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Acoustic wave in finitely deformed elastic material

Z. WESOLOWSKI (WARSZAWA)

THE PAPER is devoted to the propagation of a weak discontinuity wave in the reference configu-
ration of a nonlinear elastic medium, Having determined the jumps of the second derivatives
we construct the acoustic tensor. On the basis of the linearized equations of motion we determine
the equations of bicharacteristics and rays and, furthermore, the equation for the jump of the
second derivatives of the displacement.

Rozwaza si¢ propagacje fali stabej nieciaglosci w konfiguracji odniesienia nieliniowego osrodka
sprezystego. Po wyznaczeniu skoku drugich pochodnych buduje sig¢ tensor akustyczny. Opierajac
si¢ o zlinearyzowane réwnania ruchu znajduje si¢ rownania bicharakterystyk i promieni, jak
rowniez réwnanie skoku drugich pochodnych przemieszczenia.

PaccmaTpuBaeTcsl pacnpocTpaHeHHe BOJIHBI C1a6oro paspbiBa OTHOCHTENBHO HMCXOMHOM KOH-
cdurypauun HemHeiHoN ynpyroi cpenpl. ITocse onpeaenenns cKauka BTOPLIX NPOH3IBOMHBIX
MOCTPOEH aKyCTHUYecKHit Tersop. Ha ocHoBe jlMHeapH3HPOBAHHOTO YPABHEHHSA ABHYKEHHHA MOJTY~
4eHbl YPaBHEHHUS GHXAPAKTEPHCTHK U JIyyeH, a TAKIKe YPaBHEHHA A PaspbiBOB BTOPAIX Mpo-
M3BOAHBIX OT HEepeMeLLeHHA.

In one of his elegant papers, TRUESDELL [1] stated a condition for propagation of an
acoustic wave in an elastic material. In this paper we shall present the law of variation
of the amplitude of such a wave for a material with arbitrary symmetry properties. This
law was derived in an entirely different way and a different form by CHeN [2, 3], CHADWICK
and OGDEN [4] and BoweN and WANG [5].

Our considerations concern the propagation of a discontinuity surface in the reference
configuration.

1. The fundamental relations

Let us introduce two systems of coordinates {x'} and {X*}. If X* are the coordinates
in the reference configuration By and x’ those in the current configuration B, then the motion
of body is described by the relations

(1.1)

xt = x{(X% 1),

where ¢ is the time. The elastic energy o is a function of the displacement gradient x/,

(1.2)

o = o(x%),

and the equation of motion has the form

(1.3)

A5 |ag+ g+ 0rb; = 085,
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where og is the density in Bg and b; the body force; the functions 4%f and g; are given
by the relations

ASE = APF = op il
(1.4) ik = Axi —me,
_ d*a
% = er g0 3x= -
The double vertical line denotes the total covariant differentiation
(NMe = Ot e X 2
Suppose that
(1.5 xt = X(X% D)+u' (X%, 1),
is a motion slightly different from the motion (1.1). TourIN and BERSTEIN proved [6]
that the displacement v’ statisfies the equation
(1.6) Lyt = (A5Pd|p)ll—ori = 0.
The functions 4% are calculated for the basic motion (1.1) and are therefore independent
of u;. The Toupin-Berstein equation is an almost linear equation with variable coefficients.
Consider the reference configuration Bg. To simplify the calculation we assume that
both systems {x'} and {X*} are Cartesian. Consider a moving surface &g described by
one of the relations
(1.7) X* = XY(M*, M%4, 1),
(1.8) t = ¥(X9,

where MX, K = 1, 2 are the parameters of the surface . The vectors X* x are tangent
to &&. If the unit normal to &y is N, then

(1.9) N, = Y’,,(W‘,SF’I,)“”, N X%x = 0.
Noc
xlc&
X
1 o
FiG. 1.

Figure 1 represents two successive position of & at the instants # and *. In accordance
with (1.8), we have

*r—t = (X¥ XYY +o(X*—X),
and, passing to the limit.
(1.10) Y.xX2.=1.
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Substituting now for N, from (1.9), we obtain:
(1.11 NeX®y = U,
UV, Py, No= U,

By definition U, is the speed of the surface #. The derivatives X*, constitute the velocity
of the point M* = const depending, however, on the parametrization of the surface. The
projection of X*, on the normal is independent of the parametrization.

