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The influence of nonlinear couplings on the behaviour of the solution
of the equations of motion of a mechanical system

R. GUTOWSKI (WARSZAWA)

THE suBJECT matter of this analysis is the influence of nonlinear couplings on the behaviour of
the solution of the equations of motion of a mechanical system which may be subdivided into
sub-systems non-linearly coupled. The conditions for the motion of the sub-systems to be bound-
ed and capable of being made arbitrarily small are established. Another subject of discussion
are bands which can be constructed making use of the solution of a suitable set of linear differ-
ential equations, and which contain solution of the subset considered. The width of these bands
depends on the estimated values of the nonlinear coupling functions. For synthesis these bands
can be made arbitrarily narrow, which means in practice rejection of the nonlinear couplings.
The results discussed have been obtained by methods of integral inequalities.

W pracy zbadano wplyw nieliniowych sprzezefi na zachowanie si¢ rozwigzan réwnan ruchu
ukladu mechanicznego, ktoéry moina rozdzieli¢ na podukiady sprzezone nieliniowo, Ustalono
warunki, przy spehieniu ktérych ruch podukiadéw jest ograniczony i moze by¢ uczyniony do-
wolnie malym. Ponadto wskazano pasma, kt6re mozna zbudowa¢ za pomoca rozwiazar odpo-
wiednio dobranego ukiadu réwnaf rézniczkowych liniowych, w ktérych przebiegaja rozwia-
zania rozwazanych podukiadéw. Szerokosé tych pasm zalezna jest od wiasnosci nieliniowych
funkcji sprzegajacych, wyrazonych za pomoca oszacowan tych funkcji. Z punktu widzenia
syntezy ukladu pasma te mozna uczyni¢ dowolnie waskimi, co odpowiada mozliwosci prak-
tycznego pominigcia sprzezeni nieliniowych. Przedstawione rezultaty uzyskano stosujac metody
nieréwnoéci catkowych.

B pabore MccnenoBaHo BAMAHME HEMWHEHHbIX CBA3eH HA TMOBefleHHe pellNeHMWI ypaBHeHwi
ABMIKEHMA MEXAHMYECKOH CHCTeMBI, KOTOPYIO MOM(HA Das[e/MTh HA MOACHCTEMBbI C HEJHMHElH-
HbIMH B32MMHBIMH CBA3AMH. BeIBegeHbl YCIOBHSM, NPH BLIDOJHEHMH KOTOPBLIX [BHYKEHHE
TIO/ICHCTEM OTPaHHYEHO H MOKeT ObITh IPUBEEHO K NPOW3BO/BHO MANIOH Be/IM4HHE. YKa3aHO,
YTO NpH NOMOLIM PelleHHii, COOTBeTCTBYIOUMM 0Gpasom mogoGpaHHOM CHCTeMBI JMHEHHBIX
mudbepeHINATBHBIX YPaBHEHMI, MOYKHO IOCTPOHTBD IOJIOCH], B KOTOPLIX MPOXONAT PelIeHHA
paccmarpuBaembIx nogcucrem. IIupHHa 3THX mOJIoC 33BHCHT OT HENMHEHHBIX CBOHCTB COMps-
ralolEx (HYHKIMN, BEIPAYKEHHBIX IPH HOMOLIM OLEHOK 3TWX (dyHKumit. C TOYKH 3peHHA CHH-
TE33 CHCTEM JaHHBIE IOJOCHI MOYKHO MOCTPOMTh IPOH3BOJIBHO Y3KHMH, YTO COOTBETCTBYET
BO3MOYKHOCTH MPaKTHYECKOT0 NpeHeOpe)KeHnsl HeMHEHHBIMM CBA3AMH. [IpencTaBneHHBIC
PE3YNLTATBE! NMOMYUEHB! IO METONY HWHTErPABHLIX HEPABEHCTB.

