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Plastic torsion and tension of naturally uniformly twisted bars

M. ZYCZKOWSKI and M. GALOS (KRAKOW)

THE PAPER deals with the problem of plastic torsion and tension of twisted rods made of per-
fectly plastic materials. The considerations are based on the Huber-Mises-Hencky yield condi-
tion, the Hencky-Ilyushin (or Levy-Mises) plasticity theory and the de St. Venant principle, The
problem is solved in an original, curvilinear and oblique reference frame &, 7, £, the stresses and
strains being considered in a locally orthogonal coordinate system &, , z, Such procedure enab-
les us to find a relatively simple solution, In the co-ordinate system introduced all the fundamental
equations are written, i.e,, the geometric relations, the compatibility conditions and the equations
of equilibrium. The paper is illustrated by examples concerning the plastic torsion of a natu-
rally twisted rod of square cross-section, and the plastic tension of such a rod.

W pracy zajeto si¢ rozwiazaniem plastycznego skrecania z rozcigganiem pretdéw zwitych, wyko-
nanych z materiatu idealnie plastycznego. Skorzystano z warunku plastycznosci Hubera-Misesa-
Hencky’ego, teorii plastycznodci Hencky'ego-Iliuszina (lub Levy-Misesa) oraz zasady de St. Ve-
nanta. Problem rozwigzano w nowo wprowadzonym, krzywoliniowym, uko$nokatnym ukla-
dzie odniesienia &, 7, {, przy czym naprgzenia i odksztalcenia rozpatrywano w lokalnie ortogo-
nalnym ukladzie wspéirzednych £, %, z. Takie postepowanie pozwolilo na stosunkowo proste
rozwiazanie zagadnienia, Dla nowo wprowadzonego ukladu wyprowadzono wszystkie podsta-
wowe rownania, a wiec zwiazki geometryczne, warunki nierozdzielnosci i warunki rownowagi.
Prace zilustrowano przykladami plastycznego skrecania preta zwitego o przekroju kwadrato-
wym, oraz plastycznego rozciagania takiego preta,

B pabore pellleHs! 3afauy IUTACTHYECKOTO KPYUEHHA C PACTSYKEHMEM BUTEIX CTEpIKHEH, BEI-
TIOJTHEHHBIX M3 MeaNbHO-IUIACTHUeCKOro MaTepHana. Hcmois3oBaHb! YCIOBHA IUTACTHUHOCTH
I'y6epa-Muszeca-Tensn, Teopru mnactuurocTl erxn-Wnsionmma um Jlesu-Museca u mpus-
immn Cen-Benana, 3afaus pelllaioTcsi B HOBOBBeAEHHON KpUBONMHEHHON HEODTOrOHANBHOMN
cucreme Koopauuar £, 1, £, npuuém HampsoeHMs u AedhopMAMI PACCMOTPEHE! B JIOKAILHO
OPTOTOHaNbHOM cucreme &, 7, z. Takoll MOAXOM MOSBOJIMII MOJYYHTh OTHOCHTE/FHO MPOCTHIM
nyTém pellleHHe 3ajaun. B npuHATON CHCTeMe BhIBEEHBI BCE OCHOBHBIE YPAaBHEHHA, T. €. I'e0-
MEeTPUYEeCKHEe COOTHOIIEHMS, YCJIOBMS HepaspbIBHOCTH M ypaBHeHHsa paBHoBecusa. Hiumo-
CTpalleil MeTola ABJIAIOTCA pelUeHHs 3aJau O IUIACTHYECKOM KPYYEHHH BUTOTO CTEDMCHA
KBaJpaTHOrO CEYEHMA H O IUIACTHUECKOM PACTSIKEHMH 3TOTO CTep)KHA. PellleHHA HOIydeHbI
oo MeTofy masoro mapamerpa. [TokasaHo, 4TO JaKe IIPHMEHAA METOJ MAIOro IapamMerpa,
TPYIHO NONYYHTE 3¢ deKTHBHbIE Pe3yIbTaThl, YUNTHIBAIONIHE Bee ypaBHerus, IloaTomy maHb!
nprO/mnKEHHBIE pellieHHs, YAOBJIETBODSIOLIME YDABHEHMAM DaBHOBECHS, YCJIOBHIO TeKy-
YECTH, KPaeBhIM YCIOBHAM M YCIOBHAM HEOPePhLIBHOCTH, YTO COOTBETCTBYET CTAaTHUYECKH
ponyctumomy peilenmio. Hauer addexTusHBle HopMyIBl [l pacuéTa Hecyllei cmocoGHocTH
IIPH KPYYEHUH H TIPH PaCTSyKEHHH BUTOTO CTEPYKHS KBAJPATHOTO CEueHMsd.

