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OF MICRO-HETEROGENEOUS MATERIALS

Summanry

The aim of this paper is twofold. First, we propose a
mathematical model of how the visible shapes of illuminated
material objects are perceived. The leading assumption is that
the visual shape perception depends not only on the received
2D-images but also on a certain "higher level knowledge" about
the viewed objects ("we perceive what we expect to perceive”).
The model obtained is represented by the image tolerance
relation between the expected and received monochromatic
images. On this basis the perceptible shapes of objects can be
determined. The second aim of this paper is to show how the
proposad image tolerance analysis can be applied to the
formation of the representative distributions of constituents

for certain micro-heterogenecus material structures.
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1. Introduction

In this paper we deal with two problems: (1) how to
recover the shapes of 3-D objects on the basis of the recorded
2-D monochromatic images and a certain given a priori knowledge
about the objects, and (2) how to determine the representative
elements of micro—heterogenesous material structures on the
basis of received images and certain extra information about
the distribution of heterogeneities. Problem (1) belongs to the
computational vision which is a subfield of artificial
intelligence, [9]1, and problem (2) is significant in the
modeling of non—periodic composite structures, [2,6,13], i.e.
it belongs to the continuum mechanics. The objective of this
paper is to propose a special mathematical model of the visual

shape perception which makes it possible to obtain the exact
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solutions to both aforementioned problems. This model is based
on the tolerance image matching analysis and on the concept of
convex constraints, constituting the mathematical background of
the theory.

The image matching analysis plays an important role in the
computational vision and has been investigated in a number of
papers (for list of references cf. [6,9,10]). Howaver, below we
are going to investigate the problems of vision on a higher
level of abstraction leading to what is called a mathematical
model of the visual shape perception. To this purpose all
vision concepts, experimental facts and heuristic hypotheses
will be presented from the very beginning in the mathematical
form. we shall also keep mathematics and the physical
background of the theory separate. The proposed approach to the
concept of vision is slightly similar to that of Zeeman, [141],
but is aimed at the shape recovering of the objects viewed
rather than at the human visual perception (how tha brain
works). The main mathematical concept is that of the tolerance
systems, which constitutes a certain generalization of Zeeman’s
tolerance space, [(14], and is a basis for the matching analysis
proposed in the paper and hence for the model of visual shape
perception. The characteristic feature of this model is that it
can be treated as an algorithm specifying how the received
images and certain extra information about objects viewed as
the input data produce an output representation in the form of
reconstructed (perceived) shapes of the visible parts of these
objects. For the two-dimensional vision (where the viewed

objects are plane) the output representations are given in the
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form of new images which can be interpreted as the
reconstruction of the received (recorded) images on the basis
of the given a priori knowledge about the shapes of the viewed
(plane) objects.

The contents of this paper can be outlined as follows. We
start in Sect.2 with the primary concepts and relations which
describe an exact mathematical model of the known
phenomenological process of image formation, c¥. [5,9,10]1. The
global and local aspects of the image matching analysis based
on the concepts of tolerance system and convex constraints, cf.
£12], are detailed in Sect.3 and constitute the main
mathematical tool for the proposed approach. In Sect.4 we give
a mathematical explanation of how the received images combined
with the known a priori information about the viewed objects
produce what can be called the "pesrceived image"” of the objects
under consideration. The percepition paradigm is that the visual
shape perception depends not only on the received images of the
illuninated objects, but also on our knowledge about the
presumed shapes of the viewed objects (roughly speaking "we
perceive what we expect to perceive"). The general result given
in Sect.4 has the form of the global relation between the
expected shapes of viewed objects and monochromatic images
received by the viewar. In the case of 2D vision this result
reduces to the relation between the axpected and received
images of certain illuminated objectsy; the monochromatic images
that satisfy this relation can be referred to as the
reconstructed images. The aforementioned relation is applied in

Sect.d to the continuum mechanics in order to formulate what
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are called the representative macro-elements of
micro—heterogeneous material structures [6]l. The macro—elements
describe the characteristic diatribution of constituents 1in
composites and constitute the starting point for the derivation
of the effective properties of composite materials, [2,6,13].
We conclude the paper with a critical look at the advantages
and drawbacks of the proposed approach. In the Appendix we
outline the concept of tolerance system which 1is the main
mathematical tool for the analysis.

From a physical viewpoint all considerations are carried
out at a gross phenomena level. By the viewer we mean a human
being (then the received image coincides with the retinal
image) and/or an artificial device (e.g. the computing system)
where the received image is provided by a system of imaging
Sensors. We restrict aurselves to the monochromatic
(gray—scale) images and assume that both 1light sources and
viewers are situated far from the objects viewed relative to
the size of these objects (for the perspective images c¥.[1]).
We also restrict the analysis to the stationary (time
independent) problems and to situations in which the mutual
illumination effects betwsen the objects can be neglected.
Throughout the paper, symbols [srl, (cdl stand For the
steradian and candle power measure unit, respectively; the

luminance is expressed in Ccd-m >

1, the luminous flux in
[1ml=lcd-sr] and the illumination in ClxI=Clm-m °] measure

units.



2. Image formation

The line of approach in this section can be stated as
follows. First, we give independently the mathematical
description of: (i) what we look at (3-dimensional illuminated
scene), (ii) what messages we receive (2D luminance fields) and
(1ii) what is our response to these messages (raw images).
Secondly, we give the mathematical explanation how (i) imply
(ii)3 in this way we arrive at what will be called the
luninance eguation. Since the luminance equation describe the
fragment of the external world then its form is independent of
the viewer. At last we pass to the mathematical description of
how the viewer reconstruct the messages (luminances) into the
images. This description is given by the interrelation between
(ii) and (iii) and is called the response relation. The form of
the response relation depends on the viewer. Combining the
luminance equation and the response relation we obtain the
mathematical description of how the images received by the
viewer are formed. This description takes also into account the
noises and distortions introduced by the signal transformations

in the image formation process.

21 Primary concepts

Nh;t we look at are the finite systems of opaque bodies
with piecewise smooth boundaries immersed in a transparent
medium. Let the bodies under consideration occupy the part Q of
the region Z in the three-dimensional euclidean space
(reference space) as shown in Fig.1. Here and in the sequel we

are not interested in the size of the observed bodies but only
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Fig. 1 A surface configuration &) and a visual plane X

Fig. 2 Illumination rays at zed
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in their shapes; hence all length dimensions of O and Z in
Fig.1 are taken in the scale l:n which is the image scale.

The 1mportant notion of the vision theory is that of the
light sources, since we shall observe only illuminated surface
configurations. We assume that all light sources are
distributed far from the surface configurations as compared
with the size of I3 in this situation the position of an
arbitrary but fixed single light source observed from an
arbitrary point zel can be approximately determined by the unit
vector which is independent of z. Hence, in order to describe
the position of the iight sources we introduce the
a-dimensional submanifolds Sa, a=0,1,2, of the unit sphere S,
SacS (in the sequel S0 1s the finite set), which determine the
positions of the concentrated 1light sources (a=0), light
sources distributed along certain lines {(a=1) and distributed
on certain surfaces (a=2). Every se-Sd(the sets —Saare defined
by —Saa{seS: —3ESG)) will be called the light—-source vector; it
15 a unit vector directed from the (distant) light source to an
arbitrary point of Z. The cases in which one or two from So’
E’, 52 are empty sets can be also taken into account. We shall
postulate that in every problem under consideration there exist
positive valued functions —Sgscwea(s)em’, a=0,1,2, where ea(x)
is called the intensity of i(llunination and is measured in

Clx-m 23 measure unit. Denoting by M the measure of Sa we see

that .
(2.1) dEm(s) = Eu(s)dua(s), le—Sa s o =0,1,2 ,

is an elementary illumination due to the light source, position



>f which (related to an arbitrary point zeZ) is determined by
the light source vector se—Sa. For o=0 we obtain duo(a)=1 and
on(s)=eo(s), se—Sc, is the illumination due to the
-oncentrated light source. Since f1xJ=Clm-m 21 then it has to
se remembered that dEa(s) is measured in luminous flux measure
it [im] over the unit area of the plane normal to the light
source vector s.

Now we shall introduce the concept of the reflexivity
shich describes the reflectance properties of the surface
-onfiguration &). By the reflectance we mean, roughly speaking,
~he amounts of 1ncident light reflected in different
{irections. The reflectance has a local character 1i.e. is
jetermined for the surface elements dA(z), zel, where I’ 1is a
subset (proper or not) of smooth parts of the surface
configuration 40, such that F=3Q. It means that the reflectance
sroperties of the surface configuration are defined on the
smooth parts of 3Q except possibly some singular points or
lines. Let n=n(z) be the unit normal vector outward from o0 at
zel'. Let us also denote by v a unit vector towards the viewer
(the view vector) and let = be the light source vector as shown
.n Fig.1. Setting cos(i)=n's, cos(e)=n'v, cos(pleEv's and
issuming that n=n(z), cos(i)<0, cos(e)20, we shall refer to
i), (e), (p) as to the incident, emittance and phase angle,
respectively. Under aforementioned denotations the reflectance
yroperties of dA(z), zel, are assumed to be uniquely determined
sy the non—-negative real valued function

[—1,1]53(c05(i),c09(9),cos(p)) -

2.2) -
¢z(cos(i),coa(a),cos(p)) € m&



satisfying the condition:

¢lcos(i),cos(e),cos(p))=0 if cos(i)el0,1] and/or cos(elel-1,01,
which is called the reflexivity function. In order to explain
the physical sense of ¢z(~) we shall introduce the subsets
S(é0,z), zed, of the unit sphere S (cf. Fig.2):

S(z,80) = {s€5: {z—,ms} N Q= o for every n>03.

