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Acceleration waves in isotropic simple materials

R. R. HUILGOL (CHICAGO)

THE AcousTic tensor for the propagation of acceleration waves in isotropic simple materials
is calculated, when the simple material is undergoing an arbitrary large deformation. From
this acoustic tensor, the speeds of propagation of principal acceleration waves into an isotropic
solid at rest in a homogeneously deformed state are determined, along with the compatibility
conditions. Next, the theory is applied to the propagation of waves in incompressible simple
fluids and explicit speeds are obtained for a shear wave moving into a liquid undergoing simple
shearing, and a discontituity moving axially in simple extension. For the viscoelastic solid,
it is observed that the linear functionals occurring in the acoustic tensor are those existing in
the theory of small deformations on large, while for the simple fluid in steady shearing, the
functionals are those of the theory of nearly viscometric flows.

Obliczono tensor akustyczny rozprzestrzeniania sig¢ fal przy$pieszenia w izotropowych materia-
ach prostych przy zaloZeniu, ze material poddany jest dowolnie duzym deformacjom. Z tego
tensora akustycznego okreslono zaréwno predkoéé rozprzestrzeniania si¢ gldwnych fal przy-
$pieszenia w ofrodek izotropowy w stanie spoczynku w stan jednorodnej deformacji, jak row-
niez warunki zgodnosci. Nastepnie zastosowano tg teori¢ do rozprzestrzeniania sig fal w niescisli-
wych cieczach prostych i otrzymano wyraine predkosci dla fali §cinania, poruszajacej sie w cieczy
poddanej prostemu $cinaniu, oraz dla poruszajacej si¢ osiowo nieciaglosci w prostym rozcig-
ganiu. Zaobserwowano, ze dla ciala sprezystolepkiego funkcjonaly liniowe, wystepujace w ten-
sorze akustycznym, sa takie same jak w teorii malych deformacji natozonych na duze, pod-
czas gdy dla prostej cieczy przy ustalonym scinaniu funkcjonaly te sa takie jak w teorii wisko-
metrycznego plyniecia.

BeIunciien aKyCTHUECKHIt TeH30p [AJIA pacnpocTpaHeHHA BOJH YCKOPEHHA B H30TPONHBIX Opo-
cThix cpenax. [Ipn aTom mpeamonaraercs, 4TO IPOCTOM MaTepHas MOJBEPraeTcA IPOM3BOIL-
HbIM KoHeuHBIM Aedopmaimam. C DOMOIIBIO AKYCTHYECKOTO TEH30Pa ONPEAEIIAIOTCA CKOPOCTH
PAcNpOCTPaHEHHA IVIABHBIX BOJH YCKODEHMS B HENOMBIDKHOM H30TpONmHOM cpede, Haxo-
AauleiicA B 0JHOPOTHOM AedopMHPOBAHHOM COCTOAHMM, & TAIOKE YCTAHABJIMBAIOTCA YCJIOBHA
COBMECTHOCTH. 3aTeM JaHHAsA TEOPHA NPHMEHAETCA K HCCIENOBAHHIO PaCHPOCTPAHEHHA BOJH
B HECHKHMAEMbIX IPOCTHIX yauaKocTaX. [Tomyuensr B ABHOM BHAE GOpPMYIBI ANA cKopocTeit
PACIIPOCTPAHEHHA BOJIH C/IBHTA B KHIKOCTH, MOJBEPYKEHHON MPOCTOMY CHBHIY, M I BOJ-
HBI paspblBa, ABIKYILEHCA IO OCH IpocToro pacTaweHudA. Jna BAsKoympyroro Tesa obHa-
PY)XeHo, UTO JuHelHble QYHKUMOHANLI, BXOJALME B aKyCTHYECKHIl TEH30p, COBNAfAIOT
¢ hyHKIMOHANAMH, BOIHHKAIOUHMA B TEOPHH MANLIX Aedopmariuil, HATOMEHHBEIX Ha KOHeu-
Hble, B ciryuae mpocThIX »HOKOCTEl B COCTOAHHM CTAIHOHAPHOTO CABHTA 3TH (DYHKIMOHANKI
COBNAJalOT C TEMH, KOTOPhIE ONMCHIBAIOT TeUeHHS, OIM3KHE BHCKOSHMETPHYECKHM.