1. Introductory remarks

As A NATURALLY uniformly twisted bar we understand a bar created by simultaneous
shift and proportional rotation of an arbitrary cross-section about a straight axis. The
corresponding coefficient of proportionality ¢, will be called “unit angle of natural twist”.

The problem under consideration may be applied to determine the limit carrying capa-
city of naturally twisted bars e.g., spiral drills (which — usually made of brittle materials —
show at elevated temperatures tendencies to plastic collapse), airscrews etc. This problem
gives also a certain approximation for straight prismatic bars, subject to torsion and with
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geometry changes taken into account, since most effects are here similar (cf. W. OLszAK
[9, 10].

Elastic torsion of naturally twisted bars was analyzed by G. Yu. DzHANELIDZE [2],
and G. Yu. DzHANELIDZE and A.I. LuriE [3). They derived the basic equation of the
problem and solved some simple examples. DZHANELIDZE analyzed also the case of tension.
He determined normal stresses accompanying torsion and shearing stresses accompanying
tension of naturally twisted bars. Elastic stability of such bars was investigated by L. S. LEI-
BENZON [7], and A. I. Lurig [8]. N. A. CHERNYSHEV [1] considered a similar problem for
helical springs.

The investigations in the plastic range are very scarce. We mention here only an approx-
imate analysis of fully plastic state of a helical bar, given by D. D. IvLEv [5]. B. R. SETH
[11] considered finite plastic torsion of a straight bar of circular cross-section.

The present paper gives general equations describing plastic simultaneous torsion and
tension of naturally uniformly twisted bars, and some particular solutions. The assumptions
are as follows: Huber-Mises-Hencky yield condition, incompressibility, theory of small
elastic plastic deformations (Hencky-Ilyushin; the Levy-Mises theory leads here to the same
results), finally de Saint-Venant’s principle. A new, convenient curvilinear system of coordi-
nates is introduced. The lines &, 1, { (described subsequently by the equations = const,
¢ = const; { = const, £ = const; & = const, 7 = const) are not locally orthogonal, but
we refer stresses and strains to the locally orthogonal system &, 7, z. All the basic equations
are derived and solved using this approach.

2. System of coordinates

For a naturally uniformly twisted bar with unit angle of natural twist #, we introduce

the following curvilinear system of coordinates:

2.1) & =x-cosPyz+y sindpz, 7= —x-sindyz+y-cosdyz, =Zz.

In these coordinates the problem of torsion with tension is reduced to a two-dimensional
case, since all the derivatives of stresses and strains with respect to { vanish.

To derive basic equations of the theory of plasticity in the coordinates &, i, { we trans-
form the stresses, strains and displacements to the locally orthogonal system &, %, z and
transform the differentiation with respect to x, y, z into differentiation with respect to
&, m, & (Fig. 1). Such an approach, used e.g, by DZHANELIDZE, seems to be the simplest
in the case under consideration. Thus we express ox, Oy, 0z, Txy, Ty, Tzx in terms of og,
Gys Oz Tgys Tyzy Tz¢. Lhe transformation of stresses and strains (or strain rates) is a two-
dimensional tensorial one:

0x = 0;c08* P L+ 0, 5in*Py L — 274, sindy {cos By L,
(22Y  hin e s el v etaTh WeTSE SR e, S aer SR

and the displacements are transformed as vectors:
2.3) Uy = ugcosPoL—u,sin®ol, u, = upsindo{+u,cosdyl,

U, = u,.
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FiG. 1.

The differentiation is transformed as follows:

¢ .0 G ooy @& 0 gno. 0
W I T i T 5E ~Sindes 7

= cosdy

7} . 0 7}

(2.4) i smﬁoC—a?+cosa?o(;'-é§,
a d a a

e 1901?“65 _1905—5‘*:3 +—-a-(—:~.

