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Acceleration waves in isotropic simple materials 

R. R. HUILGOL (CHICAGO) 

THE ACOUSTIC tensor for the propagation of acceleration waves in isotropic simple materials 
is calculated, when the simple material is undergoing an arbitrary large deformation. From 
this acoustic tensor, the speeds of propagation of principal acceleration waves into an isotropic 
solid at rest in a homogeneously deformed state are determined, along with the compatibility 
conditions. Next, the theory is applied to the propagation of waves in incompressible simple 
fluids and explicit speeds are obtained for a shear wave moving into a liquid undergoing simple 
shearing, and a discontituity moving axially in simple extension. For the viscoelastic solid, 
it is observed that the linear functionals occurring in the acoustic tensor are those existing in 
the theory of small deformations on large, while for the simple fluid in steady shearing, the 
functionals are those of the theory of nearly viscometric flows. 

Obliczono tensor akustyczny rozprzestrzeniania si~ fal przyspieszenia w izotropowych materia­
lach prostych przy zaloieniu, ie material poddany jest dowolnie d11Zym deformacjom. Z tego 
tensora akustycznego okre8lono zar6wno pr~kosc rozprzestrzeniania si~ gl6wnych fal przy­
spieszenia w osrodek izotropowy w stanie spoczynku w stan jednorodnej defonnacji, jak r(Jw­
niez warunki zgodnosci. Nast~pnie zastosowano t~ teori~ do rozprzestrzeniania si~ fal w nie8cisli­
wych cieczach prostych i otrzymano wyrazne pr~dkosci dla fali scinania, poruszajll,cej si~ w cieczy 
poddanej prostemu 8cinaniu, oraz dla poruszajll,cej si~ . osiowo niecill:Siosci w prostym rozcill,­
ganiu. Zaobserwowano, ie dla ciala spr~iystolepkiego funkcjonaly I iniowe, wyst~pujll,ce w ten­
sorze akustycznym, Sll, takie same jak w teorii malych deformacji nalozonych na duie, pod­
czas gdy dla prostej cieczy przy usralonym scinaniu funkcjonaly te Sll: takie jak w teorii wisko­
metrycznego plyni~ia. 

BLitiHcJieH aKYCTHtJecKHii Ten3op ,n;mi pacnpocTpaHeHHH BOJIH ycKopeHHH B H30TpoiiHbiX npo­
CThiX cpe,n;ax. TipH 3TOM npe,n;nonaraeTcH, tJTO npocroii MaTepHan no,n;sepraeTcH npoH3Bo.m.­
HhiM KOHetJHblM ,n;eq>OpMa~ . C UOMOI.I.\blO aKyCTHtJeCKOrO TeH30pa onpe,n;eJJHIOTCJI CKOpOCTH 
pacnpocTpaHeHHH r naBHhiX BOJIH ycKopeHHH B ueno.n:BIDKHoii ll30TpOIIHOH cpe,n;e, uaxo­
WII.I.\eiicH B o,n;uopo,n;HoM .n:ecl>opMHpoBaHHOM cocTO.IIHilH, a TaiOKe ycraHaBJIHBaiOTCH ycnoBWl 
COBMeCTHOCTH. 3aTeM ,n;aHHaH TeOpHH UpHMeHHeTCH K HCCJie,ll;OBaHHIO pacupOCTpaHeHHH BOJIH 
B HeC)KHMaeMblX npoCThlX >1<1l,n;KOCTHX. llonytJeHhl B HBHOM BH,n;e cl>opMyJihi ,n;JIH CKOpOCTeit 
pacnpocrpaHeHHH BOJIH C,n;BHra B >K~OCTH, no,n;sep>KeHHOH BpOCTOMY C,n;BHJ'Y, ll ,n;JIH BOJI· 
Hhi pa3phma, .n:BIDKYI.I.\eiicH no ocH npocroro paCTH>KeHHH. ,UJIJI BH3Koynpyroro Te.n:a o6aa­
py>Keuo, 1.JTO mme:HHbie cl>y~OHaJihl, BXOAHI.qlle B aKYCTHtJecKHH TeH30p, COBna,n;aiOT 
C cl>YHKLUIOHaJiaMH, B03HilKaK>l.I.\HMH B TeOpHH MaJihlX ,n;ecl>opMax.ulli, HaJIO>KeHHbiX Ha KOHetJ­
Hbie. B CJiytJae UpOCTblX )KH,ll;KOCTeH B COCTOHHHH CT~OHapuoro C,n;BHra 3TH cl>~OHaJihl 
COBUa,ll;aiOT C TCMH, KOTOphie OnHChiBaiOT TetJeHIDI, 6JIH3KHe BHCK03HMeTpH1.JecKHM. 

