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Extremum principles in the dynamics of rigid-plastic bodies
and mathematical programming

M. I. ERKHOV (MOsSCOW)

Two variational principles for dynamically loaded rigid-plastic bodies are established as an
extension of corresponding theorems of static limit analysis. Certain alternative forms of these
principles are suggested, allowing for a rapid integrated estimation of an avarage permanent
displacement and response time of the structure, The problem of dynamic loading is also formula-
ted asa problem of mathematical programming. As an example, the problem a simply sup-
ported circular plate acted on by a uniformely distributed rectangular pressure pulse is solved.
Good agreement with the available exact solution was obtained.

Ustanowione zostaly dwie zasady wariacyjne dla dynamicznie obcigzonych sztywno-plastycz-
nych cial, Zasady te sa odpowiednim uog6lnieniem znanych twierdzen z teorii no$nosci granicz-
nej konstrukcji. Podane sa réwniez alternatywne sformutowania powyzszych zasad pozwala-
Jjace na szybka oceng usrednionych trwalych ugieé i czasu pracy konstrukcji. Problem dynamicz-
nego obciazenia jest sformulowany réwniez jako zadanie matematycznego programowania.
Jako przyklad rozwiazano numerycznie swobodnie podparta plyte kolowa obciaZzona réwno-
miernie roziozonym prostokatnym impulsem ci$nienia. Otrzymano dobra zgodnoé¢ ze znanym
doktadnym rozwiazaniem tego problemu.

YcraHoBNeHBI 1B B3pHMAUMOHHBIX NPHHIMNA UIA JUHAMHYECKH HATDYMKEHHBIX YKECTKO-
TLIACTHYECKHX Tesl. STH NPHHIMMITEI COOTBETCTBYIOWMM 06pasom 0G0DIIa0T HIBECTHBIE Teope-
MBI TEOPHH Hecyllel crnoco0HocTH coopy)keHuii. IlaroTcA BapHaHTHI (GOPMYJHPOBOK 3THX
MPHHLMIOB, IO3BOJIAIOIIHE IIOMY4aTh MPOCTBIM ITyTEM MHTErpajibHbIE OLEHKH OCTATOYHBIX
nporuboB H BpemeHn paboTel coopy)xerMs. 3agaua 0 AMHAMHYECKOM HArpY)KeHud dopmymm-
PyeTcA TaKyKe, KaK 3a/]aya MaTeMaTH4eCKOTO NporpaMmupoBannsa. B KauecTBe mpumepa JaHO
YHCJICHHOE pellleHne 3afayy o0 HMITYJILCHOM HATPY)XKEHMH PAaBHOMEDHO pAaCIpele/IeHHBIM
naBreHuem cBoGoIHO omepToi Kpyriioit mwiacTrixu. [TomyueHo xopoluee COBNANEHHE C HIBECT-
HBEIM TOUHLIM PELICHHEM 3TON 3a/ayH.

Introduction

The classical theorems of limit analysis has proved to be the basic approximate method
of solution for structures loaded statically into the plastic range. These theorems provide
upper and lower bounds for the collapse load by means of a proper technique of mini-
malization (maximalization) of certain functionals. The foundations of the static theory of
limit analysis, together with proofs of the extremal properties of the limit load, wete laid by
G. Kazinczy [1], A. A. Gvozpiev [2], S. M. FEINBERG [3], D. C. DRUCKER, H. J. GREENBERG,
W. PRAGER [4], and R. HiLL [5].

This theory is related to extremum principles for rigid-plastic bodies under static
loading established by A. A. MARKOV [6], S. M. FEINBERG [3], W. PRAGER and P. G. HODGE
[7], R. HiLL [5] and W. KOITER [8].

However, in the case of dynamic problems, when inertia forces cannot be disregarded,
the existing extremal principles and the static theory of limit analysis is no longer appli-
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cable. It is also not possible to use a purely “static” or purely “kinematic” method of
solution. On the other hand, the proper reformulation of the extremum principle to cover
dynamic problems for rigid-plastic bodies is highly desirable from both the practical and
the theoretical points of view.

It should be noted that accelerations in rigid-plastic bodies can be determined approx-
imately, using the methods of analytic mechanics. In particular, W. P. TaAMuzH [9]
applied the Gauss principle of least action, while A. R. RZHANITZIN [10] suggested the
Hamilton principle in the case of a velocity profile stationary in time.