In what follows, the derivatives of stresses and strains with respect te { will be omitted.

3. Basic equations of the continoum mechanics

Substituting (2.2) and (2.4) into the equations of internal equilibrium without body
forces o;;, ; = 0, we may write the two first equations in the general form

3.1 2, [oy]sin Py L+ 82, [0)cos B L = 0,
Q,[oy]cosPo L —2;[0y]sin B L = 0,
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where 2, and £2, are some differential operators. Hence 2, [0;;] = £2,[0,;] = 0 and finally,
with the third equation added, we arrive at the following system:

9% | % , a?a( P O 6‘:,5, ,,) =0,

ot = oy K3
(32 a;;,, + 90 +§o( Otys _ g 0%: ar,,, +1:€,) =0,

61:5, 6‘:,,, do, do. | _
oE + = +19a( S —& P ) = 0.

Similarly, substituting the formulas analogous to (2.2) for strains, (2.3) and (2.4),

. e 1 .
into the Cauchy equations, ¢; = 7(“" j+u;,;) we compare the coefficients of the cor-

responding trigonometrical functions at both sides of subsequent equations and obtain

au, 0 du ou,
85='?;"’ aw=*§': ?En‘—e'*'_ag“
du ou du
= =+ P = ;:_’),
6.3) a¢ 73 on
_ 6:{ 3u; ( aue 63&5 )
Yoz = i + 1 w5 u,l,
_ éu, ou, ( Ou, . Ou, )
Vnz = an +_az:"'+ﬁo a&. s 5?? +ug.
Continuing, we transform the compatibility conditions
(3.4) &gkt Exrij— Eik o —Ejt,ik = 0

to the form (the derivatives with respect to { being omitted)

6285 628" - az}’eq
o T OB~ okon’

2

(=7

G|
= {A [Ves — Yz }— 19\3{?;14 [ee] —éB[e,] —2 (9? ;;ﬂ il 3;’;'1 + &= €.,)},

862 &
;_;‘1 = 9 {B[y,,,]+ ;’;} 9 =WA[6,,]~§B[5£]+2(7;—63’1§1—5% +se—s,,)},
(3.5 2—6‘3ﬁ i {A [+ Blyed— 25 + 9-;%} . e?%{m: [yl EBlyed) +
- gl
F (a”"‘ - a;:,) = ﬁ.}{ —2B[eg]+ Alye] +2—= ai; 6@? +233’Eu

e _ e ase as,, 5?’5"}
_5??( ok on = o 2AI8,.'.] B[?e.,] Lt e ey =
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where the operators 4 and B are as follows:
0 d i) ] d d

R 4 ‘Té(”ﬁ?‘ETn)’ B'a—n(’?ﬁrfa-
For small angles of natural twist &, the first compatibility condition refers to the two-
dimensional problem in the plane &7, the next three conditions — to the elongation e,
and the two last ones — to the problem of torsion.

Finally, we derive the boundary conditions. If the boundary surface of the body is
described by the equation F(x, y, z) = 0, the stress boundary conditions may be written
in Cartesian coordinates as follows (W. Krzy§, M. Zvczkowski [5])

(3.7 tPuVF  F,; = Fygopy,
where p,; denote surface tractions, i = x, y, z. Transforming these tractions according
to (2.3), the stresses according to (2.2), the derivatives as indicated by (2.4), and bearing
in mind that 6F/éf = 0, we arrive at:

+ PV FE+F2 + BFi—EF)* = 0 Fi+ 74 Fy+ So(F— EFy) 7,
3.8) ipml/Féz-l-F:,z-!-ﬁ%(qF;—fF,; 2= 7€0F§+"nﬂ+ ﬂu(ﬂﬂ_éﬂ)"qn

+ 0V FE+F2 + B3 F—EF,)? = 13 Fi+ 7,0 Fy+ 9o (nF — EFy) 0.
For a free surface the expressions on the right-hand side of these equations are equal to
Zero.