1. Introduction

Ler X denote the generic particle belonging to the body '# and let ¢ denote the time.
Further, let X, € and x be the respective positions of X in a fixed reference configuration,
at time (1—s), 0 < 5 < o0, and at time t. Of course,

(1.1) E(X, t—5)|s—0 = X(X, 1).
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In a fixed Cartesian coordinate system, assuming the fixed reference configuration
to be the natural state for a homogeneous isotropic simple solid the constitutive equa-
tion for the stress T(X, ) is given by [1, § 31]:

(12 Ty(X, 1) =ﬁ;(3m(r))+fg (Gu(s); Bu()),

where &y, is the Kronecker delta; B,, are the components of the strain tensor B = FF”,
where F is deformation gradient of x(X, ) relative to X, and F” is the transpose of F.
Also,

(1.3) G“(S) = (C((f—.i"))ﬂ'—éﬂ, 0 S5 < oo,

where (C,(t—s))u are the components of C,(1—s) = F{ (t—s)F,(t—s), so that F,(t—s)
is the gradient of E(X, r—s) with respect to x(X, t). The function f(B) in (1.2) determines

the elastic response, while the functional # (G(s); B) yields the viscoelastic (or memory)
5=0

part of the stress. This functional may be normalized, so that

(1.4) F(0;B) =0,

=0
without any loss of generality. The main purpose of this paper is to determine the acoustic
tensor for the propagation of acceleration waves and to determine the speeds of such
waves in isotropic simple solids and fluids.

Limiting the discussion to isotropic materials, one notes that an explicit formula for
the acoustic tensor is not available in the paper by CoLeMAN and GURTIN [2] or that of
VARLEY [3], for these authors considered materials with arbitrary symmetry. No doubt
such a formula may be found from their papers by suitable modifications. But this process
would be cumbersome and thus one may follow ERICKSEN [4] and TRUESDELL [5] by
starting with the constitutive equation for isotropic materials, and hence obtain the for-
mula for the acoustic tensor (see § 2).

Next, in § 3, the speeds of propagation of principal waves in an isotropic solid at rest
under a large homogeneous strain are examined and results generalizing those of TRUES-
DELL [5], who discussed elastic solids, and VARLEY [3], who examined the case of the
homogeneous isotropic viscoelastic solid at rest in the undeformed state, are obtained.
In other words, we find speeds of propagation when C,(—s) =1, 0 < 5 < 0, and

(L.5) By; = diag{v}, v3, v3}.

In deriving these principal wave speeds, it is noted that the linear functionals occurring
in the acoustic tensor are identical to those occurring in the theory of a small deform-
ation superposed on a large homogeneous strain of an isotropic solid and use is made
of the explicit formulae given by PipkIN and RivLIN [6] or PipKIN [7].

In § 4, the results of § 2 are specialized to incompressible simple fluids and the acoustic
tensor for an acceleration wave propagating into the simple fluid undergoing an arbitrary
motion is determined. To arrive at this result, one uses ERICKSEN’s approach [4], and
then shows that the linear functionals occurring in this acoustic tensor are identical to
those of the theory of nearly viscometric flows [8], if the acceleration wave propagates
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into the simple fluid in steady simple shearing. Thus, a close relationship with the work
of CoLeMAN and GURTIN [9] is established. The speed of acceleration waves in a fluid
undergoing simple extension is calculated as a second example.

Before proceeding to § 2, the attention of the reader is drawn to the recent article
by HayEes and RivLiN [10] who discussed the propagation of sinusoidal small-amplitude
waves in a deformed, initially isotropic, viscoelastic solid. Our results are derived in a differ-
ent manner and it is found that the speeds of propagation of principal waves reported
here do not agree with those listed in [10]. An equivalence between the two sets of speeds
need not exist always, though it does in finite elasticity [5, § 4; 11] and in some linear
theories of continua [12, § 194A). Of course, the present results in three dimensions con-
firm those obtained by CoLEMAN and GURTIN [13, § 7], who proved that the speeds of
acceleration waves and damped oscillatory waves are not equal, at least for one-dimensional
motions; however, they established that the ultrasonic wave speed is equal to the accelera-
tion wave speed. We examine this question briefly in § 3 as it applies to the results of this
paper and those in [10].

In a future article, the growth and decay of acceleration waves will be studied.