1. Introduction 

LET X denote the generic particle belonging to the body :!!4 and let t denote the time. 
Further, let X, ; and x be the respective positions of X in a fixed reference configuration, 
at time (t-s), 0 ~ s < oo, and at time t. Of course, 

(1.1) ;(x, t-s)ls=o = x(X, t). 
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366 R. R. HUILGOL 

In a fixed Cartesian coordinate system, assuming the fixed reference configuration 
to be the natural state for a homogeneous isotropic simple solid the constitutive equa­
tion for the stress T(X, t) is given by [1, § 31]: 

00 

(1.2) TiiX, t) = hi(Bpq(t))+~ii (Gk,(s); Bu.,(t)), 
s=O 

where ~kl is the Kronecker delta; Bpq are the components of the strain tensor B = FFr, 
where F is deformation gradient of x(X, t) relative to X, and FT is the transpose of F. 

Also, 

(1.3) 

where (Cr(t-s))kl are the components of Cr(t-s) = Ff(t-s)Fr(t-s), so that F,(t-s) 
is the gradient of ;(x, t-s) with respect to x(X, t). The function f(B) in (1.2) determines 

00 

the elastic response, while the functional ~ (G(s); B) yields the viscoelastic (or memory) 
s=O 

part of the stress. This functional may be normalized, so that 

00 

(1.4) ~(0; B)= 0, 
1=0 

without any loss of generality. The main purpose of this paper is to determine the acoustic 
tensor for the propagation of acceleration waves and to determine the speeds of such 
waves in isotropic simple solids and fluids. 

Limiting the discussion to isotropic materials, one notes that an explicit formula for 
the acoustic tensor is not available in the paper by COLEMAN and GURTIN [2] or that of 
V ARLEY [3], for these authors considered materials with arbitrary symmetry. No doubt 
such a formula may be found from their papers by suitable modifications. But this process 
would be cumbersome and thus one may foiiow ERICKSEN [4] and TRUESDELL [5] by 
starting with the constitutive equation for isotropic materials, and hence obtain the for­
mula for the acoustic tensor (see § 2). 

Next, in § 3, the speeds of propagation of principal waves in an isotropic solid at rest 
under a large homogeneous strain are examined and results generalizing those of TRUES­
DELL [5], who discussed elastic solids, and VARLEY [3], who examined the case of the 
homogeneous isotropic viscoelastic solid at rest in the undeformed state, are obtained. 
In other words, we find speeds of propagation when C,(t-s) = 1, 0 ~ s < oo, and 

(1.5) Bij = diag { vL vj ' vn . 
In deriving these principal wave speeds, it is noted that the linear functionals occurring 
in the acoustic tensor are identical to those occurring in the theory of a small deform­
ation superposed on a large homogeneous strain of an isotropic solid and use is made 
of the explicit formulae given by PIPKIN and RIVLIN [6] or PIPKIN [7]. 

