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RIGID-PLASTIC PLATE UNDER CONCENTRATED
MOVING LOAD:

1. Introduction,

The dynamic response of .structures subjected to moving loads
was considered by seversl authors. In most cases, however, only
elastic behaviour was considered. An account on the available re-
sults can be found in [1]. For guasi-static loadings of structu-
res it appears thaf, the design criterion reguiring the stresses
in the structure which do not exceed the yield vzlue anywhere,
is not economical. A more rational approach is needed, utilizing
the fact that the material of the structure is elasto-plastic,.
The general dynamic elasto-plastic anz2lysis is particularly dif-
ficult, but by ignoring the elastic deformation, the rigid plas-
tic problem can be solved easily, although it is necessary to
place restrictions on applications zf the s>lutions to engine-
ering materials,

The present report applies the yieid line method [2,23] to
the problem of a2 rigid-plastic rlate subjected to a2 moving trans-
verse load which is too large for the plate to suppert under sta-
tic conditions, The cuestion is whether there is az critical value
for the moving load, above which the crossing can not be made at
a finite speed. Such a critical value has been obtained for a
massless beam [4] . It has alsc been shown that a critical load
does not exist if the mass of the beam is ‘taken into account [5].
This paper shows thet for a massless plate there is a critical
value for the moving load.



hs an illustration of the method of solution a rectangular
plate simply supported zlong the boundary is considered. The 1li-
mit load with respect to its speed and the displacements distri-
bution are computed. It will be shown thet,)for practical values of
the ratios of plate dimensions, displacements are small.

2. Notation,
' We consider an isotropic plate with a reference yield momen't
¥_. The transverse point load & moves'along a straight line
/Fig. 1/.
Wie introduce the following dimensionless quantities
o (IR i O B e - . B
A A A A’ M’ A A
where 2 is the reference length, H is the thickness of the plate,
X, Y denote the cartesian coordinates of an arbitrary pocint of
the plate, 5 is the distance from the edge of thg‘plate to the
travelling load, W is the vertical deflection. Moreover the fol-
lowineg guantities are used: :

t [sec] - time
v=\—A 3 S‘IE - speed of the load
._dw_dw . =2 ?
w= dat = ds V= WV, lsec - transverse displacement
velocity of the plate point (2)
(3] - angular deformation
é:d—? = gZB-\.r =8'.v - angular deformation velocity

Wm - transverse displacement velocity of the moving load



o A 2 -
8=g-t—?= % vi=@ - v2 - anguler deformation acceleraticn
(3)
d?w d? m
a=A —2=A _v!ﬂ-vz o == - transverse acceleration
t2 d a2 sec?

Q |kg.sec?
m=§ i——— - travelling mass

)

3. Formulation of the problem

We shall adopt the following assumptions

a. The mass of the plate is negligible as compared to the mass

b.

Ca

of the moving load.

The transient yield pattern, i.e. the network ¢f hinge lines,
is adopted from the yield line theory and moves with the

load.

The displacements are so small that distances along the plate

can be replaced by their horizontal projections.

d. The load moves at a constant speed.



Under the above assumptions the problem is described by the fol=-
lowing virtual power eqguation.

(Q-ma)§w=M,Z 8¢, 1 (4)

where the summation is performed over all the yield lines of
respective length l; - 6 W is the virtual deflection
velocity, o} QE is the virtual vector of rotation rate which
coincides with the yield .line,

4, Solution

As an example, without loss of generality, we consider a
ectangular simply supported plate. The transverse point load,
, moves along Y= Y, [Bigs 2/

The transient hinge pattern is shown in heavy lines in
Eldg. 2t \h(x,yo )= éz-(1-x) . The load is moving from the left
to the right., It follows that the part of the plate which the
load has not yet crossed, has remained flat. The position of
the load can be defined by the length of this part, =24 emg
the angle 62:-thus the tran§iént transverse displacement of the

moving load 1is

=

W= 8, (1-3), (5)