The second line of approach was developed by J. B. MARTIN [11] who established the
upper bound on the permanent deformation and the lower bound for the response time
of impulsively loaded structures (structures with prescribed initial velocity). In Martin’s
theorems were introduced two time independent statically and kinematically admissible
fields. These give approximation to the actual stresses and velocities. The corresponding
inequalities involve uknnown (not prescribed) quantities (permanent displacement and time
for rest) and hence the theorems are of bounding rather than variational character. The
bound would coincide with the exact solution only if the latter is given by a single mode
velocity pattern. Since the Martin theorems refer above all to the case of impulsively
loaded bodies, it should be noted that in all available exact solutions the velocity and
deflection profiles appeared to be time variable. An improved method of solution for
impulsively loaded structures, utilizing a one-degree-of-freedom velocity field, was devel-
oped by J. B. MARTIN and S. S. SYMONDS [12]. The method was illustrated on the examples
of beams. Analyzing the stability condition, the authors were able to prove uniqueness
of the velocity field.

In the present paper, extremum principles of the dynamics of rigid-plastic bodies under
arbitrary loading are formulated. These principles are equivalent to the statement that cer-
tain functionals depending on the approximate fields of stresses, velocities and acceleration
attain maximum or minimum.

The suggested principles provide criteria for the existence of the solution and a
choice of an approximate solution converging to the exact solution. They also enable the
application of various variational methods and even the formulation of the given dynamic
problem as an appropriate problem of mathematical programming. It is essential that
minimum (or maximum) values of the functionals introduced be always equal to zero.

In addition, some extremal properties for loadings and accelerations are considered,
leading to determination of the bounds on these quantities by means of approximate val-
ues of loads and accelerations. This approach is also of a variational character. The gen-
eral dynamic problem for rigid-plastic bodies has been formulated in this paper as a prob-
lem of linear and also non-linear programming. Thus, the response of any dynamically
loaded structure can be determined with great accuracy on a high-speed electronic com-
puter. As an illustration of the applicability of the method of linear programming, a simply
supported circular plate is solved and the results obtained are compared with the exact
solution presented by H. G. Hopkins and W. PRAGER [13]. The method of mathemat-
ical programming is used to solve the dynamic problem of square plate.

The general theorems proved in the present paper are illustrated on the exemplary so-
lution of a shallow rotationally symmetric shell loaded dynamically into the plastic range.
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No exact solution of this problem is available in the literature and it would be difficult
to derive such solution by means of classical methods used, for instance, in [13].

In what follows it is assumed that the yield condition does not depend on the deforma-
tion process and the shearing stresses do not enter into the constitutive equations. The
rotary inertia is disregarded and deformations are considered small.

1. Extremum principles

A solution of the dynamic problem should satisfy the following conditions:
a) equation of motion and boundary conditions on the body surface S

U;‘Lj+Xi*—'}’ﬁ|‘ = 0, iy = Pis
b) yield condition f(o;;) < 0;
c) components of the acceleration vector #; = du;/dt;
d) components of the velocity vector should satisfy the incompressibility condition

and kinematic boundary conditions, &; = -;—(fq, i,

e) fields of displacements u;, velocities i;(¢;;) and accelerations #; should conform to

the initial conditions;

f) the yield function f{(o;;) is taken as a plastic potential for the strain rate tensor and

the associated flow rule is assumed.

In the above formulae, o;; denotes components of a stress tensor, X; and p; denote
respectively vectors of body force and surface tractions; y is mass density, and n; is a unit
normal vector to the surface S, t denotes time and i, j = 1,2, 3.

Let us introduce the following notation:

fﬂ;jéqdy—' J‘lelldV = F(G’;},ﬁ]),
v vV

[visindV = JGir, @), [ pidS = 1(pi, i),
4 4

where V denotes the volume of the body. The body forces X; are regarded as known quan-
tities. Using the symbols defined above, the principle of virtual velocities takes the form:
(1.1) I(pi, u) = F(oy, i) +J (@, ;).

It should be emphasized that in (1.1) the quantities o;;, X;, p; and #;, satisfying the equa-
tion of equilibrium, are in general quite independent of the kinematic quantities i and &;.
This means that the conditions c) and f) should not necessarily be satisfied by quantities
entering Eq. (1.1). However, the fields # and &; must meet the requirement d); any veloc-
ity field satisfying the latter condition is called admissible and is indicated by “stars”
(for example &%, i?). At the same time, the quantities oy;, #%;, X; and p; should necessarily
satisfy conditions a) and b). The stress field o;; falling in the class defined above is called
admissible and is denoted by of;. The determination of p; and ; will be described later.