Let
v
dBa(z,n(z).s,aﬂ) =
(2.3)
= ¢z(n(z) ‘s,n(z) v,v's) z—s(m,Z) (s)dEa(B)
where symbol (-) stands for the charactaristic

x—su‘)ﬂ,z >
function of the subset -S5(80,z) of the unit sphere §, i.e.,
xﬂ“aqz}s)=1 if se-5(d0,=z) and z4namz$')=o if =meS\-5(80,z).
Then for some se—Sa, o=0,1,,2, and zel", we shall interpret dB:

as an elementary luminance toward the viewer expressed in
fcd-m %1 measure unit and related to the unit area of the
surface element dA(z) of 40 at zel (dA(z) is oriented by the
unit normal n{(z)). It can be seen that the values of the

'3 (cf. the

reflexivity function have to be expressed in [sr
remarks at the end of Sect.l1 and the +act that dg(s) 1s

measured in [lx]=[cd-m 2-srl) for a=0,1,2. Now, setting
(2.4) di¥(z,n(z) ,=,00) = v-n(z)-dB:(z,n(z),s,a{]), zel™,
o

we obtain dI: as an elementary luminance towards the viewer
(expressed 1in [cd-m %1) but related to the unit area of the
plane normal to the view vector v.

Under the aforementioned physical interpretation of dBv(~),

o
definition (2.3) also determines the physical meaning of the

reflexivity function (2.3) for every =zel . For the metallic

http://rcin.org.pl
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surfaces the values of ¢z(-), zel", are given by

1 if i=e and p=i+e ,

¢z(cos(i),coa(e),cns(p)) = { o otherwise .

For the ideal surfaces (diffusers) we assume
(2.5) ¢z = nw(z) -cos(i) , zel™,

where x(z) 1s a positive constant, i.e., the values of ¢(z) are

independent of cos(e) and cos(p). Now define

(2.6) ¢ = (¢z(-)) - e = (e°(~),e‘(-),ez(')).

zer
Every fourtuple (Z,d0,¢,@) will be referred to as the

itlluminated 3D scene and is a mathematical model of what we

look at. From a formal point of view it is the first primary

concept of the approach to the phenomenological vision theory

which will be applied in the sequel.

The second primary concept of the presented approach is
that of the luninance field. In order to describe this field we
introduce, for an arbitrary but fixed view vector v, veS, the
orthogonal projection XEZV of Z onto the plane normal to the .
direction of v as shown in Fig.l. The luminance field, denoted
by 1(-), will be a scalar field defined on X (except possibly

at some lines and points on X)
(2.7) X > Dom(l) = x + l(x) e ET{‘, Pom(1) = ¥ ,

(for an arbitrary function ¥ by Dom(f) we denote the domain
of £ and §.ER‘U(O}), and 1its non-negative values 1(x) are
expressed in [cd-m °1. The luminance field represents, roughly
speaking, the 2D messages received from the illuminated 3D
scene. The plane region X=Zv will be referred to as the visual

plane (or visual field, [14]). It has to be remembered that the
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visual plane X=Zv is oriented in in the reference 3D space by
an arbitrary but fixed view vector wv. Such situation takes
place only under assumption that the viewed objects Q are far

from the visual field (cf. remarks at the end of Sect.1).

Remark. More general cases, in which X is not a plane region,
can be also considered; for example, in visual perception
problems X is a part of a sphere concentric with the eyeball,
{14]. In this case as well as in the case of a perspective
projection, [1], the view vector related to a visual field is
not constant but has to be replaced by a certain vector field
vix), xeX.

The last primary concept we are going to introduce is that
of the image. In order to precise this notion we introduce .a
finite set Yo’ elements of which will be called sensory untits.
From the physical point of view every sensory unit represents a
certain small portion of matter, such as a grain on a
photographic plate, a2 retina sensor or a rectangular cell of a
TV-screen. We also introduce the concept of the localization of
YQ on the visual plane defined by the injection n:Y°4X (X is
the known region on the plane Oxlxz), and we denote YEﬂ(YO).
For computer vision we can assume YEﬂ(Y°)=(0,...,H—1}x
#{0y...4,N-12, where ve{0,...,M=1} and he{0,...,N-1} are called
vertical and horizontal position variables, respectively, [71.
We also assume that the localization n:Yoax is known in every
problem under consideration. To define the concept of an image
we also introduce the set B which will be called the brightness

chart (or the gray level chart); for the sake of simplicity we

http://rcin.org.pl
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assume B=[0,3], [3>0, and treat every element of B as a
non—-dimensional quantity. We introduce two kinds of images:
recorded and observed.
By the recorded image we shall understand the subset of

YxB given by
(2.8) 1 =Gr(b) := {((y,b(y)) @« YxBt b e B} , Y=Y ), y

where function b:Y+B will be called the brightness (or the gray
level) function. The set of all recorded images which are
subsets of YxB will be denoted by #(Y).

The recorded image has a discrete structure and is not
what we observe. In order to define the observed image as a
certain two-dimensional signal we shall interpret a plane
region X (the visual plane) as a "background" of this image and
we introduce smooth function p(-) defined on X except possibly
at some lines or points i1n X, and with wvalues in B. The
function p(-) will be called the image intensity functiony its
values are image intensities (or image intensities observed by
a viewer) and X will be now interpreted as the image plane. By

the observed image we shall mean the subset of XxB defined by
(2.9) P=6r(p):={(x,p(x)) € XxB 1 x & Dom(p) )} , Pomip) = X .

Elements (x,p)eDom(p)xB will be called observed image elements.
The set of all observed images, with X as the image plane, will
be denoted by #(X).

Summarizing, in the presented approach to the mathematical
theory of vision we shall deal with the +following primary
conceptss:

1. The illuminated 3D scene (Z,),¢,e) as a mathematical
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model of the surface configuration &0 in the region Z of the
reference 3D space, endowed with the reflectance properties

described by ¢=(¢ ) Fcan, and illuminated with the

z zer’
intensity e=(e (-),e (‘),e_(-)).
o i 2

2. The luminance fields 1(-), defined (far every view
vector wve8) on the visual plane x=zv, which represent 2D
messages received by the viewer from the illuminated 3D scene.

3. The recorded image Gr(b) , where b:Y+[0,R] is the image
brightness function defined on the finite subset Y of X, and
the observed image Gr(p) , where the image intensity p(:) is
the function defined almost everywhere on X.

Now we shall pass to the interrelations between the

aforementioned primary concepts.

2.2 Governing relations

The interrelation between the illuminated 3D scenes
(Z,00,¢p,e) and the luminance fields 1¢(-) defined almost
everywhere on an arbitrary but fixed visual plane X, X=Zv, will
be referred to as the luminance relation. In order to formulate
this relation let us combine (2.1), (2.3) and (2.4). In this
way we obtain for every =zels

Viz,n(z), o0 = v-n(z)-S i @, (n(z) E,n(z) v,v &)

o=0
-8
=

(2.10)

-x—stoﬂ,ZSS)em(S)dya(S)

where lv(z,n(z),dn), zel', is the total luminance from a point
zel" toward the viewer (expressed in [cd-m 1) related to the

unit area of the visual plane X-Zv normal to the view vector v.



This interpretation of Iv holds true provided that the mutual
illumination effects between the objects viewed (represented by
the surface configuration #0) can be neglected and under the
condition of distant light sources and viewers from the region
Z. If only concentrated light sources are taken into account

then (2.8) reduces to the form

1IYiz,niz), ) = v-niz) Z ¢ (n(z) s,n(z) v,v =) -
z
(2.11) -afs

41-3(00.25-)'0(-)

for every zel. In Egs. (2.10) and (2.11) we tacitly assume that
the intensities of illuminations ca(-), a=0,1,2, are known and
hence n“(-) are not arguments of | TR

Now assume that for an arbitrary but fixed view vector v,
veS, there is known orthogonal projection x=1v of Z onto a
plane normal to the direction of v, cf. Sec.2.1. Let us also
introduce the known concept of the depth function 6:x~§u
assuming that:

1. 6(x) is the minimum distance between the surface
configuration &0 and the point z +x on the visual plane X,
measured along the ray 1x:—nv+z°+x, nz0, normal to this plane,
cf. Fig.1, provided that the ray 1x intersects a0,

2. Six)=ew if the ray lx does not intersect &2. The form of
function 6( ) depends on the choice of point zer? and on the
view vector v.

We assume that a surface configuration &80 is always
situated on the side of the visual plane X oriented by the

vectaor -v. The subset Fv of 'y given by

va= {(zel” : {zZ+nv) N Q=8 for every 7n>0}



represents the visible part ' of the surface configuration a0,
related to the view vector v. Let (ai,oz,v) be the orthonormal
vector basis and for every x=xio‘+xaa=ex, for which &¢(-) is
differentiable at x, define 6p(x) = dé(x)/axn, $3=1,2 and
grad 6(x)a(éa(x),é}(x)). Then for every z=zo+x—é(x)verv, for

which the unit normal n(z), zerv exists, we obtain
(2.12) nz) = (6, (x),6,(x),~1) / ¥ 1+|grad 606 |7 .
At the same time, for every zgrv we denote

(2.13) Y oe,nz), o0 = 1Yiz,nz), 60 ,

where x is the orthogconal projection of the point zcrv on the
visual plane X. On the basis of (2.12) and (2.13) we can

introduce the function
(2.14) Lix,grads(x),80) = IY(z,n(z),d,) , xeG ,

where zerv and 6 is an orthogonal projection of Fv on  X. Let
the possible noises and disturbances in the signal transmission
lead to a certain distortion l‘:x45i of the luminance field,
where s=area(Supp(1‘))/areaX and £<<1 (Supp(la) stands for the
support of l‘(-), i.e., it is a closure of the subset of
Dom(lo), where lp(x)#ol. The luminance distortion field . l‘(‘)
1s not known but has to be taken into account in the image
formation process; in most cases Supp(l‘) consists of a number
of small isolated regions. Thus, the 2D luminance Field (2.6)

will be interrelated with the illuminated 3D scene by means of

Lix,grad &§(x),a0) + 1 (x) if xeG ,
(2.15) 1(x) = <

la(x) if xeX\G6 ,

where the definitions (2.14), (2.12), and (2.10) have to be
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taken into account. The dependence of the right-hand sides of
Eqs. (2.14), (2.15) on the view vector v has to be remembered.
Eq. (2.15) holds true if the mutual reflexivity is naqlact?d and
for the distant viewers as well as distant light sources
(related to the length dimensicons of Z). In this case Eq. (2.15)
will be called the luminance equation. Due to the dependence of
1(x) on &, it represents a non—-local relation.

