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The geometrical concept of intermediate configuration and elastic­
plastic finite strain 

F. SIDOROFF {PARIS) 

ELASTIC-PLASTIC finite deformations are usually described by means of an intermediate con­
figuration which leads to the decomposition F = F<e>F<P>. In most theories, the intermediate 
configuration is defined only up to an arbitrary rotation. The kinematics of such materials, 
as well as the consequences which follow from the arbitrary rotation, are investigated. The 
invariance conditions are written which must be fulfilled by the constitutive equations. Applica­
tions of these ideas are given to show, as an example, how the theories of GREEN and NAGHDI, 
GoRoozov and LEONOV, and LEE are related to one another. 

Skonczone deformacje sprcezysto-plastycme Sq zwykle opisane za pomocq konfiguracji posred­
niej, kt6ra prowadzi do zwiqzku F = F(e)F(P). W wielu teoriach konfiguracja posrednia jest zde­
finiowana z dokladnosciq do dowolnego obrotu. Zbadano kinematykce takich material6w oraz 
konsekwencje wynikajqce z dowolnego obrotu. Zapisano warunek niezmienniczosci, kt6ry 
muszq spelniac r6wnania konstytutywne. Podano zastosowanie tych koncepcji i wykazano 
dla przykladu zwiqzki pomictdzy teoriami GREENA i NAGHDIEGO, GORODZOW A i LEO NOW A 
oraz LEE. 

KoHetffibie ynp)TO-rmaCTM;lleciGI;e Ae<PopM~ OIDlChiBaiOTCH o6brtmo npH HcnoJib3oBaHHH 
noHHTHH npoMemyTOliHo:H I<OHcPHIJPa~, 'ITO npHBOAM;T I< pa3Jio>Kemno rpaAM;eHTa Ae<Pop­
Marulli no <PopMyJie: F = F<e>F<P>. B 6omlllHHCTBe TeopHH: npoMe>KyToliHax I<oH<Pmypa~ 
onpeAeJieHa .JIHillL c TO'lHOCTbiO AO npoH3BOJI&Horo Bpall\eHM;H. HccneAoBaHbi I<HHeMaTHI<H 
Tai<Hx MaTepHanoB, a Ta~<>~<e cneACTBHH, BhiTei<aroll\He H3 npon3BOJlbHOCTH Bp3.11\emrn. Bhi­
BeAeHbi ycnoBHH HHBapHaHTHOCTH, I<OTOpbiM AOJI>KHhi YAOBJieTBOpHTb onpeAeJIHIOll\He ypaB­
HeHHH. ,UaHbl npHJIO>I<eHM;H 3THX I<pHTepHeB, UOI<a3biBaiOll\He B I<allecTBe UpHMepa I<ai<OBO 
COOTHOWeHHe Me>KAY TeopHHMH rpnHa-H~, ropo~oBa-neoHOBa H nH. 

1. Introduction 

IN THE CLASSICAL theory of plasticity, as well as in some simple theories of viscoelasticity, 
the infinitesimal strain tensor eii is decomposed into an elastic part e~j> and a plastic (or 
anelastic) part eg'>, these tensors being related by the formula eii = e1j> + eg'>. 

This situation can be extended to large deformations by means of an intermediate 
state or configuration ([3, 4]). 

The elastic deformation is then the deformation of the actual configuration from 
the intermediate configuration and the plastic deformation is the deformation of the 
intermediate configuration from the reference configuration. Thus the deformation gra­
dient F can be decomposed into an elastic part F<e> and a plastic part F<P> 

(1.1) F = F<e>F<P>. 

However, the tensor fields F<e> and F<P> are not in general gradient fields and cannot 
be derived from a displacement function. The intermediate configuration is only locally 
defined. 

http://rcin.org.pl



300 

ReFerence 
conFiguration 

Intermediate 
conFiguration 

FIG. 1. 

F. SIDOROFF 

Actual 
conFiguration 

In this paper, we first study the kinematics of materials having such an intermediate 
state and show how some elastic-plastic finite strain theories [5, 7], apparently start­
ing from another concept of plastic deformation, actually fall within this framework. 
Then we shall state an invariance condition obeyed by most theories, and discuss its implica­
tions. A comparison of some finite strain elastic-plastic theories recently proposed will 
be given as an application. 

2. Kinematics 

As usual, the rotation tensor R, the right and left stretch tensors U and V, the right 
and left Cauchy-Green tensors C and B, the Lagrangian and Eulerian strain tensors E 
and A, the velocity gradient L, the rate of deformation D and the rate of spin W can be 
defined from the deformation gradient F: 

F = RU = VR, c = U2 = FT F' B = V2 = FFT' 

(2.1) 2E = C-1, 2A = 1-B-1 , 

L = FF- 1 = D+W, 2D = L+Lr, 2W = L-LT. 