We shall make use of the following Drucker postulate [8]:

(1.2) (oy—of)é; =0 or (of—0)é} =0,
where oy;, &;, o), &h, o-f} are functions of time and o;; and of are related respectively
to &; and &% by an associated flow rule.
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Suppose to a certain admissible velocity field #f* there corresponds an acceleration
field ##*. Now, with these accelerations u#* a stress field of; can be found so as to satisfy
the condition a). According to (1.1),

(1.3) I(pi, i¥) =F(oj), u¥) +J Gi*, uf),

where 4} # u¥*. A question arises as to the existence of the equilibrium set (of;, #}*, p;)
different from the actual solution (ay;, #;, p;). The existence of such a system (of;, u**, p;)
can be shown, if these quantities are taken to be an exact solution for a certain yield surface
inscribed in the given yield surface. Indeed, let Gijs i}"i, :':;, p; denote the exact solution
obtained for the “inscribed” yield function satisfying all the requirements a)-f). The stress
field 6;; appears to be admissible for the exact yield surface —i.e., it can be denoted
G; = of). This field together with the acceleration #%; and loading p; satisfies the condi-
tion a). Since "z"q and satisfy respectively conditions c) and d), they can be denoted by
iy =i U, = u¥*. This completes the proof of the existence of the functions (of;, #¥*, p)).
An example of the determination of such functions is given in Sec. 3. It is understood,
as is usually assumed in the theory of plasticity, that the solution of a given dynamic
problem exists.

The kinematically admissible velocity field &} is, in general, distinct from that result-
ing from the acceleration field #¥ # u¥*. It is clear, however, that #¥*, as kinematic-
ally admissible, can be chosen to be the desired field. Denoting now ##* and i}** respect-
ively, by means of one star subscripts #¥, #¥, the identity (1.3) can be written as

(1.4) I(pi, uf) = F(ofy, u¥) +J (¥, iuf).
Equation (1.4) together with (1.2) yields
(1.5) F(ofy, u¥) + J(if, ut) — I(pi, uf) >0,

which is the desired minimum principle. It states that for an actual solution the functional
(1.5) attains minimum and is equal to zero.
Equation (1.4) can be rewritten with p; substituted by p{*, where p{* # p;,

(1.6) I(pi*, i) = F(of), i¥) +J (i, uf).
The existence of the system of functions (ofj, #¥, p{*) can be proved similarly as was

done for the system (of, #¥, p;), entering (1.3). For given F(o¥, #¥) and J(i#, i) one
can always find such I(p¥, u¥) as to satisfy the equality

(1.7) I(pt,&*) = F(ofj, uf) +J(uf, af).

The quantities (i, off, p¥) may violate the condition a), the only requirement being that p}f
satisfy (1.7), (an example of such function will be given again in Sec. 3). Hence Eq. (1.7)s
by contrast with Eqs. (1.3), (1.4) and (1.6), is not a principle of virtual velocities. In partic-
ular, the choice of (¢f;, #¥, p*) can be made so that pf = p;, where p; is the actual
loading. Equation (1.7) then takes the form:

(1.8) I(pi, uf) = P(ofy, u¥) +J(uf, uf).
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In view of the condition (1.2), Eq. (1.8) yields:
(1.9) F(ofy, uf) + J (g, i) —1(p;, u}) < O,

where of;, #¥ and p{*, according to (1.6), satisfy the condition a). The above inequality
expresses the following maximum principle: the functional (1.9) attains maximum and
is equal to zero for the actual solution.

Assuming the system of functions according to (1.5) and (1.9), the exact solution (or
in view of mathematical difficulties an approximation to this solution) is obtained by
a suitable minimalization or maximalization of the functionals (1.5) or (1.9), using well
established mathematical methods.

In the derivation of both principles according to (1.3), i#¥* can be replaced by u}*,
for it is known that the solution of dynamic problems is unique. Similarly to (1.5) and (1.9),
various other forms of the extremum principles can easily be established.

For accelerations equal to zero, the principles obtained reduce to the known extremal
static principles of rigid-plastic bodies.

2. Alternative forms of dynamic principles

An addition to the results established in the preceding section, a new form of extremal
principles can be suggested which does not involve acceleration and velocity fields. Such
forms of the theorems are of considerable interest from the practical point of view.