4. Theory of plasticity. Discontinuity lines

Since the stresses and strains are expressed in a locally orthogonal system, the physical
equations of plasticity are written in their classical form
4.1) D, = ¢D,,
where D, denotes the stress deviator; D, stands here for the strain deviator (the Hencky-

Ilyushin theory) or, quite formally, for the strain-rate deviator (Levy-Mises theory).
The condition of incompressibility yields

(4.2) g+e,+e, =0,
The Huber-Mises-Hencky yield condition will be written thus:
4.3) (0s—0,)*+ (0,— 0.)* + (06, — 0e)* +6(7eh + T8, + 12;) = 203.

The problem of pure plastic torsion of prismatic bars results, as a rule, in a certain
distribution of discontinuity lines. An analytical description of them is given by the present
authors in [4]. It turns out, at least for bisymmetrical cross-sections, that this pattern of
discontinuity lines remains unchanged in the case of uniformly naturally twisted bars
with the same shape of the cross-section.

Consider, for example, a square bar (Fig. 2). For a prismatic bar the discontinuity
lines coincide with the diagonals. Suppose that for a naturally twisted bar their position
is changed as shown by the solid line. However, looking at the same cross-section from
the other side we arrive at the same problem of torsion with the discontinuity lines shown

25 Arch. Mech. Stos. nr 5—6/72
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Fia, 2,

by the dashed line. This fact is contradictory, thus the discontinuity lines must coincide
with the diagonals.

To derive the conditions of equilibrium along the discontinuity lines (discontinuity
surfaces), we may use boundary conditions (3.8). Across the discontinuity lines the tractions
must be continuous. Denoting the stresses in the two neighbouring zones (I) and (II) by
o, 0V, ... and of™ o, ..., and the equation of the discontinuity line by F(¢, 9) = 0,
we obtain from (3.8)

(0§D — o™ F; + (o)) = 1) Fy + B (2 — 1) Fg — &Fy) = 0,
@8 (= O+ (P~ OIF+ Bo(e) — D) o Fi— EF) = 0,
(o = )Fg+ () — TG0)Fy + Do (0l — o) (nFg — €Fy) = 0.

5. Application of the perturbation method

The problem under consideration is described by 16 equations [three equations of equilib-
rium (3.2), six geometrical Eqs. (3.3), six physical Egs. (4.1) and (4.2) and the yield con-
dition (4.3)] with 16 unknowns (stresses, strains or strain rates, displacements or velocities,
and the function ). In the limit state it is assumed that these equations hold for the body
as a whole.

To obtain a relatively simple solution of the problem, we apply the perturbation method
with #, being a small parameter. Thus the zeroth-order approximation refers to the
prismatic bar. The solution of the problems of pure torsion and pure tension are here
well known; the problem of combined torsion with tension was examined in detail by
M. Wnuk [12].

We present the solution in the form:

oy = Zﬂm‘%a &y = Zsua’%,
(5 l) n=0 =0

U= Zutn%! - Z‘Pu%-

n=0 n=0
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In the zeroth-order approximation, oz = 0,0 = Tgmo = Veq0 = 0; the equations may
be reduced here to one second-order nonlinear partial differential equation for the dis-
placement w, [12]. For the higher-order approximations # > 1, we obtain the following

system of equations, linear with respect to subsequent unknowns:

3;;. 3;:;- = sy 3"33(;—1) +§aTE:3(7;_1} F ety
Pim T g o)y )
Tl S )
% = AlYesu-1)]— ———“ay(g?_n —nA[eyn_2)l—EBlegn-2)]
-—2(11 ayégg'z) —§ 6;»55:;_;, +8£(n—2)'_8n(n-2})s
3;:? = Blyp-1]+ 37’;_5(:;__2 — nA[eyn-2)]— Bleg(a-2)]
s ('? aye-é(g-z) —t ayez(,;-z) Wby E»o--z)) ,
25258 = Alpo-l+ Blpean-v] — 200 1 Doty
O8gn-2) _ Oqn-2)
N4 [Yenn-2)]+ 53{?&«:«-3)]—4’1( % o
(5.2) +4£( as‘é’;}"’ = as,,a(..n_,, ) +4V0n-2) »
6;1;.;“ _ %’5? _ —23[8;(.*1)]+A[?g.,(,_l,]-i-Z(aEi;}_n _ 38.,6(;_1) £ 6?53(;-1)),
%?5;. _ 3;3’;52“ = 24[epn_1y] ~ Blyenios ﬂ_z(aee‘;;_xy B 38,2;_1) _ 3?83(;—1) i