From the plastic and elastic deformation gradients F<P> and F<e> (which are no longer 
gradients, but we find it convenient to retain this term), the corresponding plastic and 
elastic tensors can be defined in the same way: 

(2.2) 2E<P> = C<P>-1, 2f1<P> = 1-B<P>-1 , 

L(P) = :F<P>F<P>-1 ' 2D<P> = L<P>+L(p)T' 2W<P> = L<P>-L<P>T, 
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THE GEOMETRICAL CONCEPT OF INTERMEDIATE CONFIGURATION 301 

F<e> = R<e>u<e> = y<•>R<e>, c<e> = F<e>TF<e>, B<e> = F<e>F<e>T, 

(2.3) 2a<•> = c<e>-t, 2A<e> = 1-B<e>-I, 

L<•> = :F<e>F<e>-1, 2D<e> = L<•>+L<e>T, 2W<e> = L<e>-L<•>T. 

We have written a<P> (instead of A<P>) for the Eulerian plastic strain tensor and a<•> 
(instead of E<e>) for the Lagrangian elastic strain tensor; presently, the tensors A<P>, E<•> 
and a are defined by 

(2.4) 2E(e) = C-C<P>' 2a = c<e>-B<P>-1' 2A(P) = B<e>-1-B-1 

and we can write: 

(2.5) E<P> = F(p)T a (p) F<P> = FT A (P)F, a (l!_) = F(e)T A (p) F(e), 

E<•> = F<P>T a<e)F(P) =FT A<e>F, a<•> = F(e)T A(e)F(e). 

Let dx0 , dx, dx be the line elements, respectively, in the reference, intermediate and 
actual configurations and ds0 , ds, ds the corresponding arc length. We can then write: 

ds2 -ds2 = 2dx0 E<e>dx0 = 2dxa<e>dx = 2dxA<e>dx, 

(2.6) ds2
- ds~ = 2dxo Edx0 = 2dxadi = 2dxAdx, 

ds2 -ds~ = 2dx0 E<P>dx0 = uia<P>dx = 2dxA<P>dx. 

And the tensors E, E<•>, E<P>, a, a<e>, a<P>, A, A(e) and A(P) are measures of the total, 
elastic and plastic deformations, respectively, in the reference, intermediate and actual 
configurations. 

The (covariant) convected time derivative of a tensor T is defined as 

(2.7) 

in the same way, we define the F-convected time derivative 

(2.8) 

And it can be shown that 

(2.9) Ac = D' a1f> = n<P>' c<e> = 2F(e)T n<e) F(e). 

The tensors E, :E<e>, t<P>, ar, a¥>, a1f>, Ac, Ate>, Ag'> are related by formulae similar 
to (2.5): 

E = F<P>T ar F<P> = FT Ac F, ar = F<e>T Ac F<•>, 

(2.10) E<P> = F<P>T a1f> F<P> = FT Ag'>F, a1f> = F(e)T A~>F(e), 

:E<e) = F(p)T a¥>F<P> = FT Ate>F' a¥> = F(e)T Ate>F(e)' 

and can be considered as measures of the rate of total, elastic and plastic deformations, 
respectively, in the reference, intermediate and actual configurations, for we can write: 

(2.11) 
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(2.11) 
[cont.] 

:t (ds2 -ds~) = 2dx0 E<P>dx0 = 2dXLl~>dx = 2dxA~>dx. 

We also define the tensor :i)<P> as 

(2.12) 

Some elastic-plastic theories [5, 7] use a so-called plastic deformation tensor with­
out referring to (1.1). This tensor, which enters the constitutive equations as a new thermo­
dynamic parameter, is supposed only to be symmetric and invariant in a change of frame. 
These theories enter the framework described here: We need only to consider this plastic 
deformation as being our Lagrangian plastic deformation tensor E<P> [8]. 

3. Invariance requirements 

The intermediate configuration has been defined as a purely kinematical concept. 
Definition of new concepts in continuum mechanics requires the statement of the in­
variance condition which they must fulfil. We state-

3.1. Invariance requirement: The intermediate configuration is defined up to an arbitrary rotation 

In other words, we define a "material with an intermediate state" as a material, the 
motion of which is completely described (in addition to the usual deformation function) 
by a "plastic gradient of deformation" defined up to an arbitrary rotation. From a geo­
metrical point of view, a body is a three-dimensional manifold PJ, its actual configura­
tion is a (time-dependent) imbedding of PJ in the usual Euclidean space E3 , and its inter­
mediate configuration is a (time-dependent) Riemannian structure over PJ. The curva­
ture of this structure corresponds to the fact that F<P> cannot be obtained as the gradient 
of a "plastic displacement function". 