1. The statement of the problem

THE 0BIECT of the present paper is to analyse the motion of a complex mechanical system
which can be separated into sub-systems with nonlinear couplings, with special reference
to the influence of the nonlinear couplings. Sufficient conditions will be established for
the solution of the equations of motion to be bounded and capable of being made arbi-
trarily small. In addition, some linear equations will be discussed, by means of which
neighbourhoods can be constructed containing the solutions of the sub-systems with non-
linear couplings under consideration. The extent of these neighbourhoods depends on
the properties of the nonlinear coupling functions expressed in terms of appraisals of
such functions.
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Let us consider a mechanical system with n differential equations. Let us assume in the
interests of lucidity that this system can be separated into two sub-systems having / and m
(I+m = n) differential equations, respectively, and coupled in a linear manner. The consid-
erations quoted below and concerning this case can be immediately generalized to the
case of a system splitting up into an arbitrary number of sub-systems coupled nonlinearly.

Let us consider, therefore a set of differential equations of motion having the form

(1.1) y=AW)y+f(t.x,y)+p(?),
(12) x=B@®)x+o(t,x,y)+n(),
x(to) = Xo,¥(to) = Yo,
where
x=col[xy,..,x], y=collys,....¥ml, I+m =n;

B(t) is a square matrix of order / and A(t)—a square matrix of order m. These matrices
are real and continuous for fe€[t,, c0). The matrices f(t, x,y) =col [fi, ..., u)
@(t, x,y) = col [@,, ..., @] are real and continuous for ¢ €[ty, 00) and ||x||+|[¥l] < oo
(ll-||—denotes the norm). The matrices p(t) = col[p,, ..., Pml, 7(t) = col[n,, ..., ]
are also real and continuous for teft,, co).

2. Analysis of the properties of a solution of the equations of motion (1.1) and (1.2)

Together with Eqgs. (1.1) and (1.2), let us consider the linear differential equations

@1 i = A(On+p(1),
22 r=A(t)r,
(2.3) E = Bt +n(1),
(2.49) g = B(t)q,

where 7 = col[n, ..., 9ml, 7 =collry, ..., rml, &= col[&,, ..., &], g = collgy, ..., gl
Let the initial values of these functions satisfy the relations

Y(to) = n(te) = r{te) = yo, x(to) = &(to) = g(to) = Xo.
Let us denote by R(t) the fundamental solution matrix of Eq. (2.2) and by Q(t) the funda-

mental solution matrix of Eq. (2.4).
Let us make the following assumptions:

B [RORE)|| < are =9, ||Q@0)Q ()] < xze~?2=),
where a,, f,, a,, B, are real positive constants;

2) jin@|<er<oo, |E@)|| <ca<oo for tefty, o)
where ¢,, ¢, are real positive constants;

3) @ x | <kag(llx] + 21D, e x| < kag2(1|x]| + |I¥]Ds
for te[ty, ) and ||x||+|]¥|] < . The symbols k,, k, denote real non-negative constants
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and g,(#) and g,(u)—continuous, non-negative, non-decreasing functions for u > 0 and

£1(0) = £2(0) = 0.
The set of integral equations corresponding to the differential Eqs. (1.1) and (1.2)
have the form

@5) ¥ =ROR@yo+ [RORSTs,x(9),yOlds+ [ROR6)p(s)ds,

(26) x=0(Q '(to)xo + fQ(f)Q"(S) ols, x(s), y(s)lds + f Q(1Q~(5)7(s)ds.

The solutions of the differential Egs. (2.1) and (2.3) hawe the form

2.7) 1 = R(OR (o) o+ fR(f)R"(S)P(S)d&
(2.8) £=0(00(t)éo+ [Q(NQ " (5)m(s)ds.

Since it has been assumed that %(f,) = 7o = yo and &(tp) = &, = x,, therefore, the set
of integral Egs. (2.5) and (2.6) takes the form

29) y =1+ [ROR)Is,x(5), y(5)lds,
210 x =&+ [ 000 @l x(9).y(s)ds.