EgntEnt b =0,

n
Em—En = Z ‘Pi(Uz(n-l)—‘-Te(u-f)),
i=0

n
Exn—Epn = Z‘?’i(gz(u—ll‘"gq(n—l))!
i=0

n
Vem =2 Z PiTen(n—iy»
i=0

25%
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n
Vnza = 22 PiTyz(n-i)>

i=0

Yen = 22 @irﬁx(n—ij:

i=0

n
2 [021 e a—ty+ Tt Openty + 021 To(n-ity = Ogi Opn—iy = Oi Tz(n—i)
i=0

— 0y Ug(n_g)“" 31&,,]75,‘.(“_‘) + 3‘!'5'{1'5‘(,‘_() +3qu"r,"(n_,u = 0.
The operators 4 and B are here determined by (3.6). In some cases it is more convenient
to replace the compatibility conditions by the relations (3.3), which may be expanded into

power series without any trouble.
The boundary conditions (3.8) at the free lateral surface of the bar yield

OenFi+ TeqFy = — (MF—EF) Teznotys
(5.3) TemFg+ 0 Fy = — @F—EF) Than-1),

Teen e+ Toan Fy = — (Fg—EF) 03n-1).
Similar conditions along the discontinuity lines may be obtained from (4.4). Effective
solutions of the system (5.2) with boundary conditions (5.3) depend on the shape of the
cross-section of the bar.

External loadings, determining the limit carrying capacity of the bar (plastic interaction
curve in the combined case) are given by the formulas

N=§19’affo',,,dA,

(5.4) n-: A
M= Z%J.J. (7“"6_7&“7?)‘11{:
n=0 A

A being the cross-sectional area of the bar.

6. Example of pure torsion

6.1. Basic equations

As the first example, let us consider pure torsion of a bar with square cross-section
with the side 2a. The zeroth approximation, corresponding to a prismatic bar, is here very
simple. In view of the fourfold symmetry of the cross-section, let us consider only the
octant I, 0 < £ < 4, 0 < 9 < &, and conditions along the borders with zones II and III
(Fig. 3). The symmetry conditions lead namely to the following relations between the
stresses and strains inside the zones I, II, and III. The functions o, o,, o, Ty, the cor-
responding strains and ¢ being symmetrical with respect to the axis &, thus fulfil the rela-
tion f( (&, 9) = f® (§, —n). The functions 7., 7e,, Yz and y,, are antisymmetrical
ones, thus f (& ) = —f*) (&, 5). Further, the solution for the zone III may be obtained
from the zone II by a simple rotation of the bar. Thus o{"™ (&, ) = o{' (3, —&), and
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?f?

2a

similarly ¢, and @, 6" (&, ) = ol (5, —§), and similarly o,, 7,,, &, &,, and y,,, finally
M (&, n) = — 4" (n, —§&), and similarly 7., g, and p,,.
For the octant I of the prismatic bar we have in this case

Tezo = 0! qu[) = ?0— = k:
3
?
(6.1) Vezo =0,  ¥Ypo = 20¢E-17), @o= "E'(E—’?),

Oz = Ono = 00 = &0 = &0 = &0 = 0.

In these formulas ¥ denotes the unit angle of twist, due to the action of the twisting mo-
ment M (Hencky-Ilyushin theory; in the limit state we have to assume here 4 — ), or
the rate of the unit angle of twist (Levy-Mises theory).

Discussing now the first approximation, n = 1, we may split the system (5.2) into
three parts. The third, eigth, ninth, fourteenth, fifteenth and sixteenth equations form
a linear homogeneous system with respect to the unknowns: gz, Tys1, Yez1s Vnz1 and
@, ; the corresponding third boundary condition (5.3) is also homogeneous, thus 7y =
= Tyt = Yez1 = Vg1 = @3 = 0. This result is very important, since it turns out that
the natural twist has no influence on the limit torque in the first approximation, its effect
will be seen only through the second-order terms. The fifth, sixth and seventh equations
determine the strain ¢,; — namely:

02 €21 aylrzﬂ
e Alye.ol o’

azazl o a‘y&zo
(62) a??z o B[y120]+ o aﬂ ]
0%, _ Vo , OVes0
2 W =A [yﬂ'zl:l] +B[?620] an + a§