2. The acoustic tensor

As is customary, one assumes that the motion, deformation gradient and the velocity
field at time ¢ are continuous across the wave, which at time 7 is to be found at X and
occupies the spatial position x(X, ¢). Or, the jumps of x;, x; , and v; are zero; and using
the notation [f]to denote the jump of a quantity f across the wave, one has

@1n [xi] = [xi,a] = [v:] = 0.
In (2.1), v is the velocity of X at time ¢ and

3
0Xy

is the deformation gradient at time ¢. Next, the compatibility conditions [12, § 190] for
acceleration waves yield

(2.3) [x] = U’a;,
(24) {Fim,ﬂ] = FiFignjma;,

where a, the jump of the acceleration across the wave, is the amplitude, U is the local
speed of propagation and n is the unit normal to the wave surface at x(X, 7).

Using the definitions of the strain tensor B = FF” and C,(t—s) = F (1—5) F,(t—s),
0 < s < o0, we have:

2.5) qu(t) = Fpu(‘)Fqu(f)a

(2.6) (Ci(t—= )1 = X, k(1) Cap(t —5) Xp,1(1)-
In writing (2.6), the identity

2.7) C,(t—s5) = (F@) )TC(t—s)F(t)",

(22) Fio: = Xi,a =
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has been used, so that

(2.8) Cap(t—5) = &i,aéip.

From (2.4) and (2.5), it is quite easy to verify that

2.9 [Byg, il = FraFoaltmMjap+ Fpy Fugimn;a,.
Next, from the identity

2.10) Xa,pXq,a = Opg,

one obtains

2.11) Xopi = —X,,5X5, i X, 0%40,985

and thus

(2.12) [Xe, pil = —Xa,qntpn;a,,

where (2.1) and (2.4) have been used. Next,

(2.13) [Xa, 1) Cop(t =) Xp,1 = — @ (Co(t=5))m,
(2.19) XoxCaplXp,15] = —ammn; (Ce(t—5))im-
To calculate the jump of Cq,,, one has that

(2.15) Copy = Ei,arbinptEiabinpy-

Thus the jump of Cq, , depends on the jump of &; ,,. However, this is the gradient of the
deformation gradient at X at time t—s, 0 < 5 < o0, and this gradient of F(t—s) is con-
tinuous at X until the arrival of the wave at s = 0. In other words, [C,g,,] is to be cal-
culated at the time s = 0 only, with no attention paid to other values of s. In fact, as long
as the wave is found at X on a (time) set of measure zero, this argument implies that the
jump is to be calculated on this set. For simplicity, the rest of the article assumes that the

jump in & ,, occurs at s = 0 only ().
We now return to (1.2) and obtain

af; 22
(Q16) Ty = 5 Byt oy, F1y(Guls)i Bos) Be

+ 6-93011‘1 (qu(-?); Bwl(Cr(f—S))u.j) )

where the “elasticities” Jf/dB and 04 /6B, and the functional 69’(-; .IgradC,(r—s)),
which is linear and continuous in gradC,(r—s), are all assumed to be continuous for
all Xe# and te(—o0, ), including the wave surface. Then, the jump [T};, ;] is

given by

oy

@11 [Tyl = 5
r

(B 1+ 30, Fy 5 )[Bun 14 8% g (-3 [(Cole=9)u ).

™ This is equivalent to the condition used by COLEMAN, GURTIN and HerRReRA [14] in their study

of acceleration waves.
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Now, the linear functional d% is a sum of three linear functionals as below:
@18 0Fu (- 5 1= Gty (€t =5))mi) + 0F (- 1= By (Ci(t—5)) km)

+ 59':5;:;1 G5 | Xa k[Cap, 1 Xp,1) -

In the above sum, the last functional is zero because the jump occurs at s = 0 (or
on a set of measure zero). Thus, instead of (2.18), we have the following expression:

2.19) ~2ap ‘55‘3“ (5 Iy (Cot=5))my)

where the fact that no loss of generality results by assuming 0%,y = 0% has been
5=0

5=0
used. The interesting part is that (2.19) is linear in a, as are the jumps [By,, ;] and [B.. ;.
Using these facts, one can write the jump of the equation of motion, i.e.,

(2.20) [Tij,51 = elx,
which is derived as a consequence of the assumed continuity of the body force field, as:
2.21) Q;m)a; = o Ua;,

where ¢ is the density at X in the fixed reference configuration, and the acoustic tensor

Q(m) is:
of;

2.22) -g—Qu(n) = 2?5, B,mnmn,‘+2%3,,nm,—2&f&m,(. s e (Co(t—5))5) »
where a condensed notation is employed.