In § 4, the results of§ 2 are specialized to incompressible simple fluids and the acoustic 
tensor for an acceleration wave propagating into the simple fluid undergoing an arbitrary 
motion is determined. To arrive at this result, one uses ERICKSEN's approach [4], and 
then shows that the linear functionals occurring in this acoustic tensor are identical to 
those of the theory of nearly viscometric flows [8), if the acceleration wave propagates 
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AccELERATION WAVES IN ISOTROPIC SIMPLE MATERIALS 367 

into the simple fluid in steady simple shearing. Thus, a close relationship with the work 
of CoLEMAN and GURTIN [9] is established. The speed of acceleration waves in a fluid 
undergoing simple extension is calculated as a second example. 

Before proceeding to § 2, the attention of the reader is drawn to the recent article 
by HA YES and RIVLIN [10] who discussed the propagation of sinusoidal small-amplitude 
waves in a deformed, initially isotropic, viscoelastic solid. Our results are derived in a differ­
ent manner and it is found that the speeds of propagation of principal waves reported 
here do not agree with those listed in [10]. An equivalence between the two sets of speeds 
need not exist always, though it does in finite elasticity [5, § 4; 11] and in some linear 
theories of continua [12, § 194A]. Of course, the present results in three dimensions con­
firm those obtained by COLEMAN and GURTIN [13, § 7], who proved that the speeds of 
acceleration waves and damped oscillatory waves are not equal, at least for one-dimensional 
motions; however, they established that the ultrasonic wave speed is equal to the accelera­
tion wave speed. We examine this question briefly in§ 3 as it applies to the results of this 
paper and those in [10]. 

In a future article, the growth and decay of acceleration waves will be studied. 

2. The acoustic tensor 

As is customary, one assumes that the motion, deformation gradient and the velocity 
field at time tare continuous across the wave, which at time t is to be found at X and 
occupies the spatial position x(X, t). Or, the jumps of X;, X;,a and V; are zero; and using 
the notation [f] to denote the jump of a quantity f across the wave, one has 

(2.1) [xa = [x;,a] = [va = o. 

In (2.1 ), v is the velocity of X at time t and 

(2.2) 

is the deformation gradient at time t. Next, the compatibility conditions [I 2, § 190] for 
acceleration waves yield 

(2.3) 

(2.4) [F;a,p] = FjaFkpnjnkai, 

where a, the jump of the acceleration across the wave, is the amplitude, U is the local 
speed of propagation and n is the unit normal to the wave surface at x(X, t). 

Using the definitions of the strain tensor B = FFT and Ct(t-s) = Fi(t-s) Ft(t-s), 
0 ~ s < oo, we have: 

(2.5) 

(2.6) 

Bpq(t) = Fpa(t)Fqa(t), 

(Ct(t-s)kl = Xcx,~c(t)Ccxp(t-s)Xp,r(t). 

In writing (2.6), the identity 

(2.7) 
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has been used, so that 

(2.8) 

From (2.4) and (2.5), it is quite easy to verify that 

(2.9) 

Next, from the identity 

(2.10) 

one obtains 

(2.11) 

and thus 

(2.12) 

where (2.1) and (2.4) have been used. Next, 

(2.13) 

(2.14) 

[Xcx,kj] Ccxp(t-s)Xp,l = -amnkni(Ct(t-s))ml, 

Xcx,kCcxp[Xp,lj] = -amnlni(Ct(t-s))km· 

To calculate the jump of Ccxp, 1 , one has that 

(2.15) 

R. R. HUILGOL 

Thus the jump of Ccxp, 1 depends on the jump of ~i,cxy· However, this is the gradient of the 
deformation gradient at X at time t-s, 0 ~ s < oo, and this gradient of F(t-s) is con­
tinuous at X until the arrival of the wave at s = 0. In other words, [Ccxp, 1] is to be cal­
culated at the time s = 0 only, with no attention paid to other values of s. In fact, as long 
as the wave is found at X on a (time) set of measure zero, this argument implies that the 
jump is to be calculated on this set. For simplicity, the rest of the article assumes that the 
jump in ~i,ITy OCCUfS at S = 0 Only e). 