This invariance condition, even if not explicitly formulated, is actually underlying 
most of the theories based on (1.1 ), but its consequences have not been studied from 
a general point of view. The intermediate configuration is often defined as the stress-free 
configuration obtained by some local process of relaxation of the applied stresses. (How­
ever, such an interpretation must follow from the constitutive assumptions and cannot 
be made prior to them). Then this invariance condition follows from the frame indiffer­
ence principle. 

However, it is possible to build up a consistent theory which does not obey this re­
quirement, and in which the intermediate configuration is completely defined [11, 12]. 
But these theories are essentially different from the others and F<e> should then be con­
sidered as a dipolar displacement (as defined by GREEN and RIVLIN). 

In order to satisfy this invariance requirement, we can proceed in two ways. 
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First point of view. We can assume that all the quantities which depend on F<P>, depend 
on it only through the tensor c<P> [5, 6, 7]. This point of view is the more natural one, 
because it introduces six new parameters, or internal degrees of freedom, defining, instead 
of an intermediate state, an equivalence class of intermediate states (if two states are 
said to be equivalent when one can be obtained from the other by a rotation), or equiv­
alently defining the metric associated to the afore-mentioned Riemannian structure. 

Second point of view. We can also write first the constitutive equations and then restrict 
them by writing that they remain invariant in any rotation of the intermediate state, just 
as they remain invariant in a change of frame from the principle of frame-indifference. 
Equivalently, we can say that, in a change of frame, the intermediate configuration under­
goes an arbitrary rotation and then write the principle of frame-indifference in the follow­
ing generalized way: 

3.2. Property of invariance for the constitutive functions (P.LF.C.) 

The constitutive equations of a material with an intermediate configuration must remain 
invariant in a F-change of frame 

(3.1) 
x' = c(t)+ Q1 (t)x, 

F<P>' = Q2 (x, t)F<P>, 

where Q1 and Q2 are orthogonal tensors. 
It must here be emphasized that this should not be considered as a general principle, 

but rather as a definition of an intermediate configuration. 

4. r -objective and F-invariant tensors 

DEFINITION. Tensors and vectors which remain invariant in a F-change of frame will 
be said to be F-invariant. Tensors and vectors which transform like tensors and vectors 
in the actual configuration will be said to be F-objective. 

This is important because, by application of the P.I.F.C. to constitutive equations, 
we shall obtain for them reduced forms involving only T-invariant or T-objective quantities. 

We now study the behaviour of the kinematic tensors introduced in § 2. From (3.1) 
it follows that: 

(4.1) 

Straightforward calculations show that: 

(4.2) 

are T-in variant (U' = U, etc ... ), 

(4.3) 

are F-objective (V' = Q1 VQL etc ... ), 

(4.4) 
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behave like tensors in the intermediate configuration (V<P>' = Q2 y<P> QI, etc ... }. 
The tensors L, L<e> and L<P> transform as: 

(4.5) L<P>' = Q2L<P>QI +Q2, (Q2 = Q2QI}, 

L<e>' = QtL<e>Qf +Qt -QtF<e>Qin2Q2F<e>- 1Qf. 

There is one striking point about these equations: while D and n<P> are tensors in 
the final configuration for the deformation, the rate of which they describe (D is F-objec­
tive, i.e. a tensor in the actual configuration ; n<P> is a tensor in the intermediate configura­
tion), n<e> is not and it essentially depends on the orientation of the intermediate configura­
tion. Therefore, n<e> is not a good measure of the elastic rate of deformation. The elastic 
rate of deformation will be measured by Abe>. For the plastic rate of deformation, we 
can choose between three measures: 

Ag'> is F-objective and related to D and Ate> by 

(4.6) 

it also appears naturally when using the first point of view of § 3, [5]. 
n<P> is the natural plastic rate of deformation [3] but, being not F-objective, it cannot 

remain in the constitutive equations. 
fi<P> is F-objective and close to n<P>. It corresponds to LEE's choice R<e> = 1 and has 

the same fundamental invariants as n<P>. 
In fact, we shall write constitutive equations involving n<P> and obtain for them re­

duced forms involving i}<P> or Ag'>. 