Of course, (2.22) can also be derived from the work of VARLEY [3] when it is assumed
that the constitutive relation (1.2) is expressible in the form of multiple integrals, or from
the work of CoLEMAN and GURTIN [2]. However, as mentioned in § 1, such a procedure
is not quite straightforward.

It should be emphasized that (2.21) and (2.22) yield the speeds of propagation of an
arbitrary acceleration wave moving into an isotropic simple solid undergoing an arbitrary
large deformation.

The reader will also note that this article does not discuss thermodynamic aspects
of wave propagation. If it be assumed, as is natural, that the material is a definite con-
ductor, then all acceleration waves are homothermal [2]. So the formulae for the acoustic
tensor and speeds of propagation are not significantly altered by including temperature
effects, and since the determination of the acoustic tensor and the wave speeds are the
aims of this article, the omission of temperature effects is not a major limitation on the
results quoted here.

3. Isotropic solid in finite homogeneous strain

In this section, it is assumed that the finite homogeneous strain is such that the strain
tensor B(¢) has the form

3.1 By = diag{v},v3,93};03 >0, I'=1,2,3;
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further, after an initial deformation to yield the above value for B, the material has been
held at rest for an infinitely long time, so that

(3.2) C(t—s)=1, 0<s< 0.

Then, from (2.22), one can obtain the acoustic tensor as follows. If (3.1) and (3.2) hold,
then from (1.2) one has that

(3.3) T = f(B)+ # (0; B).

1=0
Now, as mentioned in § 1, no loss of generality occurs in assuming that
(3.4) F (0;B) =0,

or that the equilibrium stress is elastic. Now, if (3.4) holds for all positive definite B,
then

(3‘5) 63,,,, ‘géj (0’ Bn) = 0

Under this assumption, Q;;(n) in (2.22) becomes

3.7) 70 ) = Bf“ B Bt~ O s 0B 1 83
W
(36) aB Blmum"l Hm Mg 69‘%}!’&’1‘”)) I'= 1: 2, 3.

Any time one desires, one can write the linear functional 6 as an integral of course,
since the domain of & is the Hilbert space of histories [1, § 38].

From (3.7), it is trivial to establish the following: the speeds of propagation and the
acoustic axes are determined by the strain B alone, the memory of the material appearing
through the linear functional 6% (B|1). The above result generalizes that of TRUESDELL
[5, p. 274] for isotropic elastic solids to isotropic solids with memory, when these materials
are under the deformations (3.1) and (3.2).

Now, let the elastic part f(B) of the stress be written as

(3.8) f(B) = fol+/iB+/2B?,

where the f- are analytic functions of the principal invariants I, II and III of B. Thus,
by Eq. (7.8) of [5], and (3.7) above, one can obtain the squared wave speed U7, of a longi-
tudinal wave travelling down the principal axis with the stretch v, as:

QUfl = 2 f
) 1
+v303 6&1) 207 n} nj nin} ﬁy.w(ﬂrll),
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where {n/} are the components of the unit vector n* along the principal axis with the
stretch v, . Similarly, the squared wave speed U3, of a transverse wave travelling down
n' with amplitude parallel to n?, is:

U? 1 i
(3.10) S = St @D fim iy nt nnin F @A)
1 =

Thus it is obvious that more definite statements can be made only if one knows the
o0
explicit form of 6 # Bm(v}.n). This we shall derive next.
3=

Consider two strain histories C*(z—s) and C,(t—s), 0 < s < oo, such that they are
close to each other in the sense of the norm of the Hilbert space. Let B*(¢) and B(t) be
the corresponding two strains, also close to one another, so that one is considering the
situation of “small on large”. Then, the corresponding stresses T* and T are related
through

(B11) TE-T; =~ %" (B, —B,)+ 69"u( ) (B% - B.,)

+4 ‘g‘;’jk? ( ; .i(C,"(t—s)—C,(f—s))“) .

Thus the operators appearing in the acoustic tensor in (2.22) are identical to the incremental
response operators appearing in (3.11), because of the uniqueness of the derivatives. This
result is of course well known.