We now return to (1.2) and obtain 

(2.16) 

+ (j;ijkl ( Gpq(s); Buvi(Ct(t-s))kl,j), 
s=O 

where the "elasticities" of/oB and o~foB, and the functional lJ§( ·; .lgradC,(t-s)), 
which is linear and continuous in gradC,(t-s), are all assumed to be continuous for 
all X E f!l and t E (- oo, oo ), including the wave surface. Then, the jump [Tij,j] is 
given by 

U> This is equivalent to the condition used by COLEMAN, GURTIN and HERRERA [14] in their study 
of acceleration waves. 
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Now, the linear functional tl!F is a sum of three linear functionals as below: 

tl;iikl (.; .1-amnknJ(C,(t-s))m,) + tl;iikl (.; .1-amnlni(C,(t-s))km) 
s=O s=O 

(2.18} 

00 

+ tl!Filkl (. ; .jXat,k[Ccxp,j] Xp,,). 
3=0 

In the above sum, the last functional is zero because the jump occurs at s = 0 (or 
on a set of measure zero). Thus, instead of (2.18), we have the following expression: 

(2.19) 

00 00 

where the fact that no loss of generality results by assuming tl!Fiild = b!FiJlk has been 
3=0 s=O 

used. The interesting part is that (2.19) is linear in a, as are the jumps [Bpq,J] and [Bu11 ,1]. 

Using these facts, one can write the jump of the equation of motion, i.e., 

(2.20) [Tij, 1] = e[xil, 
which is derived as a consequence of the assumed continuity of the body force field, as: 

(2.21) Qii(n)a1 = e U2aj, 

where e is the density at X in the fixed reference configuration, and the acoustic tensor 
Q(n) is: 

(2.22) 

where a condensed notation is employed. 
Of course, (2.22) can also be derived from the work of VARLEY [3] when it is assumed 

that the constitutive relation (1.2) is expressible in the form of multiple integrals, or from 
the work of COLEMAN and GuRTIN [2]. However, as mentioned in § 1, such a procedure 
is not quite straightforward. 

It should be emphasized that (2.21) and (2.22) yield the speeds of propagation of an 
arbitrary acceleration wave moving into an isotropic simple solid undergoing an arbitrary 
large deformation. 

The reader will also note that this article does not discuss thermodynamic aspects 
of wave propagation. If it be assumed, as is natural, that the material is a definite con­
ductor, then all acceleration waves are homothermal [2]. So the formulae for the acoustic 
tensor and speeds of propagation are not significantly altered by including temperature 
effects, and since the determination of the acoustic tensor and the wave speeds are the 
aims of this article, the omission of temperature effects is not a major limitation on the 
results quoted here. 

3. Isotropic solid in finite homogeneous strain 

In this section, it is assumed that the finite homogeneous strain is such that the strain 
tensor B(t) has the form 

(3.1) B d. { 2 2 2} • 2 0 iJ = tag v1 , v2 , v 3 , Vr > , F= 1,2,3; 
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further, after an initial deformation to yield the above value for B, the material has been 
held at rest for an infinitely long time, so that 

(3.2) C,(t-s) = 1, 0 ~ s < oo. 

Then, from (2.22), one can obtain the acoustic tensor as follows. If (3.1) and (3.2) hold, 
then from (1.2) one has that 

C() 

(3.3) T = f(B)+ ~ (0; B). 
.r=O 

Now, as mentioned in§ 1, no loss of generality occurs in assuming that 

C() 

(3.4) !f (0; B)= 0, 
1=0 

or that the equilibrium stress is elastic. Now, if (3.4) holds for all positive definite B, 
then 

C() 

(3.5) os Fil (0; B,J = 0. 
Ull 1=0 

Under this assumption, Qii(n) in (2.22) becomes 

'>~ Qij(n) = ~Blfu, B,mnmn~c-t};imkt(vf.lnmnk~it) 
~ u p 1=0 

(3.7) 

(3.6) F= 1,2,3. 