The time integration of the inequality (1.5) from 0 to ¢ gives

t t
1) [ Pt iy rs,im— [ 1ai, ity >o,
0 0

where uf = u¥ = 0fort = 0.
An alternative form of the minimum principle is obtained from (2.1) if t > #, where #;
is so called “time to rest”:

0 o,
2.2) F(oﬁ,u?)—f F(&,?j,u}“}dt—f(pg,u;‘)+f I1(p;i, u¥)dt >0.
9 0

The expression (2.2) msy be linearized. Integrating in a similar way the expression (1.9)
from 0 to ¢, a corresponding maximum principle is obtained not involving accelerations
or velocities. These forms of extremum principles describe in particular the cases of a re-
moved loading p; = 0, or an impulsive loading, where p; = 0, but an initial velocity field
is prescribed. The extremal principles of dynamics derived above constitute the funda-
mental relations of the dynamic theory of limit analysis (such a theory should be more
properly called “the theory of limit strength”), since they provide criteria for the rational
choice of the solution. The method of the approximate solution of dynamic problems is
indicated by the very structure of the principles which determines the choice of the stress
accelerations and velocity fields [14].
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3. Example

The application of the principles derived in Sec. 1 requires minimalization or maxi-
malization of certain functionals depending on approximate fields of velocities, accelera-
tions and stresses. The value of the functionals computed for these approximate functions
would, of course, differ from zero, so that the difference can be taken as a certain measure
of the accuracy of the solution. On the other hand, the degree of approximation can be
estimated by means of certain integral relations for accelerations and appropriate relations
for the loading. Such relations express the extremal properties of accelerations and load-

ings.
Substituting p; = p¥ in (1.7) and using (1.3), we obtain:
(3.1) J(ur*, ay) > J(@ur, a¥).

It can further be shown that the #¥* (integrated over the volume) is an upper bound
for #; while #¥ is a corresponding lower bound.
Comparison of (1.6) and (1.7) yields:

(32 I(pt, uf) > I(pi*, up),

where either p? = p; or p* = p,.

The procedure described above will be explained on the example of a shell loaded
by a rectangular pressure pulse. Consider a rigid-plastic shallow spherical cap loaded by
a uniformly distributed pressure p. It is assumed that p is suddenly applied at 1 = 0, then
held constant, and removed at ¢t = ¢, i.e.,, p = 0 for ¢ > t,. The shell is simply supported,
initial velocities and deflections are zero.

The equations of motions are (Fig. 1)

f d
a—e(QNO-Nz =0, —E(QMO—QQ1+M: =0,
33)
. N, N ~
Ea—e(QQO—WR = mggempik =0,

where M, N and Q denote respectively internal bending moments and axial and shear
forces; w is radial deflection, ¥ denotes the mass density per unit area of the shell middle
surface, and R and p are defined in Fig. 1. The indices 1 and 2 refer respectively to the ra-
dial and circumferential directions.

We shall use equations of an approximate yield surface inscribed and circumscribed
on the exact one [15]

(B4/1)  |ny| =|n)| =n<ks,, my=m=yVki-n*, my<m, Kki<O07I5,
(3.4/2) |"1] = |ﬂzl =n=k;, my=m=k;, m <k, |kz| >1, |k3| <1,

where n = N/2a,h, m = M|o,h?, o, being the yield stress and 2A is the wall thickness of
the shell.
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Consider the case of the “intermediate” pressures, defined by

3.5) 2 < 2+ 2ng8] (ma Rh — 2ng}),
3
where p, denotes the static collapse load. According to (3.4), bounds on the static loads are:

6h* s 4hm _ ps _ ps _ pE _ 6K’ 4h
(3.5/1) _Qg_l/ki_n - R = ‘&;'Q‘E‘s— < v, = ?g‘ka"“?kz,

where n = — 2k, 03[)/9R?h* +4g§ .
Pressures exceeding the limiting value defined by (3.5) are called “high”.

plt)

[

Tal | /s

p Q

Fig. 1.

The kinematically admissible field of deflection in the phase 0 < # < ¢, is assumed
in the form:

(3.6) w* = wo(t)(l— i), u* =0,
Qo

where u* denotes the horizontal component of the displacement vector.
The components of the generalized strain rate vector are:

.o @ doo(f) g) _ % i div _ i0o(?)
4= R TR\l FTETET® T T e
a0
-

Internal forces can now be computed from (3.4) and (3.3):

m; =m, ng =n,=n,
(X)) _ pe* Y,0*(2—0/00)
M= M e T 120,k — 2no2 3Rk

The condition (3.5) is obtained directly from 0m/dplo=0 < 0. Since m; = 0 at the
outer edge ¢ = go, the amplitude w, can easily be computed from (3.7):

(3.8) iy v BB
Y
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Taking in the second phase #; < t < 1, the same form (3.6) for the function w*, and using
the continuity conditions of w(t;) and (¢,), the permanent deformation and response
time are given by

Pi(p —p.)( 0 ) p
39 w*(p, 1) =2 V|1 =), =t
(3.9 (@1 vy 2 b= b
It is easy to check that the boundary condition at ¢ = g, imposes the following condition:
Ps 8nh 20%n
(3.10) > "R T ™

The above condition can be satisfied by taking for m and n the respective values: 0 <
<|n| = k; < 0.866 for the inscribed yield surface (3.4); and n < —1, m > 1 for the cir-
cumscribed yield condition.