Hence, after substitution and integration:

(6.3) e = (=82 +28n+n*+Cié+Con+Cs) b
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The remaining seven equations form a system analogous to that describing the plane problem
of the theory of elasticity with body forces:

30;1 + (31.'5,,1 = 31';‘1 66.1 =0 azgu + aze‘l _ az?ﬂl
ok on . o0& on . on? il okon’
(6'4) Ea—& = ?’0(“:1_051), €1 —Ey1 = ¢o(ﬂsl_aul):

VYém = 29’01&113 E1teq+Eq = 0.
We introduce the stress function ¢,

¢, _ ¢ 0*¢,

o’ On1 T Ten1 = — aEan

and express o,; and the strains in terms of ¢, ; substituting them into the compatibility
condition, we obtain the following linear partial differential equation of the fourth order:

6.5 ou = +k7

(6.6) E-n)V ¢1+2(“““ - | V¢, = 4k

This equation must be satisfied within the triangle 0 < £ < a, 0 < 5 < £. The boundary
conditions (5.3) are here as follows:

2
6.7) 5633; =0, ggg—‘ = 2kn, along & =a.
The continuity conditions (4.4) along n = 0 yield at first
(68) o=, oD = ofl;

now, 7g, is an antisymmetrical function of %, thus simply 7;,, = 0 along n = 0, and the
second condition is fulfilled automatically in view of the symmetry of g,. The conditions
(6.8) may be rewritten in the form

P¢: _
aEan = °

The continuity conditions (4.4) along £ —# = 0 yield at first
a? —a?m—rz: 24D+ 2n(e— ) = 0,

(6.9 along 7 = 0.

(6-10) 5111) )+0|(111H)+27?(T£H) (UI)) = 0.
Expressing the stressesin the zone III by those in the zone I, and subsequently in the
zone I, we find o{f(£, 7) = o{(n, —&) = o{Q(n, &), similarly o{i”, and {P(§, ) =

=52, —&) = 7§ (n, &);further ) = t(“‘) =0, i) = —k, ©{ih =k, and both Egs.
(6.10) give the same result

6.11) P—oP+2mk =0
or

¢y ¢y _ _
(6.12) T ap T 2nk  along & = 7.

The Eq. (6.6) with the boundary conditions (6.7), (6.9) and (6.12) determines the distri-
bution of the first-order corrections in the naturally twisted bar.
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As already indicated these corrections have no influence on the limit torque. To evaluate
this influence we have to discuss the second approximation, at least. Considering this
approximation, we find the situation quite opposite to that at the stage of the first one.
Now, the system of the first, second, fourth, fifth, sixth, seventh, tenth, eleventh, twelfth
and thirteenth Eqs. (5.2) is a linear homogeneous system with respect to the unknowns
Og2, Oyzs Oz2s Tey2s €25 En2s Ex2 A0 Yg,,; the corresponding boundary conditions are
also homogeneous thus all these unknowns are equal to zero.

The remaining second-order corrections are determined by the remaining equations.
The last equation — the expanded yield condition — makes it possible to evaluate directly
the stress 7,,,, namely:

1
(6.13) T2 = —€r (021 + 0714 02— 0210y — 0102y — 03,0, +3731).

The third equation of equilibrium may now be used to determine 7g,,:

0%z OTuya _ 00, 0oy,
(6.14) = T
This equation is furnished with the boundary condition
(6.15) Ty = —no,; for &=a.

The remaining compatibility conditions may be rearranged (making use of the compati-
bility condition joining &, &,;, and y,,,) and integrated subsequently with respect to
& and #. Then they are reduced to one common equation

1o Y e g0yl P, B,

k8 o . oy 3 OF

which together with the remaining physical equations

24 29
(6 17) Yez2z = T (E" ﬂ)tézz s VYnz2z = T (E -'7?)1":::2 +2%k

determine the unknowns yg.;, V522, and ;.

The formulas for 7;,, and 7,., make it possible to find the second-order correction
for the limit twisting moment M.

In the odd higher-order terms we have always 7., = Tupn = Vezn = Vyen = @a = 0,
and in the even ones we have oy, = 0yn = 0zn = Tggn = &gn = &g = &2n = Ve = 0.