Locally, the surface %x divides the space into two regions. Let us denote the quantities
referring to the points in front of (behind) the surface & by the index F(B) and consider
an arbitrary field H = H(X® ¢). The field itself or its derivatives may suffer discontinuities
on &%. On the sides F and B of the surface & the field H can be expressed in terms of
(M~ 1),

H = H:(M%t) on gr,

(1.12)
H = Hg(MX,t) on gs.

The derivatives of Hr and Hp are

OHp _ (_?i) xe
oM ~ \ox=)." ®
dHy oH

oMK (ax* ),,X‘ 2l

The first terms in the right-hand sides are calculated in three dimensions. Subtracting,
we obtain

(1.13) [H]m= [H )X x>
where the double bracket denotes the jump
(1.14) [(]=Cre=()s-

Assume that H is continuous but its first derivatives suffer a discontinuity. Then the
left-hand side of (1.13) vanishes, whence

(1.15) [H )Xk =0,
and, consequently, in accordance with (1.9),
(1.16) [H.] = ANy,

where A is arbitrary parameter depending on X*.
Consider now the time derivatives Hr and Hy

dHy [oH oH\ .
a (W)r * (EY&)FX "

dHy [0H oH\ ..
F (“ér),,*(ﬁ)ﬁ"
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The left-hand sides represent the total time rate of H observed in moving in front
of (behind) &5 . The first term constitutes the change at a fixed space point, while the second
describes the convection. Subtracting, we obtain

l_aH_
o

+[H]X%,.

(1.17) 21H1=

For a continuous H, the left-hand side vanishes; therefore, substituting from (1.16)
and taking into account (1.11), we obtain:

(1.18) [aaij]= —AU.

2. The acoustic wave

Consider the case when on %5 the function x' and its first derivatives x‘,, x*, are
continuous, but derivatives of higher orders are discontinuous. The set of phenomena on
% is called the acoustic wave or the weak discontinuity wave, in contrast to a shock
wave, i.e. the strong discontinuity wave for which already the first derivatives are discontin-
uous. In accordance with (1.16) and (1.18),

[x'as] = A'aNp,

xl ] = —44U,
(R)) e
![x‘lu,] = B’N,,
[¥«]) = —B'U,
where A4', and B' are sets of parameters. Since [x* 5] = [x' 5], we obtain:
L p ’N
A, = A'N,.
The relation [x' o] = [x' ] implies that
B = —_UA'.

Hence, finally
[x'«s] = A'NaNp,
22 [¥' ] = — UA'N,,
[x‘.,,] = U24.
We agree now to regard as the independent variables X* rather than x*. Since the
coordinate systems are Cartesian, the total covariant differentiation is reduced to the par-
tial differentiation. Equation (1.3) is satisfied on both sides of the discontinuity surface #g.

Here 4;%f and g¢; are continuous, since they depend on the gradient x’, which is contin-
uous by assumption. Thus we have

2.3) ASP[x* ap] = or[xiee],
and, in view of the relations (2.2),
(2.4 (Qu—or Uzait)Ak =0,

(2-5) Qik = A‘mkﬂNmNﬁ.
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The tensor Qj is the acoustic tensor. It depends on X*, and N,. The vector 4* will be
called hereafter the amplitude; it determines the jumps of the second derivatives and is
the eigenvector, while the product pgU? is the eigenvalue of the acoustic tensor Q. In
view of the symmetry of the tensor 4,%? (1.4),, the tensor Q; is symmetric, i.e. Qi =
= Q. For each direction of propagation N,, there exist therefore orthogonal amplitudes
A* and the product pgU? is a real number.

The propagation condition (2.4) was derived in a different form by TrRUESDELL [1]
who examined the discontinuity surface moving in B rather than Bg. To derive Truesdell’s
propagation condition denote by dS, and ds; elements of the material surfaces and by
dV and dv elements of the material volumes in Bg and B, respectively. Now, we have

@.6) dSy = NydS = eap X2, X7, dM'dM?,
d.f{ = n,d.i‘ = EU,‘leﬁX{lxk'.,X’_nglsz.