If there 1s only one concentrated light source eotc)
situated near the viewer, s=(0,0,1), then it can be easily
shown that

Lix,grad &(x),8Q) = Lo(x,lgrad S(x) |),
where Lo(x,-) is the known function, which for the ideal
surfaces has the form

®(x)e (0)
o

(Z2.16) Lo(x,lgrad S(x)|) = , xeb .

1+|grad &(x) |2
In this case we deal with the local form of the luminance
equation (2.15). Tending with £ to 0 we obtain l‘(x)wO far
every xe€X and the distortion terms Iv(x), drop out from
£qQ. (2.13). In this way we arrive at what will be called the
perfect luninance eguattion.

Now we pass to the mathematical explanation of how the
viewer reconstructs the luminances l(x), xe€X into the images.
This explanation will be given in the form of the so called
response relatton. Roughly speaking, response relations can be
interpreted as certain mathematical models of the viewers. We
shall deal with two kinds of response relations. The first one
describes the interrelation between the luminances and recorded

images and will be called the sensor response relation. Tha
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second kind of response relation interrelates the recorded and
observed images and will be referred to as the visual response
relation.

In order to determine the sensor response relation we
introduce for every sensory unit (localized on X, i.e.,
parameterized by a point yeY, YcX) a neighborhood N(y) of Y
which represents a small region on X "occupied" by the sensor.
Hence, N(y‘)ﬁN(y2)=¢ for every y’,yzev and y‘nyal for the sake

of simplicity we shall also assume that X=UN(y), yeY. Then,

every N(y) will be called the sensory cell on the visual plane.
Moreover, let vi(y), ye€Y, be the sensitivity of sensory units,
expressed in Lcd-m 23, Then, according to the notation

el a if a<1,
e e { f if a > 1,

the sensor response relation b(y) will be postulated in the
form
1

1
vi(y) area N(y) -
Ny )

r
(2.17) biy)=L 1ix)dx 1 . dXdexdxz s YEY,

the physical sense of which does not require any comments. Let

us define
(2.18) cx) =yZ’ Xy ) BIY)

hence c(-) 1is a sectionally constant +function defined almost
everywhere on X (except possibly at the sensory cell boundaries
AN(y)InX, yeY) and Gr(c) will be referred to as the recorded
computer—type i1mage. Passing to the visual response relation,
we introduce the concept of the visual acuity, [14]. To this
end we introduce, for an arbitrary but fixed viewer, the acuity

length parameter p which is the least distance on the visual



plane X such that all points of a ball Bix,p) are, roughly
speaking, indistinguishable from a point x, xeX. We also
introduce the acuity brightness parameter 8, 86€l[0,1). Then, the
observed image will be determined by the image intensity

function p(-) satisfying the relation

1
(2.19) { Pl = ey fewrdy | <8, xex , 620,
B (X,0)

where c(-) 1s the intensity of the recorded computer-type
image, c¥. Eqg. (2.18). The acuity length parameter p is, as a
rule, sufficiently small compared with the minimum
characteristic length dimension of the visual plane X, but
large enough compared with the length dimensions of an
arbitrary sensory cell N(y), ye€Y, on this plana. Similarly,
acuity parameter & is sufficiently small compared to 1, 8<<1.
Combining (2.17)-(2.19) we arrive at the resultant response
relation which interrelates the luminance field 1(:-) and the
intensity function p(-) of the image which is observed with the
visual acuity determined by the parameters (p,8). If p+0 and
840 then the observed and recorded (computer—-type) images
coincides.

Summarizing this section we conclude that the image
formation process is described mathematically by
Eqs. (2.9), (2.12)-(2.14), leading to the luminance equation
(2.15), and by Eqs. (2.17)-(2.19) which combine together yield

the response relation.



3. Tolerance image matching analysis

In this section an approach to the monochromatic image
analysis based on the concept of the tolerance system is
proposed, cf. Appendix. The image analysis constitutes the main
tool of the computational vision process which begins with a
certain existing 1image. As 1t is known the aim of the
computational vision is to transform "the raw sensed data ...
into a meaningful and explicit description of the corresponding
scene by a series of inductive steps employing progressively
more abstract representations. These steps can be partitioned
into three categories, based on the nature of modeling required
to carry out the analysis: low—-level scene analysis is based on
local image properties, intermediate-level scene analysis uses
generic and photometric models, and high-level scene analysis
is based on the goal-oriented semantic models and
relationships”, [Bl. From the point of view of the possible
applications, the aporoach to the image analysis presented in
this section can be used mainly in the low—level and
intermediate—level analysis, but it is formulated quite
independently of the computational vision process. The main aim
of the presented approach 1is to obtain foundations of the
mathematical theory of images. Such theory can be used as a
tool in different problems of mathematical modeling where we
deal with the formal concept of an image (cf.Sect.2.1) or where
it is convenient to introduce this concept into the process of
analysis. Hence, this section comprises the formal treatment of
images as certain mathematical entities and has nothing in

common with their semantic interpretations. The formal image
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analysis developed in this section can be referred to as the
tolerance itmage analysis, as it is based on the notion of the
tolerance system, [12]. The examples of application of this
formal tool will be given in two subsequent sections of this

paper.

3.1 Introductory concepts

The notions of the recorded and observed monochromatic
images were explained in Sect.2 on the basis of the image
formation process. In this subsection we introduce. the basic
concepts of the continuum theory of images by means of formal
definitions. The leading concepts are these of image, image
constraints and image tolerance system.

In order to formulate the definition of an image, we shall
denote by X a regular region 1in R and by () an arbitrary
sectionally continuous function defined almost everywhere on X
(f(x) may be not defined at certain points and 1lines 1in X),
such that Ran(f)cl0,3] (Ran(f) stands for the range of a
function ).

Definition 1. By the image (more precisely by the
continuwn image) with the background X and the intensity field

f() we shall understand the graph of (') given by

(3.1) Gr(f) = {({x,f0))eXx[0,31: xeDom(f)} , Dom(¥) = X

’
where f(-) satisfies the conditions given above.

This definition coincides with that of the observed image,
given by EQ.(2.9). For two images Gr(f), Gr(g) with the

background X we shall write Gr (f)=6r(g) if f(x)=g(x) for almost



every xe€X. In the sequel we shall also use the denotation
I=6r (f). The set of all images with the background X will be
denoted by #(X) and referred to as the image space.

Definttion 2. If Ran(f) <{(0,3/N,23/N,...,(N-1)3/N,3} For
some N22 (where f(-) is the image intensity field) then Gr(f)
is called the gray-level image. For N=2 the gray-level image
will be referred to as the bdinary image.

Coroltlary. If =1 then the image intensity field () of
every binary image 1s the characteristic function of the subset
G={xeX: f(x)=1} of X :

F(x)=x°(x) - xeX .

Let us observe that if Dom(f)=X and p3=1 then the
definition of the image coincides with that of the fuzzy set,
[B8]; hence the binary image can be identified with a pair (G, X)
where 6 is a subset of X.

Let F be a subregion of X, FcX, and |F stands for the
restriction of the 1image intensity field (') to F. Then
Gr(f|F) will be called the 1image fragment. This notion is
essential if we are going to specify the decomposition of the
background X into regular plane regions Fa, aeA (A being the
known finite index set), such that

(3.2) X =agAFa and FanFﬂ=¢ for every a,f3eA and o*3 .

Let us also define IGEGr(F]Fa), aef; every Iq represents a

certain fragment of the image I=6Gr(f). The set of all image

fragments under consideration will be denoted by & (X); hence
P(X)cF (X).
Definition 3. The family (Iq)q54 of the image fragments

will be referred to as the image decompesition. Similarly, the
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family D=(Fa)aEA will be called the decomposition of the image
background X and every Fa, aefl, is said to be the image cell.
It will be shown that the image decomposition plays an
important role in the tolerance image analysis. Now we shall
pass to the concept of the array image.
Definition 4. Let X=(0,H)x(0,V) be the background of an
image I=Gr(f), A={ O0,1,...,V-1 } x { O,1,...,H-1 ¥, (V, H are

positive integers) and Fv =(v,v+l)x(h,h+1), (v, h)eA, be the

h

image cells. If for every (v,h)eA the condition (Fvah)(x)=

=const. holds then I=6r(f) will be called the array image.
Hence for an array image there exists the decomposition of

X into the H'V rectangular image cells F (v,h)eA, such that

vh?
the values of the image intensity field on every image cell are
constant. Image cells of the array images can be interpreted,
from a physical viewpoint, as sensory units. In applications
usually H=v=2", n=4,5,..., but in the analysis below we shall
also deal with more general situations. In the numerical
analysis we deal with the array images, which at the same time
are gray—level images, cf. Definition 2.

Now we shall pass to a certain generalization of the
notion of the array image. To this end let us introduce the
decomposition (Fa), aefA, of the image background X, cf.

Eq. (3.2), and define

= 1 "~
(3:5) £ = ﬁ j Fix)dx , ~€l de=dx dx, .

F

(=1
The numbers Fa, a€eA, represent the average image intensities in
the corresponding image cells Fa.

Defintition 5. The image ID=Gr(FD), where D 1s a certain
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decomposition (3.2) of the image background X and the image

intensity field FD(-) is given by

(3.4) £ () = ZAF x_ (x) for every xe U F
=3 al o-F‘m HAEA o

where Fa, a€A, are arbitrary reals from the set [0,73], will be
called the discretized image. I+ A={0,1,...,V-13x{0,1,...,H=-12
and FQ=FWJ“=(v,v+l)x(h,h+l) for every (v,h)ef, then the
discretized image Gr(FD) reduces to a certain array image, cf.
Definition 4. If Fa, aeh in (3.4) are defined by means of
Eq. (3.3), then the passage from the image Gr(f) to the image
Gr(FD) will be called the image discretization.

We end this subsection with the procedure which can be
treated as an inverse to the image discretization. To this end
we shall introduce a neighborhood N(O) of the point © on the
plane 0x1><2 and define N(x)=x+N(0) (in applications the maximum
length dimension of N(Q) is small compared with the minimum
length dimension of X). Then for an arbitrary image Gr(f) we
define the new i1mage Gr(FN) where

1

area (N{(x)nX)
N(x)NX

(3.95) £, 00= j f(y)dy for every xeX .