The case of “high” pressures can easily be treated in a similar way.

In the approximate solution discussed above, approximate stress, velocity and acceler-
ation functions were introduced, satisfying the necessary conditions defined in Sec. 1.
The evaluation of the functionals appearing in the principles proved would give some
indication as to the accuracy of the approximate solution. [The admissible stresses cor-
respond to the surface (3.4),, the pressure p and acceleration @* being in equilibrium.
The strain rates £¥, £¥, %%, resulting from ¢*, are computed from the flow rule associated
with the yield surface (3.4),].

Substituting in (3.9) p, = p? or p, = p¥, according to (3.5), and (3.1), we obtain
respectively the upper and lower bound on the function & (and hence on w), integrated
over the surface of the shell. It can be shown, using (3.2), that accuracy of the computed
bounds is determined by the values p? and p*.

4. Formulation of the mathematical programming problem

In recent years, considerable attention has been paid in the theory of limit analysis
to certain practical methods of solution by means of linear programming, which is char-
acterized by the necessary accuracy and high degree of automatization in computations.
The corresponding mathematical methods are well developed and routine computer
programms are now available for carrying out difficult and time-consuming calculations.
The method of convex programming has also proved to be of practical interest. By com-
parison with static problems, only a limited member of dynamic problems for rigid-plastic
solids have been solved. The application of the methods of mathematical programming to
such problems is therefore of considerable importance. A typical initial-boundary value
problem for rigid-plastic structure will now be formulated as a problem of linear and
convex programming.

The functional to be minimalized is given by (1.5). Taking into account that initial
(¢t = 0) and final (¢ = t,) velocities are zero, the functional (1.5) can be replaced by (2.2)

te e
4.1) Z = davdt— u¥dSde, = g¥e¥.
Jja J!p Tk a = o}l

We shall be concerned with plates and shells, hence, generalized stresses E; and strain
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rates é; will be used rather than stresses o;; and strain rates &;;. The dissipation a =
= o} &} , appearing in (4.1), should then be replaced by a = EFéf, where j = 1,2,...

The yield condition is in general represented in the space E; by a certain non-concave
hypersurface. The nonlinear yield surface is approximated by a set of hyperplanes defin-
ing a piece-wise linear yield surface. It can be shown [16], that the equality @ = E}féf is now
replaced by a system ofi nequalities with the properties of dissipation functions a retained:
4.2 a> Ef™:r,
where m = 0, 1, 2, ... denotes the number of corner points in the piece-wise linear yield
hypersurface, E}"" is a generalized stress at the m-th corner point (the associate flow rule
holds). Now, the dynamic problem for rigid-plastic plates or shells can be reduced to the
corresponding problem of linear programming and can be solved by means of the simplex
method. To this end, the time and space coordinates are discretized by means of finite
differences [in the case of plates and shells the volume integration in (4.1) is replaced by
integration over the middle surface S]. Consequently, the continuous fields of stresses,
displacements and rate of energy dissipation are described by a finite number of corre-
sponding parameters, defined in the nodal points of the space-time net.

The problem of linear programming can finally be stated as follows: Find a minimum
of the objective function Z (4.1) under the restrictions a) for E and ##, b) for Ef and
(4.2) for a. The function Z is linear with respect to 4 in nodal points, E; and u}* being
free variables while a is not a free variable (a = 0).

The problem of linear programming formulated above can be reduced to the corre-
sponding problem of convex programming. The method consists now in solving the prob-
lem by consecutive steps in time ¢. For each step (for example for the step t,—7,_;) a mi-
nimum is sought for the functional (2.1)

tny 1 Iy

L ,f _J adSdt + sf YUty )1 =T} (t)]? }ds — ,f §[ piitdSat,

under the same restriction as in the preceeding case, formulated for each time step (the
restriction a) should now be modified; instead, the corresponding equation is solved for
stresses).