Now, it is very difficult to obtain an explicit form for & .;' i7k1(Gpg(5)5 Buo | [(Ce(t—5)i,5)]
5=0

unless G,, = 0. Then, from PrpkiN and RivLiN [6, Eq. (9.14)] or PipkiN [7, Eq. (9.7)
one has:

(3.12) 5-;1 u(o;Bw![(C:(f—S))u,J]) = f {ko(s)6i1511+k1(5}(5ft3ﬂ+51:-3:&)
= 0

2
+Ka(5) O B But 8B B+ D, Kaan(s)(B*)y B} [(Cole—))wn ] s,
M, N=0
where the scalar coefficients are functions of the invariants of B and for [(C,(t—5))u, ],
one puts —2a,n;n; d,; because of (2.13), (2.14) and the fact that C,(r—s) = L.
Now, return to (3.7) and note that if B is given by (3.1), an eigenvector n* of B is also
the eigenvector of Q(n!). Thus we have proved
the acoustic axes for principal waves coincide with the principal axes; further, all prin-
cipal waves are longitudinal or transverse (%),
which extends to isotropic solids with memory, the theorem of TRUESDELL [5, p. 275].
Of course the above theorem holds if B and C,(f—s) obey (3.1) and (3.2), respectively.
Next, since

(3.13) aflm(vpm— ko9 + 28 610+ 20t + 2 k()03 +M) ds = f(o3),

M, N=0

(*) This was proved by Haves and Rivimv [10, § 5] also.
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the longitudinal speed U7, in (3.9) is given by

(3.14) 92 -f1+291f;+2 ""( + (v3+93) a{‘; +v3v3 aﬁl) 507 2Jf(vl),

where one has put {n/} = {1, 0, 0}. Moreover, with {n}} = {0, 1, 0},
(3.15) &5‘:3112(9!2"[1) = O,
=

and thus from (3.10), one has

_E’Ulzz

‘U’} =fi+ (”f"‘f-’g)fz-

(3.16)

It is trivial to verify, from (3.16), that the compatibility conditions (9.1)-(9.3) of
TrUESDELL [5] hold here too. Next, if one puts

AT N NI R T N S ¥
17) 1=30 gz t5z @1)-/1 2

o2 ofr
il |

r=1

+ei+od e ozt ),

air T U o

then the function f;, occurring in (3.8) here, is again given by equation (9.8) of [5].

The above compatibility conditions may be used to determine the function f(2}) of
(3.13), once a knowledge of f;, f; and f; is available.

As mentioned in § 1, the wave speeds and compatibility conditions derived here are
not in agreement with those in [10, § 5], though the speeds reduce to those found for the
special cases treated in [3, 5, 13].

A brief examination of the differences will be made next. The principal transverse
acceleration wave speed U3, is (cf. (3.16)):

oU3

(3.18) or - =it Ci+eds,

while from Hayes and RivLiN [10, Eq. (5.10)]

oU3, L—b 1 242z 44 4y
(3.19) 3 =~ + 5 {&+ @1 +03) 4+ (01 +03)ds),
v3 vi—-90? 03

where

h—1
(3.20) = s s 1+ @1+92) f2,

1—93
and &; (j= 3, 4, 5) are functions of the principal invariants of B and iw (i2 = —1). As

mentioned in § 1, COLEMAN and GURTIN (13, § 7] proved that the acceleration wave speed
and the infinitesimal progressive wave speed are identical if the latter is the ultrasonic
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wave speed, i.e., the speed corresponding to w = co. If we conjecture this theorem of
equivalence to hold here also, then

(3.21) limé(I, IL, 111, i) = 0, j=3,4,5.

These and other matters related to growth and decay of acceleration waves are currently
under study and the conclusions will be reported later on.

4. Acceleration waves in simple fluids

The constitutive equation for an incompressible simple fluid is [1, § 32]:

(4.1) TE; = Tfj +pau = Jf:;j(G"(S)),
where it is assumed that
4.2) #u() = 0.
=0
Now, assuming a continuous body force field, the jump of the equation of motion yields
4.3) [-pd+[T5,j] = el5d,
where [cf. (2.19)]:
4.4) (751 = =200 #y (Gpal)l 14713 (€t —5)))

and 0 is a linear, continuous functional of nyn;(C,(t—s))m. Inincompressible materials,
all waves are transverse and thus a;n; = 0. If one substitutes (2.3), (4.4) and the compat-
ibility condition [12, § 175]

4.5) [—pi = 2

into (4.3), one obtains (cf. [4]):

4.6) . — aa?;j,, (Gras)1 13 (Colt—=5))m) -
Hence (4.3) yields

4.7 Qij(m)a; = oU%a;,

where

@8) 0, = 2{::,-::,,63}%],,.“ (- 17enm(Ct=5))z) - af;w (- Imnm(Cult—5)s)}-

If needed, one may write the linear functionals in (4.8) as integrals of course. At any
rate, (4.7) and (4.8) yield the squared speed of propagation of acceleration waves into
an incompressible fluid undergoing an arbitrary motion.