The procedure leading from Gr(f) to Gr(FN) will be called the
image smoothing. As a neighborhood N(O) of O we can take the
ball on the plane Oxlx2 with a center © and a vrvadius p,
N(0O)=B(O,p). In this case N(x)=B(x,p), where B(x,p) is a ball

on Oxlx2 with the center x.

3.2 Image tolerances

The leading role in the approach to the image analysis,



which is presented in this paper, is played by the concept of
the tolerance system. The formal definition of this concept is
given i1n Appendix where also some examples as well as certain
remarks and propositions related to tolerance systems can be
found. In this subsection we shall interrelate the notion of
the image with that of the tolerance system. We begin with what
will be called the global tolerances of images which, from a
purely formal point of view, inform us to what extent two
different images represent the same scene, and hence, can be
treated as indistinguishable by the viewer. On the other hand
the local tolerances deal with the small image fragments rather
than with the images. We restrict ourselves to the description
of a few special examples of image tolerance systems which will
be applied in the subsequent considerations.

Let (D(k)), kek, be the indexed family of the
decompositions of the image background X (cf. Definition 3),
such that (K,<) is a certain ordered set and for every k,lekK
and k<1, the decomposition D(1) is finer then D(k). The

tolerance system chJ(X)xi(X), keK, given by

(3.6) (Gr(F),Gr(g))eTk L2 Gr(FD&))= Gr(gbmf

will be called the image decomposition tolerance system. Thus
the images Gr (f),6r(g) are in the tolerance Tk if and only if

the corresponding discretized images Gr(FD( ), Gr(g )

k> Dtk

coincide.
Independently of the decomposition tolerance system we
shall also introduce a general global tolerance system (Tm)meu'

where M={(1,2,...,m>, m>1. To this end we introduce the system
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(V;(')’wz(',""’wm(')} of linearly independent functions
defined almost everywhere on X. Moreover, for an arbitrary
image Gr(g) with the background X we define
(3.7 9= I ghay_(x)dx , a=1yuaaym .
X
Now we shall specify the global tolerance system Tnca(x)x9(X),

ne{l,...,m>, setting
(3.8) (Gr(¥),Er(g))eTn0 Fa=go for a=1,...,n.

System Tn, ne{l,...,m} will be called the general image
tolerance system.

Remark. The image decomposition tolerance system can be treated
as a special case of the general image tolerance system by
assuming that the decomposition of X intoc n image cells Fu,
a=l,...,Nn, is known and by setting

wutx) = Xp (x)/areaF° for almost every xeX ,
a

where X () 1s the characteristic function of the subset
a
Fu of X.

The different specifications of functions w*(-),...,wm(-)
lead to many special global image tolerance systems which can
be applied to different problems of image analysis.

Now we pass to the concept of the local Lmage tolerance
systems. To this end for every 6E[0,5°] and ee[O,col (where 60,
£ are the postulated a priort positive constants) we define

the tolerances t‘chX, t&cto,ﬁ]xto,ﬁJ, setting

(x',x")ettﬁ-ﬁx'—x"IS: 5
(3.9) -
(F,fret"e | £ -F"|SS5

where lix’—-x"ll is the euclidean distance between points x’,x"eX.
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In the applications of the theory, &, is the length parameter
sufficiently small related to the smallest characteristic
length dimension of the image background. Hence, every two
points %7, x" of X, such that (x’,x")st‘, can be treated as
indistinguishable on X by the viewer. Similarly, every two
values F’,F" of the image intensity field, satisfying
(FJ,F")eté, will be also treated as being too close to be
distinguished.

Setting AE[O,cDJxEO,éal and B=Xx[0,3] we obtain the

=t xt®,

tolerance system thBXB’ A=(g,8)eA defined by SaEt

which will be called the local image tolerance system. The
tolerance systems t‘, ce[O,col, and t6, 65[0,6°3, will be
referred to as the space local and the intensity Llocal
tolerance systems, respectively.

Remark.The above definition of the local tolerance system is
motivated by the physical assumption that tolerances t° in the
visual plane and tolerances té of the image intensity are
1ndependent.

The local tolerance system tk’ x€A, introduced above has
to be treated only as a starting point for the definition of
what will be called the gquasi-local image tolerance system. To
formulate this system let us denote by #(X) and £([0,31) the
lattices of subsets of X and [0,3], respectively. As it is
known (cf. Appendix), every tolerance t‘ on X induces the
tolerance Eﬂ on ¥£(X); similarly every local tolerance té on
[0,3] induces the tolerance ;6 on ¥£([0,31). The tolerance

systems ta, ceCO,:ol. and té, 66[0,601, will be called the

space quasi-local and the intensity guasi-local tolerance
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systems. The tolerance system tx’ A=(e,8) €A, given by

~
t“’&st‘xté, and restricted to Z(B)NF(X) will be referred to
as the guasi-local image tolerance system. The main aim of the
guasi—local image tolerance system is to characterize the small

image fragments which can be interpreted as indistinguishable

by the viewer.

3.3 Image constraints

The general idea of constraints as certain postulated a
priort restrictions imposed on the classes of mathematical
entities under consideration has found an important application
in the mathematical modeling of physical objects, processes and
phenomena. Roughly speaking, the constraints are introduced
either in order to formulate the mathematical description of
the investigated physical situations in which we deal with
certain thresholds which can be attained but cannot be crossed
(and hence the constraints are motivated by the physical
premises), or to simplify the known mathematical models of
physical phenomena on the basis of the extra postulated
assumptions (the motivation may be implied by the possible
applications of numerical methods). In many problems the
constraints can be postulated in the form which makes it
possible to pass from the 1nfinite dimensional spaces of
mathematical entities to some finite dimensional spaces. In
this subsection we apply the concept of constraints to the
image analysis mainly in order to simplify the mathematical
description of the viewed object and to pass to the numerical

treatment of the vision problems.

http://rcin.org.pl
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The sets of the gray scale images and the computer—-type
images represent the subsets of the image space #(X) in which
on the image intensity fields f(-) (defined almost everywhere
on X) the image constraints have been imposed. Among the
different possible image constraints the important role will be
played by the n-parameter image constraints, where nzl1 is the
known positive integer. In order to precise this concept let us
denote by qs(q‘,...q")sﬂp an arbitrary vector in EP, and let us
introduce:

(1) the real-valued function th(x,q), qemP, xe€X, piecewise
continuous in X and differentiable in EP,

(2) the closed convex subset Dh in R, such that {h(x.q)e[o,ﬂ]
for almost every xe€X, and every qeun.

We shall also assume that Dn has a non-empty interior in K.

Then the subset of the image set #(X), given by

1

(3.10) BH(X) = (Gr(q)e?(X):g(x)={n(x.q) for almost every xeX

and some qeﬂh}

will be referred to as the n-parameter itmage constraints. An
arbitrary component q° of vector q, q=(q1,...,q")60n will be
called the (mage parameter. For the sake of simplicity we shall
neglect the index "n", setting

0=0_, =z , =L (X).
Remark. In many special problems uzm”. i.e., there are no
restrictions on the image parameters.

Let us introduce the notation

_ ¥ (x,q) = 8 (x,q)
(3.11) Lu(q)_J{(x,q)—————ﬂ e, Fu(q)_J'F(x)—A———

a
X aq X aq

ey

a=1,...4N.

http://rcin.org.pl



Moreover, setting

(3.12) pix) = Fx,q) , for almost every xe€X and some qe0,
we define the image Gr(p), such that Gr(p)e€(X). The image
Gr(p) & €(X) will be called the constrained (n-parameter> model

of the known image Gr(f) e#(X) if the differences
(3.13) rcsLd(q)—Fa(q) sy a=l,uue,n

satisfy the subdifferential condition

(3.14) re-dind_(q) , r=(r', .., ,

where alnda(') is the indicator function of the set Q.

We tacitly assume here that the reader is familiar with
the foundations of the convex analysis (for the particulars cf.
I.Ekeland and R.Temam, Convex analysis and vartational
problems, North-Holl. Publ.Comp., 1976). Condition (3.14) is
equivalent to the variational inequality (summation convention

with respect to e=1,...,n holds!).
(3.195) (va—Fa)ruz 0 for every v=(v‘,...,v")€0, q=(q‘,...,qn)eﬂ,

and every r=(r‘,...,rn) satisfying (3.14) for some gqel will be
referred to as the reaction to the image constraints C(X)
related to the image parameters q°. qel. Taking 1into account
(3.13) we arrive at the variational inequality for n image
parameters q“, a=1l,...4N2
(3.16) (vafqu)(La(q)—Fa(q)) 2 0 for every v=(v1,...,vn)eﬂ,
q=(q’,...,q")e0.

The solution q=(q1.....q") to the variational inequality

(3.14) makes 1t possible to determine, on the basis of

Eq. (3.10), the constrained model Gr(g) of the image Gr(f). 1€

gelntd (Int@ is the interior of B in K', TntG=0) then (3.1)
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reduces to the system of equations
(3.17) Ln(q) = Fu(q) ’ a=1,...,Nn
which by means of Eqgs. (3.11) are equivalent to the conditions

(3.18) 2 [ FOO-Eix,q@ 1% = 0, a=l,...,n,
0q° X

and have the well known analytical meaning. The problem of
existence of the solutions to (3.146) depends on the form of the
operator L(-)E(L‘(-),...,Ln(-)) and is detailed in the recent
literature on the convex analysis.
Remark. If 0=R" then the variational inequality (3.16) reduces
to the system (3.17).

It can be shown that the concept of constraints given by
Egs. (3.10)-(3.14) is closely related to that of the global
image tolerance system (3.8). To this end let us assume that
wa(x)=0{n(x,q)/0q° and g =f (x,q) for some a=(q's...,q")eq.
In this case the image Gr(g) in Eq.(3.8) is an element of the
n—parameter image constraints 8(X)=8“(X) represented by
Eg. (3.10) and the constraint parameters q“, a=1l,...,n, have to
satisfy the system of equations (3.13). If this system has a
solution q=(q‘,...,q“) belonging to G then Gr(f) is in
tolerance Tn with Gr(p), where p(x)=(n(x,q) for almost every
xeX.