5. Bounding theorems

An approximate value of permanent displacements occurring in dynamically loaded
structures can be determined by the methods described above. It is possible to find certain
direct bounds on maximum deflections and response time.

For simplicity, consider a structure with initial velocity and displacement equal to zero.
Let the structure be loaded by a rectangular-pressure pulse of intensity p; and duration
time ¢,. Integrating over time the equation of motion and boundary conditions a) and
yield condition b) in the interval O to t;, we obtain:

Ty I Iy
(5.1) f (O'U.j)df+ f X,dt = 0, f O'[J'ﬂj = P[h, on S, tkf(alj) < 0’
1] o o

where £, is the so called time for rest.
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Equations (5.1) are fulfilled by a certain fictitious static solution. Following the first
theorem of limit analysis concerning the lower bound on the collapse load, we conclude
from (5.1) that

(5.2) pity < pity,

where p® is the static load-carrying capacity of the structure acting in the same direction
as p;. Hence, the bound on the response time #;, computed from (5.2) is:

DPi
5.3 t - L
(3.3) x > vt

In order to obtain bounds on permanent displacements, we shall rewrite the functional (4.1)
and the system (4.2), taking actual velocities i, ;:

1

(5.4) J'fader-— fp;u;(tl)dS =0, a>Ery, m=0,1,2,..
oS s
Integrating the dissipation inequality (5.4) over the shell surface and time, we have
Ty
(5.5) f J‘ adSdt = f EPe(t)dS, m=0,1,2,....
0S5 s

The left-hand side of (5.5) is greater than or equal to the energy dissipated in the course
of an actual motion leading to the permanent displacement wu(f;). Hence, the upper
bound theorem for the limit load implies

(5.6) f f adSdt > f plu(ty)ds,
[ I 5

where p] denotes the static load-carrying capacity of the structure, where the pressure p}
acts in the direction of p;.
Comparison of (5.4) and (5.6) yields the final results:

(57) !piﬂg(h)ds ;!p{u,{q)ds.

Inequalities (5.3) and (5.7) can be extended to other loading conditions.

6. Example

The method of linear programming has not yet been applied to dynamic problems
for structures. As an example of application of this method, consider a simply supported
circular plate. The exact solution of the same problem is according to H. G. HOPKINS
and W. PRAGER. Comparison of the two solutions referred to above would give indica-
tions as to the efficiency of the proposed method and accuracy of the results obtained.
Thus, we shall present an examplary solution merely as an illustration of the application
of a linear programming method to the solution of dynamic problems for rigid-plastic
bodies. Emphasis is placed on discussion of the usefulness of the new method by compar-
ison with the existing ones, since the solution itself, as known in the literature, is not of
any special interest.
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It is assumed that uniformly distributed pressure p is applied at ¢ = 0, held constant
afterwards and removed at ¢t = ;. The velocities resulting from the rectangular pressure
pulse are continuous; the acceleration may however suffer discontinuities at 1 =0, f = ¢,
and ¢t = #;. The jump of acceleration at # = ¢, can be described by finite difference approx-
imation, the acceleration at 1 = f, appears to be averaged. This introduces a negligible
error in computations, since plate velocity is zero at ¢ = t,. The equation of motion of the
plate is

(6.1) :,f?(rM)—N = - f (P—yiv)rdr,
0

where M, N denote respectively radial and circumferential bending moment, w denotes
vertical deflection and r is a radial coordinate, Fig. 2.
According to the Tresca-Saint Venant yield condition

(62) IMI ng: |N1 é..Mn |M"N|‘~<-..Ms’ gshz = M,,

where g, is yield stress in simple tension and 24 denotes thickness of the plate.

The load intensity is taken to be P = 3P*, where P’ denotes static collapse load. Let us
divide the radius of the plate R into five equal sections, each of length R/5, Fig. 3. Accord-
ing to (5.3), the response time is estimated as ¢, = S%rl. Now the interval #; < < ¥
is divided into sevene quals teps of length 2/3 ¢,, Fig. 3. All integrals over the surface and
time are replaced by corresponding sums. The partial derivatives with respect to r and ¢
are replaced by central differences (at the plate centre, curvature rates in radial and
circumferential direction coincide, K, = K',).

Displacements are defined at the points 0, 1, 2, 3, 4 on the radial coordinate and at
the points #,,¢,_,, 1,3 ... on the time coordinate. Thus,

oy _ 2w sl _ 20! wl-2 S 4 o-1_ 1 4

0 = w = —uw w = Sw.