6.2, A statically admissible solution

Even in spite of the perturbation method applied, the solution of the system of linear
equations obtained is complicated. For example, the fourth-order partial differential
Eq. (6.6), singular along the line £—#% = 0, is to be solved with the boundary condition
(6.12) along this line. To obtain a simple analytical solution we apply here a statically
admissible approach, solving only the equations of equilibrium, yield condition, the
boundary conditions, and the conditions of continuity along the discontinuity lines. At
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each stage we have four equations with six unknown functions (stresses), thus two functions

will be chosen arbitrarily. The limit twisting moment M obtained then gives a lower estim-
ation of the exact solution.

The zeroth-order approximation is determined exactly, (6.1). Proceeding to the first-
order approximation we find first the only statically admissible distribution of 7¢,, and
Tyz1 — Damely, 7gy = T,z = 0. The remaining equations do not contain the unknown
a;,, which will appear only in the equations of the second approximation. Thus we
may choose here only one function arbitrarily. We assume 7¢,, in the form:

(6.18) Tegr = —-nk[a+(l—a)§:|,

where « is a free dimensionless parameter, to be found later from the condition of max-
imal twisting moment; the corresponding boundary condition (6.7) is already satisfied.

Integrating the equations of equilibrium and making use of the boundary condition
for o, and of the continuity condition along §—» = 0, we find

oy = kl:(l+0t) (¢—a)+(1—a) 522;“3],

(6.19)

Oy = 2k§+k[(l +a)(l—a)+(1—a) 7122;32:].

Starting with the second-order approximation, we assume first oy, = 0, = 7, = 0.
Although these functions are determined only by the two first equations of equilibrium
and one of them may be chosen arbitrarily, the assumed choice is the best one, since —
as we found in sec. 6.1. — it is exact. The remaining two equations contain o;;, 7.,
and 7,,,. The distribution of the stress o, must correspond to zero normal force N, = 0.
We assume, quite arbitrarily, o,; = 0, then the yield condition (6.13) determines 7,,,:

(620) 7:1:2 e %[452 +

(1-a)?
402

(E*+n*+a*+ 118292 — £20% —p2a?)

— 2
+ -1—2:—(53+?}2§—§2a—nza—25a2 +2a%)+2(1 + 2) (&2 —£a)

+ %(2&’-5&2—53) P .

n2E+ 30?9+ (1 +a)? (E— ﬂ){l '

The third equation of equilibrium and the boundary condition (6.15) determines finally

1.'5,2 o

k| (1—-a)?
6.21) 7py = ?[% (41;.-3 E—dnla+ —232—7153 - 33373&3—213502 +21ga3)
l=o? ., l—a 2 3
g (nE% —na*—2nka+2na®)+ = (2n&2 —2na?)
1—
a

+6a

% (&> —na?)+6a? (nf—na)]-
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Thus the second-order approximation of the statically admissible solution is fully determin-
ed. The most interesting stresses 7,, and 7, are shown in Fig. 4 in the zeroth and in the
second approximation for #,a = 0.3.

Atozlk] ______._..-——--:";"f"
= > il
P [— “““’f"/r” -
1 -.-.:;-.../:-:“h /ﬂf"r
08} TSt A1
h,..r. ’/
a5 H
a4 H
.JJ-J-
I
3
“ T}x[k]
04}
02
F

FiG. 4.

The limit twisting moment M is given by the integral (5.4) taken over the considered
octant and multiplied by 8:

(6.22) M = %ka’ - %kas(l.IZB +0.47340+0.06340) #5+ ...

The optimal value of the parameter « corresponds to the maximal moment M, thus to the
minimal value is in the bracket; we obtain ¢ = —3.74, and the best approximation is
as follows:

(6.23) M= —i—ka'-‘ —0.124ka92 + ...