The image constraints can also be related to the image
decomposition tolerance system (3.6); in this case instead of
definitions (3.11) we have to introduce the definitions

(3.19) L@ = J{(x,q)l:b( - €= _[Hx)dx p a=1lyeaeyn
F F

a a

n
where Xzﬁyxia, Fﬂth=9 for every a,be{l;...,n) and a*¥b 1is the



postulated a priori decomposition of the image background X and
hence every Fa is a certain 1mage cell. At the same time we
postulate that Eqgs. (3.13)-(3.16) have to hold but instead of
Egs. (3.18) we obtain the following system of equations for the
image parameters

(3.20) J e, q@ax = [ FOodx ,  o=1,...,n,

F F

a a
which also has the well known interpretation in the numerical
analysis. The image Gr (g) €f€(X) defined by Eq. (3.12) where the
1mage parameters qa, a=l,...,n, satisfy the variational
inequality (3.16) under denotations (3.19), referred to as the
constrained (n—parameter) madel of the known image Gr (f) &#(X).
In order to aveid this ambiguity we have to specify the concept
of the reaction to constraints (3.13); under denotations (3.11)
the reactions are given by

[tz o) —f00 17 dx

a -

X

= _ B ¥ (x,q)
(3.21) ra—J LZ Oeyq) —F ) 1=——2""dx

-1 @
Z
X aq a

a=lyaceasn
and will be called the potential reacticons. If the denotations

(3.19) are taken into account then

(3.22) r o=

j LE(x,q)—F(x)Idx =1, uuuyn ,
F

o

and the reactions will be referred to as the residual
recctions. Hence the n-parameter constrained models of an
arbitrary image introduced above will be called the potenticl
model and the residual model, respectively.

The potential and residual models can be treated as two
special cases of a general (n-parameter) constrained model of

an arbitrary 1image Gr(f) e#(X). To define this model we

http://rcin.org.pl
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introduce the sequence of functions nﬂ(x,q), a=1,...,m, defined
for every qeﬂ” and almost every xeX. Setting

(3.23) L (q) = ]t(x,q)-nu(x,qux y Flq) = i FOON e, q)dx ,
X X

n=l,...,n ]

and assuming that Egs.(3.13)-1{3.146) hold under denotations

(3.22), we arrive at the genaral constrainsd Cn-parameter’

model of an arbitrary image Br(f). In this case Eqs. (3.17) have
the form

3.24) J.{(x,q)nq(x,q)dx = j’ Foom GLglde = 0, a=l,...,n,

X X
which after the specification of nn(-) leads to (3.18) or

{(3.20). The general constrained n—parameter modal of images can
be treated as the basis for the form:lation of various special

models.

3.4 Image filtering

By the image +filtering (L5 shall mean here the
transformation of observed images leading to the reduction of
noises and distortions introduced in the course of the image
formation process. The Ffiltering technigues belong to the
low-level image analysis and their general description can be
found in [9,101. In this subsection we propose a special
approach to the image filtering in which we apply the concept
of the i1mage local tolerance. The proposed procedure can be
decomposed into four following steps.

1. We start with a discretization (3.3) of the image Gr (f)
leading to the image Gr(FD); it is assumed that the image cells

Fu, aef, related to Gr(FD) are sufficiently small compared to

http://rcin.org.pl



the image background X.

2. We introduce the local image tolerance t A=(g,8)eA,

k,
and decompose the image background X into the disjoint regions
GPEG(xF), HeM, setting

X6 o (06, F ), (2, F (x ) € €k .
where Ex 1s the transitive closure of tx’ cf. Appendix. Hence,
the image intensities Fa, aeA, in all pairs of adjacent cells

are in the tolerance t°, (f ,f )et® if F F_=o.
a3 o 3

3. Let Mo be a subset of M such that every Gu, ueﬂo, is a
small (isolated) region on the image background X: To be more
exact we assume HOE{veH H areanlareiX < 7y, for some
postulated a priort sufficiently small positive real 7, n<<i.
Under the assumption that the image intensity (') satisfies
the condition slftx)—Fa|56 for every xqu and over most of

image cells Fa, we shall interpret the regions Gv, veM as

o!
representing unwanted image details due to the effect of noises
and distortions.

4. Setting 6 =6 , veM_ and X _=X\G_, we shall define the

[&] v [+ ] o (]
reconstructed image Gr(FN), by applying the smoothing (3.3) in
the modified form
1

£,00 = o NGO R J fiyrdy for every xeX ,

N(x)NX
()
where the neighborhood N(x) of x has to satisfy the condition :
area(N(x)ﬁXo)ﬂo for every xeGo (and hence for every xeX).
It has to be emphasized that the filtering procedure
outlined above yields good results only if the discretization
of Gr(f) and smoothing of Gr(FD) as well as the 1image local

tolerance tx are properly chosen.
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3.5 Image matching

The fundamental question of image matching is: to what
extent two different images represent the same scene? (by the
scene we mean here the visible illuminated part of a certain
surface configuration). The general answer to this gquestion can
be stated as follows 1 choose the proper global image tolerance
system and verify whether the images under consideration are in
a tolerance belonging to that system which can be accepted by
the viewer. On the other hand the kind of the tolerance depends
on the character of both the image and the scene. In this
subsection we shall propose a certain formal approach to the
image matching problem under the assumption that the following
are known:

(i) the image Gr (f) e$(X) of the illuminated scene (after
the possible filtering),

(11) the extra information about the scene, represented by
parameters q%, a=1,...,n, such that q=(q',...,0™eG and @ is a
closed and convex subset of R", having the non—empty interior.

Taking into account the image formation process we can
obtain the extra information about the scene (without any
noises and distortions) in the form of the n-parameter image
constraints €(X), cf.Eq. (3.10). Thus, the mathematical
formulation of the image matching problem is to find the image
Gr (p)eB(X) which 1s in a certain (accepted) tolerance with the
image Gr (f). If such image exists then the images Gr(f) and
Grip) represent the same scene and hence the corresponding
vector q (determining Gr(p) by means of p(-)=f(-,q)) represents

the geometric description of the scene.
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The method of the solution to the image matching problem
formulated above consists of the following steps:

1. Represent the known a priort information about the
illuminated scene (determinad by an arbitrary vector
q=(q';...,q") belonging to the known subset @ of ®') in the
form of the set 8h(X) of images, cf. EqQ.(3.10). As we have
stated above this can be realized by applying the “ideal® image
formation process (we neglect the possible noises and
distortions). This procedure leads to the function tn(x,q)
defined for every qel and almost every xeX.

2. Introduce a certain global image tolerance Tn (for
example setting wu(x)=0(“(x,q)ldqc, a=lgeuaysn in (3.7)).

3. Calculate Lu(q) and Fu(q), a=l,...,n, an the basis of
the formulas given by (3.23) (for example setting
nn(x,q)=a¢n(x,q)/aq° in (3.23)).

4. Solve the system of equations (3.17) for the constraint
parameters qu, a=lyeeegNa

Let q°=(q;,...,q;) be the obtained sclution to the system
(3.17). Then we have to consider two following possibilities:

A. If qosu then we end the procedure because we have found
the image Gri(g) , g(-)=tn(-,q°), which is in the tolerance T“
with the known image Gr(f). This also means that the obtained
vector qa, describes the visible part of the scene. Such
situation always takes place if g=K".

B. If G=K" and q_ is not an elesent of O then either the
image Gr (f) of the scene is distorted by the noises and does
not carry any useful information or our information about the

scene is wrong or incomplete.

http://rcin.org.pl



In the second case we also have two possibilities.

First, we can verify the information about the illuminated
scene. In this case we start the procedure from the very
beginning with the modified set G in R or by introducing the
space K° where s>n and specifying the set G in K.

Second, we can calculate the constrained model Gri(p) of the
image Gr (f) by deriving q, from the variational inequality
(3.16). We have also to calculate from (3.13) the reaction
r:=Ln(q°)—F°(q°), to the image constraints. If the norm of
r°=(rf,...,r:) is, roughly speaking, sufficiently emall
compared to the norm of f=(F1,...,Fh) then the constrained
model Gr(po), pot')=tn(-,q°), will be referred to as the
tolerance approximation of the image Gr (£), and the vector 9,
can be interpreted as describing (with a tolerance
approximation) the visible part of the illuminated scene under
consideration.

After obtaining the image Gr(po) which is in the
postulated a priort tolerance with the known image Gr (f) {or
constitutes the constrained model of Gr(f) with the
sufficiently small reaction to the image constraints), we can
pass to the image matching based on the concept of quasi-global
tolerances. In this way we can verify whether the interesting

1mage fragments Gr (f|F), Gr(polF) satisfy the condition
(3.25) (Gr(FIF).Gr(polF)) « tA s A=(g,8)

for certain sufficiently small ¢ and &. We tacitly assume here
that the i1mage Gr(f) on the part F of its background X does not

contain any distortions 1ntroduced by the 1image formation
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process. If the condition (3.25) does not hold then we have to
modify the information related to the part of the scene
represented by the image fragment Gr(f|F) and we have to start

again the image matching procedure from the very beginning.

4. Applications to visual shape perception

The concepts introduced in Bects.2,3 will now be applied
to the problem of shape recovering for the visible part Fv of a
certain surface configuration 80 ("shape from shading"
recovery, cf. [46]). This will be done on the basis of the known
(filtered) image Gr (f) of Fv and a certain "higher level
knowledge” about the presumed shapes of the viewed objects.
Thus the underlying assumption is that the visual perception
depend not only on the recorded (observed) images but also on
what we expect to perceive. This general idea will be
formalized in this section into a procedure of image matching
based on the concept of a tolerance and introduced in the
previous subsection. It has to be emphasized that the visual
perception is not related here to the problem of how the brain
works, [14], but has to be understood as a certain area of
computational vision, [9], restricted to the shape recognition

problems.