5. Constructing a F-invariant theory 

The general scheme for constructing F-invariant constitutive equations is as follows: 
1. Write some constitutive assumptions. 
2. Use the P.I.F.C. to set the invariance requirements which must be fulfilled. 
3. Solve the resulting equations and obtain F-invariant reduced forms of the con­

stitutive equations. 

As an example, we show how the theory of GREEN and NAGHDI [5] can be obtained 
from certain general constitutive assumptions (their eicL and e~L being our E<e> and E<P>). 

Constitutive assumption l. The stress tensor T is a function ofF, F<P> and the tempera­
ture() 

(5.1) T = t(F, F<P>, 0). 

From the P.I.F.C., this function must be such that 

t(QlF, Q2F<P>, ()) = Qlt(F, F<P>, O)Qf; 

taking Q1 = RT and Q2 = R<P>T, we obtain: 

F-1TF-lT = u-1t(U, u<P>, O)u-1 
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or, ifS is the second Piola-Kirchhoff stress tensor: 

(5.2) eFSFr = Qo T, 

(5.3) S = s(E, E<P>, 0). 

Constitutive assumption 1 (continued). The function (5.3) can be inverted into 

(5.4) E = e(S, E<P>, 0). 

Constitutive assumption 2. The yield condition reads 

(5.5) f(F, F<P>, 0) ~ "· 

By writing that this condition is F-invariant and using (5.4}, we obtain: 

(5.6) f(S, E<P>, 0) ~ "· 

Constitutive assumption 3. If J is defined as 

(5.7) " (. of) · of f = tr sas +0--ao, 

the plastic flow law is: 

-if!<" (elastic range) 

(5.8) 

(5.9) 

f = " and J ~ 0 (unloading, neutral loading), 

,e = o, o<P> = o. 

- if f = " and J > 0 (loading}, 

x = k(F, F<P>, 0; L, 0) 

(5.10) o<P> = d(F, F<P>, o; L, O) 
k and d being linear in L and o·. 

From (5.10) we obtain the reduced form: 

(5.11) :E<P> = e1 (S, E<P>, 0; E, 0). 
Deriving (5.4) with respect to time, we obtain: 

(5.12) E. - e (S E<P> O· :E<P> S 0) 
- 2 ' ' ' ' ' • 

Constitutive assumption 3 (continued). (5.11) and (5.12) can be solved in 

(5.13) 

(5.14) 

E = e3 (S, E<P>, 0; S, 0), 

:E<P> = e(S, E<P>, 0; S, 0). 

These functions are linear in S, 0. We can write (5.9) as 

(5.15) 

Constitutive assumption 4. The free energy A and the entropy S are given by 

(5.16) 
A = A (F, F<P>, 0), 

S = S(F, F<P>, 0). 

305 
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And we obtain the F-invariant form: 

(5.17) A = A (E<e>, E<P>, 0), S = S(E(e), E<P>, 0). 

The theory of GREEN and NAGHDI is based on the Eqs. (5.3), (5.4), (5.6), (5.7), (5.8), 
(5.14), (5.15) and (5.17). 

NB I. In constitutive assumption 2, it is essential to have f(F, F<P>, 0). If we had taken 
f(f, F<P>, 0), then in the reduced form (5.6), f should have been an isotropic function 
ofS. 

NB2. If in constitutive assumption 3 we were to define by (5.10) A~> or fi<P> instead 
of n<P>, we should obtain the same reduced equations. But if we were to define L<P>, then it 
can easily be seen that we could not meet the P.I.F.C. This is a quite general feature of 
the theories obeying our invariance requirement: the plastic flow law must give the plastic 
rate of deformation and not the total time derivative of F<P>. On the contrary, for theories 
in which F<P> is entirely defined, then, as in [11], the plastic flow law must give L<P>. 

6. An important special case 

It is often assumed that the free energy A depends on the deformations only 
through F<e> 

(6.1) 

A must be F-in variant and we obtain: 

(6.2) A(QlF<e>QI, 0) = A(F<e>, 0), 

and A must be an isotropic function of c<e>, u<e> or H (H = l/2LogB<e> being the Hencky 
tensor of the elastic deformations). Using (2.9), we can write: 

(6.3) 

eA = - eso + trT<e> n<e>, 

oA 
S=- oO' 

T<e> = 2eF<e>~F<e>T 
ac<e> 

or, A being an isotropic function of c<e>, B<e> or H: 

oA aA oA 
(6.4) T<e> = 2eF<e> --F<e>T = 2eB<e> --- = (!-ac<e> oB<e> oH . 