Since

Ejpx gxt, y = Tlf Eapy X%, J =detx’,,
we have
2.7 dSy = %x"_ads,, Ny = Tlf-x“,n;%.
The material volumes dV and dv satisfy the relations
(2.8) doldV = J = pglo.

The function (1.1) maps the discountinuity surface &; from the configuration Bg
to the configuration B. The equation of the surface & and its speed u are the following:

(29) = '}’(x‘). u= (w.r tp.r)_”z'
Set dv = uds, dV = UdS. Since both dv and dV are material volumes,
(2.10 uds = JUdAS.

Introducing (2.10) into the propagation condition (2.4), we obtain:
U2
(Aﬁ’ 7 X ane X' gy —0r szsu) 4/ =0,

and, finally, we arrive at Truesdell’s propagation condition

(2-11) (QU"Qh‘zaU)aJ‘ = 0,
where
4 uz .
(2]2) gy = E—A,“fx’.mx',,n,n,, a = ';2— A,
R

The wave is longitudinal if n;||a; and transverse when a'n; = 0. A typical wave is neither
longitudinal nor transverse.

The following considerations will be based on the propagation condition in the form
(2.4). Substituting into it (1.11), we obtain:

(2.13) (Atnj'c YV p—or 5:1)/11 = 0.
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There exists a non-trivial solution of this system of equations if the characteristic de-
terminant vanishes, i.e.

(2.14) det (A5 ¥ . Ws—ordij) = 0.

This is a differential equation the solution of which is ¥/(X®) determining the wave front.
In what follows we assume that ¥(X®) has been found. The vector 4’ is determined to
within its length. 4/ will denote one fixed solution of Eq. (2.13).

3. Bicharacteristics

We proceed to determine the rays along which the acoustic wave is propagated. We
mainly base on Courant’s monograph [7].
Introduce the notation

(3.1) @ = Y(X%)~—1,

then on the front of the wave @ = 0 [cf. (1.18)]. The region F (in front of the surface ¥x)
corresponds to the inequality @ < 0, while the region B to @ > 0. We can now represent
the displacement #*(X*, t) as a function of X*and @, u* = m*(X*, ®); hence

(3.2) o =mat+mt oD,
Wy = mF g+ mF 0@ p+mt po @+ 00D Dy +m* oD 5,
W, = —mk g,k = m* g,
and substituting the above result into (1.6), we obtain
(33)  (A4%D D s—0r 0u) MF 00+ AR [ ag+ 0 Py +m* o D o+ o D o]
+ A8 o [mF g+ m* oD g] = 0.

Thus on the surface &5 the function m* 5, may have a discontinuity. Consequently,

we shall represent the displacements « in the form

(3.4) w(Xe, 1) = S'(D)g'X?, )+ S (DK (X?, N+kI(X%, 1),
where S(®) is a scalar function of @, such that its third derivative is the Heaviside function
S"'(P) = n(P),
n@) =1 for &>0, (@ =0 for P<O0.

The function g' determines the magnitude of the jump of the second derivatives on yx-_
Having introduced the function S(®), we may assume that the functions g', h' and K
have continuous second derivatives.
Now, we have
Uy=8"Dg'+..., w,=-5"g+..
oy = 8D D pg'+ 5" (Pog8i+ Pug' p+Dpg at PP pg)+...
uy = S"g+8"(=2¢" +0)+...,
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in the derivatives we omitted terms of higher regularity than S”(®). Introducing these
relations into Eq. (1.6), we have

(3.5) ZLuu = S"{(A5P D g—0r 0u) &} + S {(ASF D oD p— 08 Oi) K+ [A5P D oy

+ Au’ 19518+ (A5 (D 8" s+ P pg* ) + 20 Sug® ]} + ... = 0.
Each coefficient of S’’, ", §' must vanish; hence
(3.6) (A5 DD p—0rdu) g* = 0,
B 7)) (A8PD D y—or 0u) K+ APE (D og* + Dy 8" )+ 208 g s

+(ASPD g+ AHE D) g = 0.