4.1 Expected images
By the expected images of an illuminated surface

configuration we shall mean the set of images which can be



treated as stored in the memory of a certain natural or
artificial system. It is assumed that this system has, roughly
speaking, a "finite dimensional memory" and hence every stored
image depends on the finite number of real parameters. These
are the parameters which describe the visible part of the
expected i1lluminated scene. From the formal point of view this

means that the depth function &(-) can be introduced in the

form
n+1
(4.1) &ix) = Yo (x)d° , xe6G ,
a
a=1
where 00(-), =1, 0ne,ny are the Known functions and

de(d’,...,dﬁ+’) is an unknown vector in K™, A more general
form of the interrelation between &(-) and d can be also taken
into account. To simplify the considerations let us also assume
that the given a priort knowledge about the scene comprises the
information that the viewed surface configuration is continuous
and plecewlse smooth. Hence in Eqg. (4.1) every oat-) is
continuous on G and piecewise smooth. Without loss of the
generality we shall also assume that G=X. Moreover, we posses
the following information: (i) the surface configuration is
optically ideal and homogeneous with the known coefficient » in
Egq.(2.16)y (ii) the scene is illuminated by one concentrated
light source, situated near the viewer, which has the known
illumination intensity eo.

The approach presented below and leading to the concept of
the perceived image is based on the finite element method
adapted to the image analysis problems. The first step of this

approach is the decomposition of X into triangle elements Em,
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aef. Let xa, a=l,...,n be the nodes of this triangulation and
assume that oa(-) are linear in every Ea, oa€f, and satisfy the

condition
b b
(4.2) ou(x ) = 60 for every a,bve{l,...,n*1} .

It is easy to see that o‘(') are now the shape functions of
the finite element method. It follows that the values of [grad
5001% in every finite element Ea, aeA, are independent of

x=(x1,xz) and egual to

N+l
(v6 )%= (grad &(x))°= }E(a“
o a,

G d®) 340 od®
1 a,?2
a=1

4.3)
for every era s O€A.

It has to be observed that Eqgs. (4.2),(4.3) imply

o

(w6 ) 2= 5 K (d®=d™h) (d°-d™h) /1
o b,culbc

2

where K: are the known non—-dimensional constants and 1 is a
<
certain length parameter. Hence Eqs. (4.3) involve only n

n'l, a=l,...5N; where d"*! will be treated as an

parameters da%—d
arbitrary constant. Introducing the non-dimensional parameters

n+i

(4.4) %= (d*-d"*) /1, e=1,...,n and q=(q';...,q") ,

we obtain
(4.5) (96 1 2= K* g°¢° , aeh 3
o be

from now on the indices a,b,c run over 1l,...,n and summation
convention with respect to a,b,c is assumed to hold.

It has to be emphasized that in the case of expected
images we deal with a certain ideal situation in which there
are no noises and distortions, where the acuity brightness

parameter & as well as the acuity length parameter p tend to
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zero, and where N(y)={y} in Eg.(2.18). Hence, combining
(2.17)-(2.19) (for vi(y)=v=const.) and (2.13), (2.16) (for

1'=0), under the extra assumption that vZunoﬂﬂ

and taking into
account (4.5), we obtain the expected image Gri(p) with the
image intensity p(:) given by

(4.46) pix) = ZAxE (x)pa s, x€X , p = 0 . Fh.m ’ aef .
o o

o v a o b
1+K“bq q
The set of all expected images Gr(p) will be denoted by ©(X)

and represents the constraints in £(X).

4.2 Perceived images

Now let Gr(f) be the image of the scene under
consideration, which is obtained by the optical device as a
result of the image formation process described in Sec.1. This
means that the possible noises and disturbances cannot be
avoided. Image Gr(f) will be referred to as the recorded image.
We shall assume that this image is known in every problem under
consideration.

Now we shall pass to the concept of the perceived image.

To this end let us define

£ if x%eE ,
EQE o o
ot

1% otherwise ,
(4.7)
J areaE: 1
FEyYE , e —=, f = J fFooax ,
arealF areafF
a a F

o

for every aeA and a=1,...,n. Here Br(f) is the known recorded
image; in the application of the theory we calculate Fa after
the filtration of ¥(-). Using the procedure given 1in Sec.3.5,

we 1ntroduce the i1mage decomposition tolerance system (3.6) as



the tool for the presented approach. However, it has to be
emphasized that now the regions Fu defined by (4.7) are not
image cells (in the sense given in Sec.3) because they are not
disjointed. Taking into account (3.20), where now T ix,q)
coincides with the right—-hand side of Eq.(4.6), we obtain the
following system of equations for the image parameters qu,

a=l,...,N 3

- 1 an
(4.8) Z.p“—ﬁ=_’ a=1,.00u,n .
o 1+Kb=q q xe

It is also assumed that the image parameters belong to a

certain subset B of R':
(4.9) q=(...,q") €0,

where B is the subset of R’ which is assumed to be known in
every special problem. Condition (4.9) together with (4.1) have
to represent the extra information (the “"higher level
knowledge") about the shape of surface configuration. These
extra information is necessary because the solution to (4.8),
as a rule, 1s not unique. As an example of O we can take
conditions of the strict convexity of the visible part of the
surface configuration, leading to the system of inequalities
for q=(q1,...,q").

Let us assume that q°=(q;,...,q:) is the unique vector
which satisfies (4.8B) and (4.9). In this case the 1mage Gr(pD),
with the intensity p_ (') given by Eqg.(4.6) for q%=q",
a=l,...,N, Will be referred to as the discretely percetved
image. Without loss of generality we can assume d™=0 in

Eq. (4.4), and hence, from (4.1) we obtain the function 60(-)=
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(4.10) 5 (x) = an(x)d:, xeX . d:=1q: s a=l,..e,n

The function 6o(<) represents what will be called the
discretely perceived shape (of the visible part) of the surjface
configuration. It has to be remembered that the obtained
results of our considerations are restricted to the surface
configurations which are continuous on the visual field X.
However, the proposed approach can be also applied to more
general situations.

Now we shall present a modified form of the system of
equations for the image parameters. To this end we introduce
the set K of indices which label the straight 1line segments
constituting the boundaries of the particular finite elements

Ea. Let us also introduce the new unknowns
(4.11) Aqu qb—q° s ab , keK , ae{l,...,n} , be{l;...,n+1) ,

where indices a,b are related to the nodes of the triangulation
lattice which determine the straight line segment labelled by
the subscript k. Denote by s,t the numbers of elements in A and

K, respectively. By means of
o b _a o k., 2
Kbcq Q =kz Gk(Aq )

where G: are the known coefficients, we obtain from (4.8) the
system of equations for Aqk, kekK 3
1 v

(4.12) Z.«u: 5 = ——, e=l,...,n .
ol 1+ LG ) xe
" k (o]

Egqs. (4.12) represent the system of n equations for t new
unknowns Aqk, k=1l,...,t. At the same time for every Ffinite

element E“ we obtain the obvious interrelation between Aqk



(4.13) 26:‘Aq"= 0, 0=l,...,8

where k runs over the three boundary line segments of Ea and é:
are equal to +1 or -1. At last the new 1image parameters Aqk.
k=1l,...,t, have to satisfy the extra conditions implied by
(4.9) and (4.11). These conditions will be written down in the

form
(4.14) Aq = (AqY,...,Aq") € AG ,

where AQ is the known subset of ﬁ} obtained from (4.9) and
(4.11).

Thus we have arrived at the system of n+s equations
(4.12), (4.13), for t unknaowns Aqk, k=1,....%t, and at the
condition (4.14). Let us observe that in triangulation lattices
the numbers :

t - of interelement line systems, 8 - of finite elements and
n+l - of nodes, are interrelated by

t = s+(n+l)-1 = s+n .

It follows that the number of unknowns Aqk, k=l,...,t, is equal
to the number n+s of the obtained equations. It can be shown
that, under certain condition, the solution to Egs. (4.12),
(4.13) exists but is not unique. Hence, the extra information
about the object viewed, which is now expressed in the form
(4.14), have to lead to the unique solution Aq = (Aq:,...,Aq:)
of (4.12)-(4.14). Then on the basis of (4.11),(4.4) and (4.10)
we obtain the discretely perceived shape of the surface
configuration.

We end this subsection with the notion of the percetved

image Gr(pp). The perceived image will be obtained from the
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discretely perceived image Gr(pb) by the smoothing procedure,

cf.Sect.3.1, given by

1
- SFREGT I P, (y) dy for every yeX ,

B(x,r)nX

(4.15) pP(x)

where the radius r of the ball Bi(x,r) on Ox’xz is assumed as
the maximum characteristic length dimension of the largest
finite element Ea, aeA. The meaning of this notion will be

explained in the subsequent subsection.

4.3 Adaptive shape recovering

Now assume that q°=(q:,...,q;) is the unique solution of
Eqs. (4.8),(4.9), which can be alsc obtained from (4.11) with
Aq=(Aq’,...,AqL) as the unigue sclution of Eqs. (4.12)-(4.14) .,
Vector q, determines the discretely perceived image Gr(pD) and
after the smoothing procedure (4.15) we obtain the perceived
image Gr(pP). The general idea of an adaptive shape recovering
is based on the tolerance image matching, proposed in Sect.3.5,
and takes into account the concepts of the local tolerance
system TA, XeA. Let us introduce the known pair A=(g£,8) which
determines the local tolerance tx that can be accepted by the
viewer; it means that any two images Gri(f),G6r(g)ef$(X) can be
treated as indistinguishable if

(6 (£),6r(g)et ,

where ;A is the quasi-global tolerance induced by the local
tolerance tx’ cf.Appendix. The above condition will be used in
matching the recorded image Gr(f) to the perceived 1image
Gr(pp). Hence i+

bl
(4.16) (Gr(£),6rip 1) et ,
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then the shape recovering obtained via the procedure given in
Sect.4.2 can be accepted. Now let us assume that the condition
(4.16) does not hold. In this case we have to introduce finer
decomposition (triangulation) of the image background X onto
the set of triangle finite elemaents then that Ileading to the
1mages Gr (pD) and 6r (p’). This new triangulation, by means of
the procedure proposed in Secs.4.1 and 4.2, yields the refined
shape of the object viewed and can be examined again by
condition (4.16). Hence we obtain the adaptive shape recovering
procedure, which is controlled by (4.16). This procedure is
more efficient if instead of (4.16) we introduce the condition

(4.17) (Br(FlF),Er(pplF)) (-3 tx ’ Fe¥ ,

where ¥ is the postulated a priori set of subregions F of X,
such that Xe¥, cf.Eq. (3.25). If condition (4.17) does not hold
only for some F, then we can restrict ourselves to the
modification of triangulation only on the part F of X. This
procedure has 1ts counterpart in the known adaptive finite

element method used in the engineering problems.