™

ne transverse displacement velocity is

Wn=8; (1-5)- 8,V ()
where 5_\,

zand trznsverse acceleration is

a=AWy, = AlB,(1-5)-26, v] (7)
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Introducing the notation given by Eas (1) and (2) , into
both sides of the virtual power equation (4) , substituting
{7) and using a more convenient nondimensional time scale

a=v-t , we obtain

(@-ma) S w'={g:M,

3)-26;1} 5w (8)
MoZ 8 0, 1= Mo[3 (5(11—_3, +7) Bw' (9)

1
where Z=m : 0<B K1

From (8) and (9) we obtain the folloﬁing ordinary differen-
tial equetion

8285~ Le))= g o Bl a) 5 (0

where the upper commas dencte differentiation with respect to
s. This equation may be easily integrated in'a closed form.
The initial conditions for (10) are
8,(3,) = 8'(3,)=0 (11)
Motion will start when the moving load becomes the collepse load.

This happens at a value of 4 =9, given by the root of the
equation

1
q-B(m]+z)= 0 (12)

It may be noted that this is eguivalent to making the left hand
side of Eq. (10) =zero. Thus

(1 \f é_gz) (13)

under the assumption that 0 €5,£7 . It follows from
Eq. (13) that the motion of the plate is only possible for
a> B(Z+4) T (14)

By integrating (10) as a linear equation in 9; , it is found
that

o, - exp(—j Plo) do) [(Rie)expl [ Ploast)as (79
1) %0 Jo
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where
" Psle-i5 , Rolgy 'q [a-BIz* simar)] 155

The expressions for the angular velocity 62 and the rotation
B, are obtained from (15) in the form

Atte,-la-pallo-a- T5)-Bn 4 ) gy wo

2
—%[[Q‘BZ][%;_—?}]'B[T%_ %o ln} g]} (17)

The motion ceases when the relative angular velocity at the ver-
tex of the yield pattern becomes zero, i.e. when 6;=0 . The
corresponding final wvalue of s may be found by setting the right-
hend side of (16} equal to zero. When load q and its speed v
are limited, substituting Q- BZ = into (16) we are

4
to solve following equation °°)ﬁ°
2 a2 o
(4= i 9—-—-32) T = (18)
o
t> find the value of .‘It can be seen tha.t D¢ is evidently

only function of 4, , /Fig. 3/, and because of that function of|
G =nd B taoJ The values of 4, and 4y corresponding to a gi-
ven value cf can be read off Fig. 4a, b; @ 1is the ma-
gnitude of the static limit load when applled at the midpeint of
the plzte and equal to Q=4 3+ . The final rotation B
is found by putting o= 8¢ in (17) . It will be noted in
Fig., 5 that for certain value of Q, dependent on B 5 lek;
increases indefinitely 1rrespect1ve of the speed Vv exceptv—'m

~hen 61 is indeterminate.
In the limiting case when o;— 1 , 3°=0.2847 is the

solution of (18) . It can be seen that in this case.the value
of an initial point of motion is constant and independent of
dimensions of a .plate, :
The critical megnitude of the moving load cbtained from (12
is . 1
G = B (49108 + y TRy ) ) no) !
Q¢ i< shown as a2 function of B in Flg. %5 compared with® the
valu: 57 *the static limit load at midpoint of the plate,

£

Suer & critizcal wvelue egual L,.S7C8 has been cbtained for



oS

a massless beam by Perkes [%] . Analysis of the load path
explains in a pictorial manner why such a result has been ob%ained
" Substituting {17} into ( 5) and ordering, the following
equation which describes the displacement of the moving‘load is
obtained

AV 1 [5-50) (1-3) % _, 1-3
%Twm=§' (1_50)304'3[“(1_%]5 ln 1-3,
From mathematical point of view the above equation is wvalid for
0. s, < 0.2847 too. Then the load path can be plotted even if
the load 1s greater than the critical one. Shapes of the paths
shown in Fig, 7 a, b, ¢ indicate that for Q> ch the conti-
nuity between plate and support would be broken off, but such a
solution cannot be admitted.