The first form is LEE's [3]; the third is that of GoRoozov and LEONOV [9]. The energy 
balance equation can then be written as: 

(6.5) 

(6.6) 

(6.7) 

eif = e(A+OS+SO) = tr(fL)-divq, 

eOS = tr[(T-T''')D]+tr[T'•> (D-D''')]-divq = 0 ( Um+ u,-div : ) ' 

O't = -0-1q · gradO 

OO'm = tr[(T- T<e>)D] + tr[T<e>(D- n<e>)], 

where q is the heat flux vector. 
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According to (6.4), T<e> is F-objective, but, as has been previously pointed out, n<e> 
is not F-objective. However, using the isotropy of A, it is easily shown that F<e>-lT<e>F<e> 

is symmetric and that 

(6.8) 

(6.9) 

tr[T<e>(D-n<e>)] = tr(T<e>F<e>n<P>F<e>-1) = trT<e>n<P>, 

O(Jm = tr[(T- T<e>)D] +tr(T<e>n<P>). 

All the tensors occurring in this decomposition are F-objective. 
Writing Onsager's relations, we can obtain the viscoelastic materials of GoRoozov 

and LEONOV. Taking T = T<e> and writing a plastic flow law, we can obtain the special 
case y = 1 of LEE's theory. (The general case y =/: 1 involves more complicated thermo­
dynamic considerations, which we do not intend do discuss here). The Eq. (6.9) has been 
obtained by GoRoozov and LEONOV, but our derivation is much more straightforward. 

It is worth noting that Lee's decomposition of the rate of expenditure of work into 
a plastic and an elastic part would not be F-invariant without the assumption (6.1). 

At the beginning of this paragraph, we showed that if A = A(F<e>), then it must be 
an isotropic function of c<e> or B<e>; more generally, if the stress tensor is given by an 
elastic law from the elastic deformation gradient, T = t (F<e>), then this elastic law must 
be isotropic because the P.I.F.C. requires 

t(Ql F<e>Qi) = Qlt(F<e>)Qf, 

and T must be given by an isotropic function of B<e>. In order to obtain an anisotropic 
elastic law, we have to take a more general form than T = t(F<e>); for example, 

T = t(Cti2C<P>-tct/2). 

7. Relations between the theories of Green and Naghdi and of Lee 

We next show how the constitutive equations of GREEN and NAGHDI can be specialized 
to obtain LEE's theory. 

We first assume the incompressibility of the plastic deformations 

(7.1) detF<P> = 1, trD<P> = 0. 

The free energy A will be taken as an isotropic function of 0 and G<e> 

(7.2) 

(7.3) 

G<e> = Clf2C(P)-1C1/2 = RTB<e>R, 

A = A(G<e>, 0) = A(B<e>, 0), 

this function being such that the function 

(7.4) V' (G<e>) = [detG<e>]-1' 2 G<e> 0~e> 
can be inverted into G<e>(tp). 

The Eq. (6.11) of [5] leads to 

(7.5) 

(7.6) 
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that is the Eq. (6.4). The inversibility of tp(G<e>) ensures that B<e> can be considered as 
a function ofT and 0. 

The yield function f will be taken as an isotropic function of 0 and S 

(7.7) 

(7.8) 

S = C1
'
2SC112 = RTPR, (eP =eo T), 

f = j(S, 0) = f(P' 0), 

which, according to (5.4), is a special case of (5.6). 
We now choose the fJKL and hKL of GREEN and NAGHDI as 

(7.9) 

(7.10) h = ct(O)C-l,2G<eHt2SG<e>lt2C-ll2. 

Straightforward calculations then lead to 

(7.11) i><P> = ;.j of 
oP' 

ie = ct(O)~ 

with 

(7.12) A= [tr(P :')r. w = trPE<P>, 

which are LEE's constitutive equations when y = 1. 
Thus LEE's theory (when y = 1) is included in the theory of GREEN and NAGHDI. 

Another proof of this fact can be found in [8]. 

8. Conclusion 

The intermediate state as defined here by (1.1) and the invariance condition of§ 3 
is the fundamental geometrical concept in elastic-plastic finite strain. The first point of 
view of § 3, ignoring F<.P> and working with c<P>, leads to very general theories. On the 
other hand, to build up specialized theories, one needs the physical interpretation (1.1 ). 
The second point of view of§ 3 and the P.I.F.C. enables us to retain the advantages of 
(1.1) and altogether to meet the requirement of a F-invariant theory. We hope it will 
also lead to a better understanding of the many theories which have been proposed and 
of the relations which exist between them. 
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