4.4 Example

Let X=(0,n)x{0,1), where n is a positive integer and 1 is
a positive real number. From the computational viewpoint it
will be convenient to assume that 1/n is very small compared to
1. In this example we shall investigate an arbitrary
cylindrical surface configuration the shape of which depends
only on the x coordinate, x‘e(o,m. We shall also assume that
the conditions mentioned at the beginning of Sect.4.2

concerning optical properties of the viewed objects and the



illumination of the scene are fulfilled.

Let us decompose the interval (O,n) into n finite straight
line elements E°=(a—1,a); here and in the sequel index <« run
over 1,...,n, unless otherwise stated. The points x°=a—1,
a=l,...y,n, and X =N will be treated as the nodes of this

decomposition. It can be shown, that under denotations
a
»
(4.18) = ;;: JFOQax 5 e=l,...,n,
a-1

and setting

a+l a Laas

(4.19) 2q%= @°'q®, a=14...,m, q =0,

the system of equations (4.12) has the form

1 1

rerrrer i
(4.20) 1+14q7)
1 — 1 — = £ 2, a=2,..:.50 .
1+(ag”™h) 1+(Aq™)

The solution of Egs. (4.20) have the form

——
(4.21) AQ®= Y 1—F° , a=1,...,n .

In Sect. 4.1 we have assumed that leeoaﬂﬂ. Because the
integral in Eq. (4.18) represents the mean image intensity in

the interval (a-1,a), then
a
< <
0 < Jf(xl)dx‘ =B .
a=1

From the both aforementioned conditions it follows that
(4.22) f%el0,11

and hence all solutions (4.21) are real. Now combining (4.19)

and (4.21) we can show that



o V | T . nti-a
(4.23) ™=y 1" £ Y1 2ok YV 10 a=1,...,0,
are the solutions of the system of equations (4.8).

Substituting the right—hand sides of (4.23) (for an arbitrary
but fixed system of additions and subtractions of particular
terms) we obtain the discretely perceived image intensity
function pD(')=p(-). However, we are not interested in the form
of the image because our aim 1is to reconstruct the surface
configuration. To this end we obtain from (4.4) the values a” s
a=1l,....,n+l, of the depth function at the nodal points x°=a—‘,
a=1l,...,n; without the loss of the generality we shall assume
that d""'=0. Rewriting the right-hand sides of the formula

(4.23) in the abbreviated form, we obtain

= ;o =
(4.24) a"tites 3 (v 1-€"7%) , a=1,...,n .
k=1
Now taking into account (4.1) and (4.2) we arrive at the

reconstructed form of the surface configuration, given by the

discretized (piecewise linear) function &(-) 1

(4.25)  &(x) =§x[ N l(x)[(a-—x)d°_1+(x—a+l)d°] , xel0,nl ,
ofo a PR

where d*, a=1,...,n, are determined by (4.24), d " '=0 and

x[a—l,a](')’ a=1lyuaeyn, is, as usual, the characteristic

function of the interval [a-1,al. Since the number of solutions
(4.2) to the shape recovering problem (equal to En!/a!(n—a)!,
a=0,1,...,n) 1is very large, then the extra information about
the shape of the surface configuration, given by condition
(4.9), is necessary.

As an example of the aforementioned extra informations (of



the "higher level knowledge") let us take the information that
the examined surface configuration is convex. In this case we

obtain

a+i

(4.26) G = {(g=(q*,...,q") e R" : Aq®2Aq for a=1,...,n=13

where Aq° is given by (4.19). Hence using (4.21) we arrive at

the conditions

/ a / a~=-1
(4.27) Yi-f = v 1-f for every oa=1l;...,n ,

for the mean image intensities (4.18). If (4.27) holds then we
aobtain the unique reconstruction of the surface configuration

shape given by (4.25), where

- ¥ gy
(4.28) g"t %= 3 S T et T S

k=1
I¥ (4.27) does not hold then we deal with the situation which

was discussed at the end of Sect.3.4.

5. Applications to geometric modeling of micro-materials

In this section we try to explain how the tolerance image
analysis, proposed 1in Sect.3, can be applied to the
mathematical modeling of certain material composite elements.
To simplify the considerations we shall confine ourselves to
composites which incorporate high-strength fibers situated
chaotically in lower strength matrix; moreover, the fibers are
assumed to run parallel to a certain line. Hence, every
cross—section of a composite-by the plane normal to this line

can be visualized as a binary image with the intensity function
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attaining the values 0 and 3 related to the cross—-sections of
the matrix and the fibers, respectively. At the same time, the
micro—-heterogeneous chaotic material structure of the composite
imply that the shape of the aforementioned binary images is too
complicated to be described by the analytical means or by
computer vision. Thus the problem arises how to represent the
geometric structure of the composites under consideration in
the form which will be useful in the numerical analysis and/or
computer vision. This is the main problem of geometric modeling
of composites. The possible solution to this problem will be
presented below in terms of the tolerance matching analysis of
binary images. We shall deal now with the 2-1imensional vision
(cross sections of a composite can be treated as plane
optically heterogeneous objects) which simplify the image
formation process described in Sect.23 howevery, the possible
image distortions cannot be avoided. Thus the recorded images
of a composite structure have to be filtered in order to reduce
the possible imaging noises. For the sake of simplicity
throughout this section all formal results are interpreted in
terms of the fibrous composite structures but it has to be
emphasized that these results can be also applied to geometric
modeling of various micro-materials, e.9., the capillary-porous
materials or the materials with chaotically distributed

inclusions.

5.1 Micro-heterogeneous images
As it was shown in Sect.3.1, every binary image I=6r (f)

with the background X can be identified with the pair (X,6),
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where G is a proper subset of X such that areaG>0 and
(5.1) fix) = xc(x) ’ xeX .

At the same time Gr(f) will be referred to as the image of G.
For the sake of simplicity here and in the sequel we assume
that f3=1, cf.Sect.3.1. Throughout this section the background X
will be interpreted as the section across the composite
macro-element, normal to the direction of fibers, and 6 will be
the section across the fibers. Hence the subset G of X is
composed from a very large number of very small isolated
regions. For the recorded images G can be disturbed by possible
noises introduced by the image sensing process. In order to
describe the highly oscillating and chaotic structure of G we
introduce the concept of the heterogeneity parameter of

I=Gr(f). To this end define
(5.2) plx) = inF{riﬁi: Bx,rin(X\G) = @ and B(x,r)nG = @} ,

for every xeX and

(5.3) P = sup pix) .
xeX

Moreover, let L stand for the minimum characteristic length
dimension of X. The non-dimensional parameter p/L will be
referred to as the heterogeneity parameter of a binary image
I=6r (f). It can be easily seen that for the composite
structures under consideration the heterogeneity parameter is
negligibly small compared to 1. Hence, the examined binary

images will satisfy the condition
(5.4) 'E« 1,

and will be referred to as the micro-heterogeneous lmages.



At the end of this section we shall also introduce the
important concept of macro—elements of the image background.

Let tk, Ae€A, be the local image tolerance system,
t, =t xté, where £€l0,£ 1, 6€l0,6 1, cf.Sect.3.2. Setting t x=
A @ [} [=} ra
s(zeX|(z,x)et‘} for every xeX, we obtain from the micro-—
—heterogeneous binary image Gr(f) the new image Gr (£%) with

the intensity function £°(:) 1
area(bnt x)
(5.5) i) 8 — 2 | xeaX ,
areal(t x)
-
and we shall refer to Gr(f°) as to the fuzzy image of G in the

tolerance t‘. For every regular subregion F of X and every

c-to,c°] let us define the positive parameter

(5.6) 6 (e) = sup (SeR 6=|F‘(xl)-F‘(xz)|} .
X’ ,x"EF
If
(5.7) 5 (e) £ 6
F

then the image fragment Gr(f|F) will be called macro-

~homogeneous in the tolerance tx’ r=(g,8). Bimilarly, if
(5.8) & (g) < 6
*®

then the image Gr(f) 1is said to be macro-homogeneous (in the
tolerance tx)' If the condition (5.8) does not hold then Gr(f)
will be called macro-heterogeneous (in tx)‘

Let L(F) and L(F) be the minimum and the max imum
characteristic length dimension of F, respectively. The formal
definition of the macro—homogeneity (in a certain tolerance tx’
A=(e,8)) have a physical meaning 1if A=(e,5) satisfies the
restrictions

(1) p <L £ <K L where L=L(X) ,
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(ii) & << 1,
(1ii) L(F) 3> p for every F such that 6F(s)=6 .

In the sequel we tacitly assume that every tk, r=(e,8),
satisfies the restrictions (i1)-(iii).

Let ®(X) be the set of certain specified ~regular
subregions of X (e.g. the set of all quadrangles in X). Then
every FeP(X) satisfying (5.7) such that L(F)>>e and L(F)<<L,
will be called the macro element of the image background X.
Remark. The terminology introduced above and related to the
micro—heterogeneous images can also be applied to the

correspanding micro—heterogeneous material structures.

5.2 Micro-modeling approach

The motivation of geometric modeling of images is based on
two facts.

Fact 1. The geometric structure of composites under
consideration can be represented by certain micro-heterogeneous
(binary) images. Hence, geometric modeling of composite
structures can be carried out in terms of the analysis of
micro—heterogeneous images.

Fact 2. Micro-heterogeneous images of the investigated
(chaotic) composite structures have a very complicated form due
to the highly oscillating character of the image intensity
field (5.1). Hence, the exact analytical or numerical
description of these images as well as their representation in
the computational vision is not effective (or even can not be
realized) from the point of view of engineering applications.

Thus we arrive at the problem how to represent the

http://rcin.org.pl



geometric structure of micro-heterogeneous images in a certain
averaged (approximated) form which can be applicable to the
analytical and/or numerical calculations and could be realized
by means of computational vision.

The subsequent analysis will be restricted to an arbitrary
but fixed macro—element F of the micro-heterogeneous (binary)

image G(f). The local image tolerance t A=(£,8), which

A’
characterizes F, 1is assumed to Ffulfill the restrictions
(1)—-(11) of the previous subsection. The proposed approach will
be based on the tolerance matching analysis introduced in
Sect.3.5 and the general procedure will be similar to that of
Sect.4 but restricted to the two-dimensiona! vision and binary
images.