Any time one desires, one can write the linear functional ~!!" as an integral of course, 
since the domain off! is the Hilbert space of histories [1, § 38]. 

From (3. 7), it is trivial to establish the following: the speeds of propagation and the 
acoustic axes are determined by the strain B alone, the memory of the material appearing 
through the linear functional ~~ (Bil ). The above result generalizes that of TRUESDELL 
[5, p. 274] for isotropic elastic solids to isotropic solids with memory, when these materials 
are under the deformations (3.1) and (3.2). 

Now, let the elastic part f(B) of the stress be written as 

(3.8) 

where the fr are analytic functions of the principal invariants I, 11 and Ill of B. Thu~. 
by Eq. (7.8)of[5], and (3.7) above, one can obtain the squared wave speed Uf1 of a longi­
tudinal wave travelling down the principal axis with the stretch v 1 as: 
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where { nl} are the components of the unit vector n1 along the principal axis with the 
stretch v 1 • Similarly, the squared wave speed Uf2 , of a transverse wave travelling down 
n1 with amplitude parallel to n2 , is: 

(3.10) eUi2 1 ( 2 2)! 1 2 2 1 l.i,; ( 2 11) -i- = 1+ v1+v2 2--2ni nJnkn, u.:r;tkJ Vr . 
Vt v1 8=0 

Thus it is obvious that more definite statements can be made only if one knows the 
00 

explicit form of <5~;k11 (v~l1). This we shall derive next . 
.r=O 

Consider two strain histories C~(t-s) and C,(t-s), 0 ~ s < oo, such that they are 
close to each other in the sense of the norm of the Hilbert space. Let B*(t) and B(t) be 
the corresponding two strains, also close to one another, so that one is considering the 
situation of "small on large". Then, the corresponding stresses T* and T are related 
through 

(3 11) T* ofij ( ) a~ij ( ) ( ) · iJ- Tii ~oB- B!q-Bpq + ~ . ; . B:"-B"" pq UIJ 

+ <5 ;iJk! (. ; .I(C~(t-s)-C,(t-s))~:,) . 
.r=O 

Thus the operators appearing in the acoustic tensor in (2.22) are identical to the incremental 
response operators appearing in (3.11 ), because of the uniqueness of the derivatives. This 
result is of course well known. 

00 

Now, it is very difficult to obtain an explicit form for <5 ~iJk1 (Gpq(s); Bu., I [(C,(t-s)k1,1)] 
S=O 

unless Gpq = 0. Then, from PIPKIN and RIVLIN [6, Eq. (9.14)] or PIPKIN (7, Eq. (9.7) 
one has: 

00 

(3.12) <5FIJkl ( 0; Buvl[( C,(t-s))kl,J]) = J {ko(s) <5ik <511 +k1 (s)( <5;kBJI + <5J,B;~:) 
8=0 0 

2 

+k2(s)(<5ikBJ,B,.,+ <5J,Bi,.Bnk)+ }; kMN(s)(BM),J(BN)~:~} [(C,(t-s))tt,J]ds, 
M,N=O 

where the scalar coefficients are functions of the invariants of B and for [(C,(t-s))lt,1], 

one puts - 2amn1 n1 <5m1 because of (2.13), (2.14) and the fact that C,(t-s) = 1. 
Now, return to (3.7) and note that if B is given by (3.1), an eigenvector n1 of B is also 

the eigenvector of Q(n1). Thus we have proved 
the acoustic axes for principal waves coincide with the principal axes; further, all prin­
cipal waves are longitudinal or transverse (2), 

which extends to isotropic solids with memory, the theorem of TRUESDELL [5, p. 275]. 
Of course the above theorem holds if B and C,(t-s) obey (3.1) and (3.2), respectively. 
Next, since 