Let the base motion, before arrival of the wave, be a steady simple shearing flow,
i.e., the strain history has the form

0
4.9) ICa=9ll = . 1oy,
1
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where we have assumed that X = Z = 0, y = xx, x = const, is the velocity field. Then,
using the argument of § 3, we can see that the linear functionals 8¢, are identical to
those functionals 6 &;j occurring in the theory of nearly viscometric flows [8), i.e.,

@10) 0 a?;, (Gpal®)l Ay (Colt=5))m) = a.figu (x, slren) (Cit=9))m),

where 4% is a linear functional of n,‘n;(C,(t—s)),.,, ;

As an example, consider the problem solved by CoLEMAN and GURTIN [9] regarding
the wave speed of a shear wave in an incompressible simple fluid undergoing steady simple
shearing motion. Let us choose n = n!, the unit vector along the x-axis, a = an?, where
n? is the unit vector along the y-axis. Then

@.11) 0y@") = 2 [ (Sy1umt —Si) (Clt—5)nds,
0

where the linear functionals in (4.10) have been written as integrals. Putting a, = an?,
one gets

4.12) Q22 (“l)az — sza = Zaf (Suuﬂ:l:—szl 1) (C: (3—5))210'5'—
0
or
(4.13) oU? = zf {Snu (%, 8)xs— 851412, S)}d-",
1]

where one uses the fact that the y-th component of n! is zero, i.e., n} = 0. The integral
(4.13) is exactly what was called by CoLEMAN and GURTIN [9] as E(x,).

-]
According to the notation of CoLEMAN and GURTIN [9], if 7(x) = F (—uxs) is the
1=0

shear stress in steady simple shearing, then

(4.14) E() = —8F (—xs|1),
s=0

where 87 (—xs|g) linear functional of g and depends non-linearly on x. Also,
s=0

trivially,

dt(x) _ x>
== (52;( #s|s).

4.15)

Hence, if one were to represent the latter by an integral:

(4.16) —8 (—usls) = [ fix,s)sds,
5=0 0

where f(x, 5) is the kernel, then by linearity

@.17) —8F (—xs|1) = [ f(x, $)ds.
5=0 0
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Now, we note from Eq. (7.6) of [8] that

(4.18) S =2 [ (a0, )t Sz012(x, )} s
(1]

Hence, Eqs. (4.18) and (4.13) are consistent with Eqs. (4.16) and (4.17) above as they
should be. A relation of the form (4.13) has also been derived by SADD [15] for in-
compressible BKZ fluids [16].

As a second example, consider the propagation of an acceleration wave into an in-
compressible fluid undergoing steady simple extension. The velocity field for this flow

[17]is

(4.14) Xi=ax;, i=1,2,3;no0sum,
4.15) a,+a+a; =0,

and the tensor C,(¢—s) is given by

(4.16) Ci(t—s) =exp(—2sL), 0<s< 0,

where L is the velocity gradient. Let x; be the axis along which the fluid is being pulled.
Then, taking {n;} = {0, 0, 1} and {a;} = {a,, 0, 0}, i.e., that the acceleration wave travels
in the x;-direction with a jump in the x,-direction, one obtains [cf. (4.7)]:

4.17) Qi1(n)a, = pU%;.
Using the value of Q,,, one has that

1 -]
(4.18) ‘Q‘QUZ = 3;?-?;3331(01,az,aa,slcxp(—izsal))

—53?;1331(0“03; as, 5|°"P(—2301)) .

In writing (4.17), the dependence of 6# on G(s) through a; and s is used. One may also
write (4.17) as

I «
@19 50U = [ (#3331, )~ #1531 (@i, )} exp (=252, ds.
0

The reader must note that the velocity U, which appears in (4.17) and (4.18), is the velocity
of the wave relative to the material, so that the speed of displacement [12, § 177] is:
(4.20) u=U+a,z,

but for the shear wave considered earlier, ¥ = U. Though it is obvious, it may be important
to emphasize that the linear functionals appearing in (4.18) are not those which occur
in nearly viscometric flows.
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