Comparing (3.6) with (2.12), we arrive at the relation
(3.8) &t = ndk,

where # is a scalar. We emphasize that the length of 4* has been fixed 4* = 4%(X%, 1).
To determine » we multiply (3.7) by 4’ and substitute the relation g' = xA4*. Since the
coefficient of #* now vanishes (the quantity in the parenthesis in (2.13) is symmetric with
respect to i, k), we obtain:
(3.9)  AASP (D arp+ P grs)+20g O, ) A +xA' [A5F (DA Lot dpA* ) +205 05 A",

+ AP D g A+ AR [Py A = 0.

Let
1
(3.10) Py = ALY b s~ 0r0uD, D, = mdtukﬂNaNﬂ_Qa Ouxth,: b1,
aP,
#x.a = A[akﬂ(‘ib.ax,ﬁ'}'qs,ﬂx.ﬂ)'
dP;
éa%a % = —20r O, = 20& Oix,
St
where the relation @, = —1 has been taken into account. Let us construct a curve 4
determined by the parametric equation X*(4), #(1), satisfying the differential relations
dx* 0P, "
(3.11) — = "65,% A A* = AXH(D 8,0+ D, 0,0) A1 4",
dt 0P ik
R i i - S i Ak_
7= o0, 44 = 2eroud

In accordance with (3.8), the normal to the four-dimensional surface @ = 0 has the coordi-
nates

(q).l 3 @.2’ (D.S l)
Thus the scalar product of the vector (3.11) and the normal is
(3.12) (24D, D, —2Pg) A'A* = 2Py A'AY,

and in view of (2.13), this expression vanishes. Therefore, the curve 1 is situated on the
surface @ = 0. It is a bicharacteristic of Eq. (1.6).
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In accordance with (3.11), the first term of Eq. (3.9) is the derivative dk[dA. To transform
the second term we calculate the derivatives of the product

(3.13) (949, = CD,,A*-F D4k,
(d)fi*).ap = @,aﬂAk+@,gAk’B+¢"8A“¢+¢Ak'¢ﬁ'
(94%),c = (9, A"+ DA~))
(@AY, = Dy A +2D A%+ DA,

Evidently, the second term of Eq. (3.9) is equal to xA4'%, (®A") for @ = 0. Thus we
finally have the differential equation
dx_

(3.14) 21 F*RA) =0, R() = AL,(PA)4-0.

Since A'(X*, t) and @(X”, t) are known and X* = X*(4), 1 = 1(4), the above equation
is an ordinary differential equation for the function »(2). Its solution has the form

A
(3.15) #(@) = Cexp|— [ R(aa],
0

where C is an integration constant. Consequently, if at one point of the curve 4 we have
2 = 0, then along the whole curve » = 0. The projection of the bicharacteristic A on the
space X“is the ray r, the equation of which is X* = X*(1). If at a point of the space x = 0,
then along the whole ray r passing through this point, » = 0. The discontinuities of the
displacement u' are propagated along the rays r. Equation (3.14) is liner in %, because
the calculations were based on the linearized Eq. (1.6).

The equation of the ray is determined by (3.11);. However, in accordance with (1.11)

dx®
(3.16) = Al4* LU (AX#(Nbya+ N, 64),
and therefore, in view of (2.5) and (3.11),
(1 -3 k
(3.17) ax = LA‘A* 0 ax 1 A4 00y

@ U oN,® ~dt ~ 20RU A'A" 0N,

The derivative dX*/dt is the vector of the ray velocity U.% the length of which we
denote by U,. Multiplying by N, we, have

Ou A'A*
@ —

Urila = orU ATA"
and, in accordance with (2.4),

(3.18) UN, = U.

The projection of the ray velocity on the normal is therefore equal to the speed of propaga-
tion. Consequently,

(3.19) U =U.

All above relations can easily be written in curvilinear coordinates
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To this end, all spatial partial derivatives should be replaced by the total covariant
derivatives and the time partial derivatives by the material time derivatives.

Our considerations concerned the propagation of a discontinuity surface in the refer-
ence configuration Bg. With the help of the relation (1.1) we can immediately pass to
the corresponding relations for the configuration B. However, for brevity, we do not
quote here the transformations.
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