(20)

5. Final displacements

According tc the assuﬁed hinge pattern shown in Fig. 2 the
transient velocity of displacement slong the line y=y_ during
the motion can be described in a following way u

for O<x <oo e % :

W' x,¥,8)= =3 '82‘-x - when 2o <01

)
]

for  50<x<oi %

W'(x,yo,8) = (1-x }B2 S

.
W'ix, yo,8) = 52— B, *x when x <8e<3¢

when 3,3 <X
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Wi, e s)= (1-x18; - when 50<3 <4

Similarly we can write suitable expressions for w’(4) in each
point (x, y) of the plate.
The final displacement w of any point (x, y) of the plate
after the load has moved out is given by ‘
3¢
wix,y) = j wix,y,2)ds (22)
30

For instance: an integration of (21) yields the final displa-
cements along the line Yy

r

x~J 1—;—98'2(15) ds i ror D Cx < by
%
el

wlxy)= < (1-X)6;€x)+xJ1 (s)do for oogx‘(of (23)

(1-x)8,(84) for 5,x K1

L
Substituting (16) ané . (17)  into (23) and integrating
we obtain the following expression for the displacements along
the line yay and X G(‘}o,ﬁ')

Av? SE SRR
5 — wix,y, )= = {(‘I x)[K 1><) o In 3 ln1_ﬁo]+



C=11-

Blsnt-9+ 3,2-8)1n 152)-1ng25 10 2 +51nds+2 2 l } (24

1

where ](F(‘:“‘-
For 0 <1cg<5°g and 5 <x < 1 the displacement (24)
remzins a linear runct;on of x.

In Fig. 8 a, b, c the variation of Ag\—fzw(x yol with x
is shown for some representative values of Q@ and B .

It should be noted that the shape of the permanently defor-
med plate is asymmetric,
: The point of maximum deflection is displaced to the right
of the midpoint of the plate i.e, in the direction of the speed
of the load, as might be expected, and is nearer to the right sup-
port for higher loads. Alv2

The permanent maximum deflection "ET_ Wnax of the plate
is plotted in Fig. 9 for ratios [3 = 0.5, 0.75, 1. It increases

together with Q  and remeins finite for Q = “er *

The solution presented above is derived under the assumption
of very small displacements i.e. the final slope

In Fig. 10 and 11 relations between load, its speed and B
for a final slope of 1 in 20 and span of plate A = 8m are shown.

They were calculated from {7

To test directly whether the obtained displacements are
small in fact, i.e., in|the practical caseif W<{0,5H, we compﬁ%e
them for some practical values of ratio A » @ and B with
respect to the speed of the moving load. In Fig. 12 a, b we can
see that the maximum permanent displacementsafter the load mo=-
ved out the plate are still very small.

6. Conclusions

This paper presents an approximation to the soclution of a
rigid-plastic plate under a moving load being larger than the
load under which the plate would collapse if the load were sta-
tionary at the plate midpoint. |It has been shown for a massless
pPlate that the moving load cannot exceed the critical magnitude
given by (19) .



Sy

The reasons of this surprising result are the assumptions
that a plate is massless and the transient yield pattern moves
together with load at the same speed, thus the process of defor-
mation ceases when the load goes off the plate.

Therefore one can draw the
must be taken into account
the moving load in dynamic
the load is large compared

On the other hand the

conclusion that mass of the plate
to obtain the critical magnitude of
problem, even for the case in which
with the plate weight.

present results can be utilized as

an estimation for the ponderable plate’s displacements. They in=-

dicate that for the massless plate the assumption of very small
deflaection is reasonable, thus it can be adopted to a ponderable

plate.
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Fig.1. Arbitrary plate under moving load

M= X 1-x ol
b

oy =

Fig.2. Rectangular simply supported plate
under moving load
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