Let Gr(f) be the recorded (known a prieri) image of the
plane micro-heterogeneous material structure. Hence Gr(f) is a
certain micro—heterogeneous image. Let F be the known
macro-element of X and #(F) be the set of all subimages Gr (f|F)
of Gr (f) with the background F. Setting
(5.9) C(F) = {Gr(g)ef(F) & gix)=f(x,q) for almost every wef

and some gel)
with the meaning of ¥ (-) similar to that given in Sect.3.3, we
introduce the n-parameter image constraints #(F). Here Gr(g)
is, for every q=(q',....q")eBAR", the micro—-heterogeneous
binary image possessing certain regular geometric structure
(for example the periodic structure), and ¥£¢(-) 18 the
postulated a priori function. We shall also introduce into
considerations the global image tolerance system Tn,

ne{l,... ,mk, TncJ(F)xJ(F), where



(5.10) (Br(£|F),6rig|F)el e £ =g , a=1,.0esn 5
under the denotations based on those given by Eq.(3.7) :
(5.11) F = | FOOy Godx e=1l,...,m ,

F
and similarly for Fu, where (w‘(-),...,wm(-)) 18 the postulated
system of linear independent functions, defined almost
everywhere on F.

The formalized micro-modeling problem can be stated as
follows: for the known recorded image Gr () of the (chaotic)
micro-heterogeneous material structure and for macro-element F
of 1ts background find the image Gr(g|F), belonging to the
postulated constraints €(F).Hence, Gr(g|F) is in the glabal
tolerance Th with the recorded subimage Gr(f|F). The solution
to this problem exists if there exists the vector qntqﬂ...,q")
satisfying the system of equations
(5.12) J{(x,q)wn(x)dx =¥, S 3 P

F
for fa previously calculated from (5.11), and fulfilling the

condition
(5.13) q=(¢,...,q") €@,

where O is the a priort known region in ®'. The Form of
constrains€(F), which are determined by the function ¥ () and
the subset 0 in mP, represents a certain "higher level
knowledge" about the micro-material composite structure under
consideration. In many problems every image Gr (g)eg(F) has a
periodic structure described by an arbitrary but fixed vector

q=(q1.....q“)e0. The solution q:(q‘,...,qh) of Egs. (5.12),

http://rcin.org.pl



satisfying (5.13), specifies this periodic structure. Thus, the
chaotic micro—heterogeneous image Gr (f|F) can be modeled by the
periodic micro-heterogeneous image Gr(g), with the intensity
field g(-)=f( ,q) defined almost everywhere on F. The obtained
geometric structure of the image Gr (g) uniquely determines the
geometric structure of the mathematical model for the

investigated composite material.

5.3 Example

We end this section with a simple illustrative examnle.
Let F be the macro-element of the image background composed of
n equi-angular elements F_; hence ?=u§;, a=1,...,n, FF =0 for
every a,b such that «#b. Let it be known that the composite
structure comprises the fibers with circular cross sections of
different radii. In order to specify the tolerance system

(5.10) assume that

(5.14) p oo = —L — ¥ 0, xeF , e=l,...,n,

areaF L5
L3
where Xp (-) 1s the characteristic function of Fa in . E. ) o
a
specify the constraints (5.9) assume that every image g(x)e€(F)
i1s the binary 1mage of the set of two—-dimensional balls with
the centers coinciding with the centers of F° and with

diameters q°, a=l,...,n. It means that (1 is the length of the

F side) :
a

—
(5.15) 8 = {(q=(q'y...,qMeR : 0<q®<1V 3} .

Under denotations



A = area F f =
o a

J Foodx ,
F

a

=

the elementary solution of (5.12) yields

(5.16) Q=Y — F , a=lyeaayn o

I+ the obtained vector q=(q‘,...,qn) satisfies (5.13) with v]

defined by (5.15) then we have formulated a certain geometric

micro—model of the chaotic composite structure under

consideration i1n the macro-element F. Moreover, if there exists

the real £ , f €(0,1), such that (f ,f et for every
o () o’ a S

a=ly...,n, (such situation takes place in some special cases)

then setting

we obtain the periodic model of the investigated composite
structure i1n the subregion F of X, in which every +fiber cross
section has the diameter d. If the condition (5.13) does not
hold then we have to pass to more finer decomposition of F into
elements or to apply the constraint approach, cf.Sect.3.3. The
resulting geometric model can be used as a basis for the
formation of engineering models 1n mechanics of composite

structures, via different homogenization approaches.

Conclusions

In the Introduction to this contribution we have
formulated the leading paradigm which states that the visual
shape perception depends not only on the received (recorded)

tmages but also on our knowledge about the presumed shapes of
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the objects viewed. The notions of “"shape perception”,
"received (or recorded) images" and "objects viewed" can have
different meanings in different physical problems (what was
shown 1n Sects.4 and 35), but the general sense of the
perception paradigm formulated at beginning of the lecture and
quoted above remains unchanged. This hypothesis is a challenge
for creation of a mathematical tool which makes it possible to
interrelate the experimental facts ("recorded images"”) with the
known a priort but uncertain knowledge about the objects under
consideration ("higher level knowledge”) as the input data in
order to obtain the output data describing the interesting
features of these objects ("perceived shapes'). This was done
in this paper where the formal tool which transformed the
perception paradigm into the mathematical form was based on the
concepts of the 1image constraints and the image tolerance
systems 1ntroduced and discussed in Sect.3 and in the Appendix.
The usefulness of this tool was confirmed by the applications
presented 1n Sects.4 and 5. The proposed approach to the formal
realization of the perception hypothesis have some advantages
and also some drawbacks. Among the advantages we mention the
adaptivity of the formal modeling procedure, which verifies and
improves the results obtained at the succeeding stages of this
procedure. The main drawbacks of the approach 1lie in the
unprecised choice of the physically accepted tolerances and
image constraints which are based rather on the intuition of
the researcher than on the clear physical premises. This
drawback leads to certain ambiguities in the obtained solutions

which should be removed by the verification of the input data.



Looking ahead, the approach proposed in this contribution,
based on the concepts of tolerance and constraints, can be
treated as the starting point for the formulation of algorithms
specifying how the recorded images and the presumed shapes of
objects as the input data produce an output representation in
the form of reconstructed and/or simplified shapes of these

objects.

Appendix. Tolerance systems

The concept of tolerance system was introduced in [12] and
constitutes a certain generalization of the notion of the
tolerance space, [14]. Here we guote the main ones from the
notions discussed in [12].

Let X stand for a nonempty set and t be a tolerance on X,
i.e. t is any reflexive and symmetric binary relation on X. We
shall write xltx2 for any x‘,xzex being in a tolerance t.

Definition. A pair (X,T), where T is a set of tolerances
on X satisfying the condition

(th,tzev)ttlﬁtzeﬂl and [t’UtzeUJ

will be called the tolerance system. The sets X, T will be
referred to as the underlying set and the tolerance lattice of
(X,T), respectively.

Let t be the transitive closure of t, i.e. the binary
relation 1n X defined for every xo,xex by xoix if xotx“

X X 5eeayX tX FOr SOME X X 5...,% €X. If (Ytel) (¥x ,x_eX)-
1 2z n 1 n 1 2

2



‘[xlExz], then the tolerance system (X,T) will be called
connected. If (T,<) is a chain (for every tl,tzsv there is
either t1Ctz or tth:.)’ then (X,T7) will be called ordered;
every two tolerances of such a system can be compared by
inclusion. If (Vt’,tzeﬂ)[titzeﬁl, then (X,T) is said to be
S—-closed (closed with respect to the superimposition tjt2 of
tolerances) where we define t1t2==((x1,x2)1xlt‘x and xtzxz for
some xe€X» as a superimposition of any two tolerances on Xj; at
the same time txtzeﬁ if¥ and only if tatzztztg' The tolerance
lattice T of any S-closed tolerance system (X,7) constitutes an
Abelian semigroup with respect to the operation of
superimposition.

Remark. 1+ U={t}, then the tolerance syctem (X,T) reduces
to the tolerance space of E.C.Zeeman, [14].

Example 1. Let (X,d) be a metric space with a metric
distance function d:XxX+R, and let Uz(tr)ram, where u’trx? if
d(xl,x:Kr, for every xl,xzex. Then (X,T) is a tolerance system
and will be called a metric tolerance system. Every such system
is ordered and S-closed.

Example 2. Let (X,l:-I) be a linear normed space and let
U=‘ta)oeumu’ where xitx2 if Nx‘-xzﬂ<ctﬂx1HAﬂxaﬁ)(the symbols
~s v stand for min., max.,respectively), for every xt,xzex,
xx’xz' Then (X,0) 1s a tolerance system and will be called a
relative tolerance system.

Example 3. Let (mi,o) be an Abelian semigroup such that
(Va,ﬁeﬁi){a-ﬂZavﬁ] and &: XxX+R be a function satisfying, for
every xl,x?ex, the following conditions: 6(x‘.x2)20. 6(xl.xz)=

= = = < é
G(xz,x:), [étxl,xz) O}»[x‘ le, 6(xl,xz)_A6(x‘,x) 6(X,81) (the



function & is said to be a distance function for an operation -
in Eﬂ). Let Ug(tr)ren+ where x:txz if and only if 6(x‘,xz)<r,
for every xl,xzex. Then (X,T) is a tolerance system which will
be referred to as a distance tolerance system (ultra-metric if
= stands for v or metric if « stands for +).

It can be shown that +From the known tolerance systems
certain new tolerance systems can be easily constructed.

For example if (X,T),(Y,%) are tolerance systems, then
(XxY,Tx%), where for every (x!,yi),(xz,yz)eFxS there is
(xt,yi)(txs)(xz,yz) if xltxz and Y. 85Y,, is also a tolerance
system.

Define tF={xeX : (x,y)et for some yeF}, where FeX.
Following [14] we also introduce a tolerance system (8(X),§) on
the lattice £2(X) of subsets of X which is induced by the
tolerance system (X,T), setting (Fi,Fz)ez if FictF2 and cmtF‘
for tel. For more detailed discussion of the tolerances

cf.[12,141.
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