.6) infp' ~ sup(6-p) = 6-infp, 

which proves the inequality (8.1). 
By introducing the following convention: 

(8.7) almosts = exactly s, 

the validity of (8.1) is extended to singular orders labelled as "almost" or "exactly". 
COROLLARY 8.1. For the fundamental solution Gii to be bounded (continuous), it is nec

essary that 

(8.8) s(L) ~ exactly 6. 

CoROLLARY 8.2. If the kernel (/>iJ is bounded (continuous), then 

(8.9) s(L - 1
) ~ exactly 6. 

CoROLLARY 8.3. If the kernel if>i1 is infinitely differentiable, then the fundamental solution 
does not exist. 

The last corollary explains the failure of the example discussed in paragraph 2: the 
kernel if>ii defined by the Eqs. (2.1)-(2.3) is infinitely differentiable. 

Generally, the smoother the kernel f/JiJ of a convolution equation, the more singular 

10 Arch. Mech. Stos. nr 2/73 
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must be the fundamental solution Gii. The weakest possible singularity of Gii corresponds 
to the value of s(L -t) given by the Eq: 

(8.10) s(L- 1
) = 6-s(L). 

The following two examples illustrate how inequality (8.1) works in some particular 
cases. 

a. Consider an isotropic medium described by a convolution fundamental equation. 
In that case, the general form of the kernel c])i1(x) is 

(8.11) 

where '!' 1 (r) and '!' 2 (r) are spherically symmetric tempered distributions. 
Let lJ'1 (r) and lJ'2 (r) have singularities at r = 0 only, and let these singularities have 

the form: 

(8.12) lJ'1 (r) ,..., r 2 -«1, lJ'2 (r) ,..., r 2 -a2 , for r--+ 0 

with some non-integer a1 and <X 2 • Then the singular order of the corresponding operator 
L equals 

(8.13) s(L) = exactly max(a 1 , a2). 

The fundamental solution has the same form: 

(8.14) 

and, as inspection of the corresponding Fourier transforms shows, the strongest singu
larity is again at r = 0, and 

(8.15) 

Hence 

(8.16) 

Thus the present example Eq. (8.10) holds numerically if a 1 = a2 • On the contrary, the 
sharp numerical inequality in (8.10) is valid. 

b. Consider an elastic medium described by a nonlocal stress-strain relation of the 
form proposed by KRONER (1967): 

(8.17) O'jj{x) = ciJklekl(x)+ J ctkl(x-x')ek1(x')d3x'. 

The corresponding fundamental equation has the convolution form (6.2) with the kernel 

(8.18) cpij(x) = -aka, ( cikjlt5<3>(x) + c;tj,(x)). 

Let the function cit11(x) be absolutely integrable. Then, by writing the corresponding 
Fourier transforms and making use of the Riemann-Lebesgue theorem, we obtain 

(8.19) s(L) = exactly 5. 

Hence, according to Corollary 8.1, the fundamental solution cannot be bounded or contin
uous. In fact, an inspection of relevant Fourier transforms shows that 

(8.20) s(L - 1) = exactly 1. 

Thus, in the case considered, the Eq. (8.10) is numerically valid. This also refers to the 
classical case ( c0k, = 0) . 
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9. The non-convolution equations 

In paragraph 6, we have discussed the case in which Ail (k) is a tempered distribution. 
Now, we shall consider the remaining case. If Au (k) is not a tempered distribution, then 
there is no distribution, even non-tempered, which would allow the fundamental equation 
to be written in the convolution form (6.2). Nevertheless, such a function Ai1(k) defines 
uniquely an operator L in the Eq. (3.1), and this operator has all the properties required. 
We shall refer to this case as the non-convolution case. The corresponding singular order 
of Lis 

(9.1) s(L)= +oo 

In this case, the inequality (8.1) does not restrict the regularity of the fundamental 
solution, which can be an infinitely differentiable function. 

In fact, we have 
PRoPOSITION 9.1. If for any real m the inequalities 

(9.2) wi(k) >km, w~(k) >km, wi(k) >km 

are satisfied, provided that the vector k is sufficiently large, then 

(9.3) s(L) = +oo, s(L- 1) = -oo. 

This proposition follows directly from the definition of s(L) and s(L- 1
). 

Consider an example. Let 

(9.4) Aii(k) = [pk2c5ii+(J.+,u)kiki]ek2J4Pl. 

It has a form similar to (2.8) but with a positive exponent. The Fourier transform of the 
fundamental solution, as (2.9), is 

(9.5) G-·(k) = [-1 (!Y._- kikj) + 1 kik)] -k2J4Pl 
IJ fl k2 k4 ;. + 2,u k4 e • 

Hence the fundamental solution equals 

(9.6) 
1 erf({Jr) 

Gij(X) =- ---·c5··----
4n,u 11 r 

--
1 
(-

1 
---

1
-)aiaj[-!_ r' (r-s)erf({Js)ds]. 

4n ,u J.+2,u r L 

0 

This solution is not only infinitely differentiable: it is an entire analytic function of x. 

10. The energy of force centres 

Consider a concentrated force of the Dirac c5-type: 

(10.1) /i(x) = Fic5<3>(x). 

The corresponding deformation energy equals 

(10.2) 

10* 
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where Gii (x) is the fundamental solution. Thus, ifs (L - 1
) ~ almost 0, this energy is finite 

since the fundamental solution is continuous. 
If s(L- 1

) ~exactly 0, the energy (10.2) can be finite for some particular directions of 
the vector Pi, but not for all of them. In order to show that, let us consider the average 
energy of three mutually perpendicular unit forces pp>, Pf2>, pp>: 

3 

(10.3) Wo = = +Gij(O) 2 Pfcx>p~cx) = +Gu(O). 
CX=l 

Making use of the Fourier representation, we obtain 

(10.4) 

Thus, if s(L- 1
) ~ exactly 0, then W0 = oo and the energy (10.2) must be infinite for at 

least one of the vectors F~cx>. 
In the same way, we can consider concentrated forces of higher orders, described by 

the Dirac derivatives. For example, for the force 

(10.5) 

where Aim represents a certain matrix, the corresponding deformation energy is 

(10.6) 

Let W1 denote the average energy corresponding to nine matrices Aii such that 

(10.7) 

Then we have 

9 

(10.8) W1 = -- --{8 cu,••;n(O)}; Af~?A}~? = - --/8 LJG;j(O) 
a= I 

and 

(10.9) 

Hence W1 is finite, if and only if, 

(10.10) s(L- 1
) ~almost -2. 

Analogous results are valid for concentrated forces of arbitrary orders. 
Now, let us briefly discuss the interaction energy of two force centres having the form 

(10.5). Provided that the corresponding matrices A~m and A~~ are symmetric, such force 
centres can be considered simple models of some point defects. Let r denote the relative 
position of the centres. Then, the interaction energy of the centres equals: 

(10.11) 

If the defects are identical, then 

(10.12) 

http://rcin.org.pl



ON NONLOCAL CONTINUUM THEORIES OF ELASTICITY 251 

and, in particular, 

(10.13) 

where W is given by the Eq. (10.6). 
By applying theorem (6.3) to the operator L- 1

, we conclude that the inequality (10.10) 
ensures finite values of the interaction energy (10.11) at all distances including r = 0. 
On the other hand, it follows from the inequality (8.1) that for the inequality (10.10) to 
be valid, the singular order of the operator L cannot be smaller than exactly 8. 
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