This moment cannot be smaller than the limit moment for the circular bar with the radius @

(inscribed in the considered square bar), M, = -%—-:rxka’. The last value may be regarded
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as asymptotic, good for #, — co. To improve the accuracy of the series (6.23) we propose
a certain approximation, which takes into account also the asymptotic value. Assume,
namely, the following approximate formula:

= 8, ,14+B%
(624) M= ~3—ka W.
The requirements of the agreement of the expansion of (6.24) with (6.23) and of the given
asymptotic value determine B and C. Thus for practical application we propose the formula

= 8, ;140170934

625 M =3k Trosiena
The dependency of the limit twisting moment M on the unit angle of natural twist ¥,
is shown in Fig. 5.
 Mlka’] 1+01m0a’

M= Sk’
37 1e02660%a?

i

- “h"\.‘\
__’/ ~

_______ 2O A WP PR
; 2 M= % whia® \\ M=3-ka™-0124 ka"Iy
"

/ 1
/ \\

/ \

yil| | 1 Ly
/ -20 -0 a 0 o\ ha
! \

FiG. 5
7. Example of pure tension

As the second example we consider pure tension of a naturally twisted bar with square
cross-section. The perturbation method combined with the statically admissible approach
will be used.

The zeroth approximation refers to a prismatic bar, thus 0,, = 0y, and the remaining
stresses vanish.

The first approximation in stresses is determined by four homogeneous equations

ao‘fl a‘i"ér.ll oz 31'-'5,1 arqri 2
5 7 + an =0, o +_—5’? =0,
' d
%+ 3;‘;;, =0, 20, —0g—0p =0,

with the boundary conditions, some of which are non-homogeneous:

25 0 =0, 74 =0, 7T =-—nmo, for &= ta,
3 01 =0, 74 =0, 7, =E&0 for n = ta.
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We assume oy = 0, = 05 = Tgy, = 0 (this assumption may be proved to be exact),
further

g2
Tezy = 1?0'0(—1'—“ az ’

7?
Tyzt = 5‘-’0(1"‘“ ) az)

The coefficient « cannot be regarded here as free, since we have to impose the condition
of no twisting moment M, = 0 (condition of external equilibrium) hence a = 3/2. The
first approximation has no influence on the limit normal force N.

The second approximation in stresses is determined by the following four equations:

31} Ez

(1.3)

da &2 0 fg',, 2
0é on

Teya i do,, 3 382 —n?

= 5 0of——5—

(1.9) & T og 2%
0Tg.2 0Tpss
X Foog T
9 2 ..2 l 2‘? ¢ o |
S UV P |
with the boundary conditions
3 phagt
g2 = 0’00,  Tey2 = —'J“Uo(l"'? L aza ), Tes =0 for &= ta,
(1.5)
3 £2-g°

Opr = %00, Ty = —fao'o(l+f pe ), Tz =0 for 7= ta

We assume g, = 7,,, = 0 (this assumption may be proved to be exact), further, to
satisfy the boundary conditions,

3 £4n9 2)

(7.6) Tepz = _5%( g

The equilibrium equations with the remaining boundary conditions determine now the

stresses oy, and o,,:
2
n
Ogz = 00[203

2
Op = Uo[ ;az (9':‘—703)—(71’-0’)],

and the yield condition gives the distribution of o,,:

2 2,2
(7.8) A ao[ & (—2;— Ea? + %I_) (52‘4‘?}2)“'“3]-

az

—a)— (5"-—0’)] ’
(7.7
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Integrating the stresses o, over the cross-sectional area we find the limit normal force
7.9 N= ff 0,d4 = 44200(1-—-%19302+ )
A

This force cannot be smaller that the limit force for the circular bar with the radius a (inscri-
bed in the square bar considered), Ny = na®0,. Treating the last value as an asymptotic
one, we assume the following approximation

1+ B9
1+CH%°
the requirements of the agreement of the expansion of (7.10) with (7.9) and of the given

asymptotic value determine B and C. Thus for practical applications we propose the
formula

(7.10) N = 4a%

= 1+0.73383a*
— 42
(7.11) N = 4d4%a, 14093384 -

The dependency of the limit normal force N on the unit angle of natural twist ¢, is present-
ed in Fig. 6.

N[o,a?
WNlo,a’] G 1407330 2a?
p ° 1+09330¢a’
- =~
— 7_1_'__.__3___ N —
/ [~ \,
\M=nd’s, L ! Mﬂfﬂzag(‘!—%!?nz a?)
24 \
/ \
/ L = \
| \
! L/ | I L\ L e
-8 A -2 0 2 4 \‘ [ 8,.?“3
I
\
Fic. 6.
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