00 2 

(3.13) <5;uu(v~l1) = J {k0 (s)+2k1 (s)vi+2k2 (s)vt+ }; kMN(s)vf<M+N>} ds =f(vD, 
s=O 0 M, N=O 

e) This was proved by HAYES and RlvLIN [10, § 5] also. 
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the longitudinal speed u;1 in (3.9) is given by 

where one has put {nf} = {1, 0, 0}. Moreover, with {nf} = {0, 1, 0}, 

00 

(3.15) dF2112(vJ.I1) = o, 
s=O 

and thus from (3.10), one has 

(3.16) 

It is trivial to verify, from (3.16), that the compatibility conditions (9.1)-(9.3) of 
TRUESDELL [5] hold here too. Next, if one puts 

( 2 2) ofr 2 2 ofr ) + v2 +v3 an +v2v3 arn ' 

then the function / 0 , occurring in (3.8) here, is again given by equation (9.8) of [5]. 
The above compatibility conditions may be used to determine the function f(vn of 

(3.13), once a knowledge of / 0 ,/1 and / 2 is available. 
As mentioned in § 1, the wave speeds and compatibility conditions derived here are 

not in agreement with those in [10, § 5], though the speeds reduce to those found for the 
special cases treated in [3, 5, 13]. 

A brief examination of the differences will be made next. The principal transverse 
acceleration wave speed Ui 1 is (cf. (3.16)): 

(3.18) eUf1 r ( 2 2).r 
--2- =11 + V1 +v2 12, 

v2 

while from HAYES and RIVLIN [10, Eq. (5.10)] 

(3.19) eUi1 t1-t2 1 {- (2 2)- (4 4)-} --2- = -2--2 + -2 cx3+ V1 +v2 cx4+ V1 +v2 cxs , v1 v1 -v2 v2 

where 

(3.20) 

and fii (j = 3, 4, 5) are functions of the principal invariants of B and iw (i 2 = -1). As 
mentioned in§ 1, COLEMAN and GURTIN [13, § 7] proved that the acceleration wave speed 
and the infinitesimal progressive wave speed are identical if the latter is the ultrasonic 
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wave speed, i.e., the speed corresponding to w = oo. If we conjecture this theorem of 
equivalence to hold here also, then 

(3.21) limai(I, II, Ill, iw) = 0, j = 3, 4, 5. 

These and other matters related to growth and decay of acceleration waves are currently 
under study and the conclusions will be reported later on. 

4. Acceleration waves in simple fluids 

The constitutive equation for an incompressible simple fluid is [1, § 32]: 

00 

(4.1) Tb = Tii+P~ii = Jf'iJ(Gkr(s)), 
s=O 

where it is assumed that 

00 

(4.2) Jf'jj(.) = 0. 
s=O 

Now, assuming a continuous body force field, the jump of the equation of motion yields 

(4.3) [ -p,il+ [Tb.Jl = e[xi], 
where [cf. (2.19)]: 

(4.4) 

and ~{f is a linear, continuous functional ofnknJ(Ct(t-s))mr· In incompressible materials, 
all waves are transverse and thus aini = 0. If one substitutes (2.3), (4.4) and the compat­
ibility condition [12, § 175] 

(4.5) [ -p,l] = A.ni 

into (4.3), one obtains (cf. [4]): 

(4.6) 

Hence (4.3) yields 

(4.7) 

where 

If needed, one may write the linear functionals in (4.8) as integrals of course. At any 
rate, ( 4. 7) and ( 4.8) yield the squared speed of propagation of acceleration waves into 
an incompressible fluid undergoing an arbitrary motion. 