The point O is introduced to describe a jump in acceleration at ¢ = t,.

Upper and lower indices refer to the number of mesh steps respectively in the time and
space coordinate.

The velocity at the points ¢, and ¢, is defined by

w0 = _23_1(w2-3__ %wl), 3= 2%(3-4__2,3-3)’
the corresponding expressions at point #,, s, ts are analogous to that defined for 5.

Equation (6.1) is written for intermediate points in the radial direction (points 0-1,
1-2, etc.) and intermediate points in time (points #,_,, ¢, 3, etc.), and separately at
the point ¢,. Moments M and N are associated with points 0, 1, 2, 3, 4 on the radial
axis and with points #,, f,_,, #,_3, ts_s, ts_s/ts_s and ts_, on the time axis. The boundary
conditions yield My, = Ny, Ms = 0.
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The accelerations at points #;_,, f;_5 and f;_, are given respectively by

9 5 9
2.3 _ 7 |.3-4_9,2-3, ~ 1 slm2 _ 7 o 2-3 3.1
w -3 w 2a +3w), 71 4t§(w 3w'),
i34 — %(m“’—2w3‘4+w"3).
plt)
R R
™w
Fic. 2.
pﬁ 1 L 1 .
% -

0“1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

r - b | o u T e |

FiG. 3.

Similar expressions, corresponding to points f4_s, ts_¢ and fs_-, are constructed by analogy
to ©3~*. The boundary condition of a simple support requires that ws = 0, while the
requirement of zero velocity at the end of the motion ¢ yields w®~7 = w”~8.
Now, the objective function together with the imposed restriction can be constructed.
The results of computations, performed by means of the method of linear programming,
are gathered in Table 1. A comparison of these results for w with the earlier exact solu-
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tion [13] indicates the high accuracy and hence the efficiency of the method applied (the
computed response time f#, = 3¢, coincides with the exact value). Consequently, the
method of linear programming can be successfully applied to the solution of other bound-
ary value problems.

2,
Table 1, Numerical values w—RL
osh*t}
, riR 0 0.2 0.4 0.6 0.8 1.0
f 9.57 9.57 7.18 479 2.39 0
2, 2621 24.16 18.12 12.08 6.04 0
2%:1 31.16 28.12 21.09 14.08 7.03 0
31, 31.16 28.12 21.09 14.08 7.03 0
wR?y

Table 2. True values W

: rIR 0 02 0.4 06 038 1.0
i 9.0 9.0 7.75 495 2.50 0
2, 25.50 23.30 18.60 12.10 6.20 0
2% f 30.80 27.60 21.80 14.20 7.30 0
3t 31.50 28.10 2220 14.55 7.40 0
7

Consider the dynamics of a rigid-plastic square plate, simply supported on its
boundary (Fig. 4). A uniformly distributed pressure of intensity P kg/cm? acts within
the time interval 0 < ¢ < ¢,, while for ¢ > ¢, we have P = 0. It is required to determine
the motion and the permanent deflections of the plate. This problem has not so far been
solved. We shall apply to the solution of this problem the LP.

The qualitative characteristics of the problem are the same as in the problem of motion
of the plastic circular plate considered in the preceding Section (the continuity of the
velocities, jumps of accelerations and uniformly accelerated motion for 0 < ¢ < ;). As
in the preceding Section the time interval #, < ¢ < ¢, is split into 7 segments, each of length

'_E—’f: and we denote f; = 5.—§-rl,

The differential equation of motion of the plate has the form

2 2 2
IM 228 2 i p i =0,

(=) axt  “oaxoy | oy?
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where M and N are the bending moments in the directions of the x and y-axes, respectively
(Fig. 4), S is the torsional moment; the remaining notations are the same as in the preceding
Section.

The material of the plate is assumed to obey the Tresca-St. Venant yield condition so that

v
P P L ]/(MZ_N) +S2< o h?,

2
(7.2)

/ z
M—-N
2 g 2 2
osh 2]/( 3 +S o.h?,

we assume moreover that the linearized equation of the yield surface has the form:

(7.3) —oh*< +M FN+2S < ok, —oh*>< M + S< o,k
—osh* < N + S < o,h*.

The surface (7.3) is inscribed into the surface (7.2) and is shown in Fig. 5.

In view of the symmetry of the plate it is sufficient to investigatei ts one eigths (Fig. 4).
We introduce the lattice with step dx = 0.2/, i.e. we divide each side of the plate into 10
parts (/ is one half of the side of the plate).

Integrals over the area and time are replaced by the appropriate sums.

