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1 . Introduction

The paper discusses the problem of optimum design of roofs and canopies of minimum weight, stressed up
to a given limit σc, where σc is the permissible stress in compression. The structure is subject to a vertically
transmissible load and is designed over a plane domain Ω. The structure is designed as a gridwork composed
of two families of arches. Its projection on the plane of Ω forms an orthogonal net which can be identified with
the parametric lines x = const or y = const of the Cartesian coordinate system. In general, the domain Ω may
be composed of subdomains where the nets are chosen differently. The paper is aimed at an optimal choice of
nets to attain the least weight structures. The paper is based on the concept of archgrids proposed by Rozvany
and Prager [1].

2 . The design algorithm

Assume that the coordinates (x, y) of points of the domain Ω satisfy:

(1) x1(y) ≤ x ≤ x2(y), c ≤ y ≤ d ; a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)

let l1(y) = x2(y)− x1(y); l2(x) = y2(x)− y1(x).

Figure 1: The design domain Ω over which the archgrid is formed.

The elevation function z = z(x, y) of the roof determines the arch-like slopes of the sections:

- in the section y = const the arch curve z = z(x, y) links the pin supports atAy = (x1(y), y),By = (x2(y), y),
where the horizontal reactions are denoted by Hx(y);

-in the section x = const the arch curve z = z(x, y) links the supports at Cx = (x, y1(x)), Dx = (x, y2(x))
where the horizontal reactions are Hy(x).

The vertical load of intensity q(x, y) is decomposed into two directions: qx = 1
2q + p, qy = 1

2q − p; |p| ≤ 1
2q,

where p = p(x, y) is arbitrary at this stage of calculations. We solve the problems of statics of simply supported
beams AyBy, CxDx subject to qx, qy, respectively, see [2], [3] . There appear transverse shear forces Q̂x, Q̂y
and bending moments M̂x, M̂y. The horizontal reactions are expressed by:

(2) Hx(y) =

[
1

l1(y)

∫ x2(y)

x1(y)

(
Q̂x

)2
dx

]1/2
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and Hy(x) is given in a similar way. These forces become the coefficients of the elliptic equation:

(3) Hx(y)
∂2z

∂x2
+Hy(x)

∂2z

∂y2
+ q = 0

posed in Ω. The elevation function z = z(x, y) solves (3) with Dirichlet condition z = 0 along the contour of
Ω. The volume of the structure is given by V = 2V1/σc with

(4) V1 =

∫ b

a
l2(x)Hy(x)dx +

∫ d

c
l1(y)Hx(y)dy

Since p(x, y) was chosen arbitrary it may not be optimal in a sense that it may not lead to the minimal value of
V . Let us introduce a new method for which minimum of V will be obtained.

Let us substitute Hx(y), Hy(x) defined by (2) into (4) and denote r.h.s of such equation by J(Q̂). Note that
J(Q̂) is a positively homogeneous function of degree 1, since J(λQ̂)=λJ(Q̂) if λ ≥ 0. Moreover,

(5) J(Q + P) ≤ J(Q) + J(P) ∀ P = (Px, Py) , Q = (Qx, Qy)

and, consequently, J satisfies Jensen’s inequality and J is convex. The optimization problem reduces to

(6) min
{
J(Q̂) | divQ̂ + q = 0

}

If augmented with regularity assumptions, the problem above may be well posed since the functional is convex
and the set of admissible Q̂ is non-empty. Assume that Q̂∗ = (Q̂∗

x, Q̂
∗
y) is a minimizer of (6). Then we can

compute Hx, Hy by (2) and construct z by solving (3). The function z thus constructed satisfies the mean
square slope conditions.

3 . Final Remarks

In its original formulation of archgrids of minimal weight proposed by Rozvany and Prager [1] the decomposi-
tion of the vertical load q, at each point of the design domain Ω, into two orthogonal directions is arbitrary. At
first the load is decomposed and then for such decomposition the archgrid is constructed. In this paper distri-
bution of the load is not fixed. The minimization over statically admissible shear forces Q̂x, Q̂y is conducted in
order to determine the optimal distribution of the load into two families of perpendicular arches. The numerical
algorithm which solves such optimization problem is based on the numerical approach proposed by Czarnecki
and Lewiński in [4] in order to solve Free Material Design problem.
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