Let the base motion, before arrival of the wave, be a steady simple shearing flow, 
i.e., the strain history has the form 

-xs 
(4.9) IICt(t-s)ll = 
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where we have assumed that x = z = 0, y = "x, u = const, is the velocity field. Then, 
using the argument of § 3, we .can see that the linear functionals ~JifiJkl are identical to 
those functionals ~ f/iJkl occurring in the theory of nearly viscometric flows [8], i.e., 

(4.10) ~;iJkl ( Gpq(s)lnknJ(Cr(t-s))mr) = ~;iJkl (", slnknJ(C,(t-s))mr), 
s=O s=O 

where ~!! is a linear functional of nkn1(Cr(t-s))mr . 
As an example, consider the problem solved by CoLEMAN and GURTIN [9] regarding 

the wave speed of a shear wave in an incompressible simple fluid undergoing steady simple 
shearing motion. Let us choose n = n1, the unit vector along the x-axis, a = an2 , where 
n2 is the unit vector along they-axis. Then 

(4.11) 
<Xl 

Q;J(n1
) = 2 J (Su unl- S;11 r) (C,(t-s))Jrds, 

0 

where the linear functionals in (4.10) have been written as integrals. Putting a2 =an~, 

one gets 
<Xl 

(4.12) Q22 (n1)a2 = eU 2a = 2a f (Suun}- S21 11) (C, (t-s))21ds. 

or 

(4.13) 

0 

<Xl 

eU2 = 2 f {S2111 {u, s)us-S2112 (u, s)}ds, 
0 

where one uses the fact that the y-th component of n1 is zero, i.e., n} = 0. The integral 
(4.13) is exactly what was called by CoLEMAN and GURTIN [9] as E("0 ). 

<Xl 

According to the notation of COLEMAN and GURTIN [9], if r(u) = ff' (-us) is the 
1=0 

shear stress in steady simple shearing, then 

<Xl 

(4.14) E(u) = -<59" (-usjl), 
S=O 

<Xl 

where ~ff' (-us I g) linear functional of g and depends non-linearly on "· Also, 
s=O 

trivially, 

(4.15) dr(") = - ~; ( -usls). 
du 1=0 

Hence, if one were to represent the latter by an integral: 

<Xl 

(4.16) - t} ; (-us Is) = J f( u, s) s ds, 
1=0 o 

where/(", s) is the kernel, then by linearity 

<Xl 

(4.17) -t};(-usl1) = J f(",s)ds. 
1=0 0 
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Now, we note from Eq. (7.6) of [8] that 

00 

d-r(x) J --d - = 2 {Szul(x, s)xs-S2112(x, s)}sds. 
X 0 

(4.18) 

Hence, Eqs. (4.18) and (4.13) are consistent with Eqs. (4.16) and (4.17) above as they 
should be. A relation of the form (4.13) has also been derived by SADD [15] for in­
compressible BKZ fluids [16]. 

As a second example, consider the propagation of an acceleration wave into an in­
compressible fluid undergoing steady simple extension. The velocity field for this flow 
[17] is 

(4.14) i = 1 , 2, 3; no sum, 

(4.15) 

and the tensor et (t-s) is given by 

(4.16) C,(t-s) = exp(-2sL), 0 ~ s < oo, 

where L is the velocity gradient. Let x 3 be the axis along which the fluid is being pulled. 
Then, taking {ni} = {0, 0, 1} and {a1} = {a1, 0, 0}, i.e., that the acceleration wave travels 
in the x3-direction with a jump in the x1-direction, one obtains [cf. (4.7)]: 

(4.17) Qu (n)a1 = eU2a1 • 

Using the value of Q11 , one has that 

1 00 

(4.18) 2(!U2 = ~s~333l(altaz,a3,slexp(-2sa1)) 

00 

- ~ Jf' 1331 (a1, a2, a3, slexp( -2sa1)). 
s=O 

In writing (4.17), the dependence of ~Jf' on G(s) through a1 and s is used. One may also 
write ( 4.17) as 

00 

(4.19) -}eu2 = J {Jf3331(aj,s)-Jf'133l(a.,s)}exp(-2sal)ds. 
0 

The reader must note that the velocity U, which appears in ( 4.17) and ( 4.18), is the velocity 
of the wave relative to the material, so that the speed of displacement [12, § 177] is: 

(4.20) 

but for the shear wave considered earlier, u = U. Though it is obvious, it may be important 
to emphasize that the linear functionals appearing in (4.18) are not those which occur 
in nearly viscometric flows. 
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