The system of inequalities (4.2) is written in the form
(7.4) A> tohn,, A=oh*%, A= toh(%+xy),

A= + %—a,hz(a},+5c,+25c,,), A= + -;—a,hz(icx-}-k,—%,,),

where #,, %, are the velocities of change of the curvatures in the directions of the axes x
and y and #,, is the velocity of the relative torsion of the surface of the plate with respect
to the axes x and y; these quantities are

; 0% s 0% ; 0w
T T P T Ty
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F(110)

FiG. 5

The derivatives of M, N, S, w with respect to x, y and ¢ are expressed in terms of the
finite differences, as shown in the preceding Section. It is taken into account that on the
diagonal 0-55 of the plate M = N whereas on the axes x and y we have § = 0, M,; = 0,
Nis=0@{=0,1,2,3,4,5;j=0,1,2,3,4,5; the lower subscript denotes hereafter
the corresponding nod of the difference lattice, while the upper subscript denotes the
time instant; in the double notation of the points the first number denotes the point along
the x-axis, while the second along the y-axis, Fig. 4).

The system (7.4) is constructed for the time instants #,, #,, #5, 14, 15 (the velocity of
the deflection at instant ¢ is assumed to vanish). The deflection is prescribed at nods
of the difference lattice at instants ¢,, #;—,, £3—3, f3—4, f4—s, [s—g. IN accordance with the
boundary condition ws; =0, wis =0 (i=0,1,2,3,4,5; j=0,1,2, 3,4,5); the
distribution of the deflections is symmetric with respect to the axes x and y and the diagonal
0-55.

For definiteness we assume that the plate is subject to the pressure P = 3P* where P*
is the limiting static pressure. To determine the quantity P* by the LP method we solved
the problem of load-carrying capacity of the square plate; we made use of the basic relations
of the preceding Section for accelerations @ = 0. By means of the determination of the
maximum of the value of P with the conditions (7.1) and the inequalities (7.3), we obtained
the quantity P* = 5.7160,h%/I2.

Computer calculations of the considered problem yield the following results. The values
of the reduced deflections wy[?[o,h%t? of the plate at the nods of the difference lattice for
the time instant #,, f,_,, f»_3, ts_4, f4_s, ts_g are given in Table 2. Since w*~5 = w5,
with the assumed discretization the derived time of the motion must be assumed to be 75 =

= 3%:1 . The permanent deflections of the plate are equal to the deflections at the instant

Iy s = 3%:1 (Table 3). The deformed plate is shown in Fig. 6.

5‘
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Table 3
'I‘in_le
etqnt = 1-—t t =2 t =2—t t = 3-1-1 1 = 4f
Point ! h -2 = i -3 = 24 raibgly lesSdrh s-6 = 4f
numbers .|
00 8.913 14,855 25.111 30.396 30.710 30.710
10 8,913 14.855 23.054 27.278 27.529 27,529
20 6.915 11.525 17.665 20.830 21.018 21.018
30 4.645 7.742 11.825 13.929 14.054 14.054
40 2.323 3.872 5.901 6.947 7.009 7.009
11 8.151 13.585 21.783 26.007 26.258 26.258
21 6.915 11.525 17.665 20.830 21.018 21.018
31 4.645 7.742 11.822 13.924 14.049 14.049
41 2.323 3.872 5.890 6.930 6.991 6.991
22 6.809 11.348 16.640 19.367 19.529 19.529
32 4.645 7.742 11.472 13.394 13.508 13.508
42 2323 3.872 5.744 6.709 6.767 6.767
33 3.778 6.297 9.107 10.555 10.641 10.641
43 3.106 3.510 4.848 5.537 5.578 5.578
44 1,053 1.775 2424 2.769 2.790 2.790

In accordance with the above, the values of the dissipation function 4 vanished at the

following nods at the following time instants:

Ago = Ao = A%y = Ay = Ao = Ajo = Ao = A3o = Ajo = A7 = 4° = 0.
At these points the velocities of the curvatures are equal to zero (these points may be assu-
med to be “rigid”.

We do not present here all values of M, N, S at the nods of the lattice at various instants
of time, we note however that except at the rigid points the state of stress corresponds to
the edges FAG, EFG, the ribs AF, FG, EF, EG, GH and the corner points F, G (Fig. 5).

It is noteworthy that in the first stage of the motion there exists a zone of equal
deflections which decreases and vanishes in the following stages. A similar character of
the motion is observed in the case of a circular plate [13] after it has been subject to “high”
pressures.
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