Taking the norm of both members of these equations, we obtain, by virtue of the assump-
tions 1), 2), 3),

]
(2.11) Il < ext [haase?=g,(||x]| +[ly)ds,
fo
r
(2.12) x| < e2+ sz aye P2 =9g, (|| x|| +[|y]]) ds.
To
Let us denote

x| +|I¥]| = ¢, ke = max(k ey, k20z), = min(fy, B2), ¢ = ¢y +c3,
gl) = in%x(g,,gz), g(0) =0 and g is a continuous, non-negative, non-decreasing
=

function for £ > 0.
By adding the inequalities (2.11) and (2.12), we obtain

t
(2.13) <ot [koe=9g(L(s))ds.
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Let us denote the right-hand member of this inequality by u(f)—that is,
(2.14) u=c+oke® J' e g(L)ds.
to

On differentiating with respect to time, we obtain

U= —pu—c)+akg(l(1).

Hence, by virtue of (2.13) and (2.14) and the properties of the function g, we obtain the
inequality
(2.15) u < fe—Pu+akg(u).

Let us change variables by setting o = %u—l—that is, u = (14 p)c. For t = t, we have

u = uy = c, therefore gy = u?o_] =0,7=4t Fort=towehave'ro=ﬁroand%t1=ﬁ.

Thus, the inequality (2.15) takes the form

du  dg dv
F R TE < —fep+akgl(1+0)c],
d ak
(2.16) EQQFC-EI(HQ)C]—@-

We assume that there exists a 4, such that

@) St + i =i = 0,
ak
(2.18) B?g[(l +A)el-4 >0 for A€[0, 4).

Since g, = 0, therefore, by virtue of (2.18), there exists a T* > 7, such that the right-hand
member of the inequality (2.16) is positive for = €[7,, 7*) and we can divide in this in-
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terval both members of the inequality (2.16) by its right-hand member. Thus, we obtain

o ds
(2.19) G(o) = <t—19 for ze[r,, ).

¢ Wg[(l +5)c]—s

However, (cf. Fig. 1), we have
ok

for A < 44, therefore
o7) e(r)
2.20) o “ £ Fit
Ao ¥ K v iid=s

) Be gl(l+s)c] -
Let us assume that for T = 7* < oo we have p(7*) = 4,. Then, by virtue of (2.20), we have

; ds
(2.21) f < 1™ —1,,

§ Ao—8

which is impossible, because the integral on the left-hand side of the inequality (2.21)
is divergent and the right-hand side is finite. Therefore the functions p(z) satisfying the
inequalities (2.19) satisfy for v €[z,, c0) the inequality

(2.22) o(m) < 4o

and the equation p(z) = 4, holds for T = oo only (that is 7* = oo). Thus,

223 [[x[[+][2]] = &) < u@®) < (1+4o)c.

Hence, the following appraisals:

(224 %] < (L+20)e,  [[¥|| < (1 +2o)e.

It will be shown that ||x|| and ||y|| can be made arbitrarily small if ak/f and c are suffi-
ciently small.
Indeed, by virtue of (2.17), we have:
L.
B

(2.25) Ao = gl(1 +Ao)cl.

& | =

If ¢ = const > 0, then, for ak/8 — 0, we have 1, — 0. In other words, if «k/f is suffi-
ciently small, which depends on either the matrices A(¢) and B(z) (the ratio &/f), or the
functions £, and ¢ being small (constant k), then, i, can be made arbitrarily small for
¢ = const > 0.
Let us assume, in addition, that the function g satisfies the condition:
g(®)

(2.26) lim £ = 0.
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By virtue of (2.25), we have:
Ao ak g[(1+40)c]

1+2, B (I+2)c °
If ¢ - 0, then, by virtue of (2.26), we obtain:

ak:
J.°=-—ﬁak— for —?—Q<l and ¢—0.
l——-ﬁ—.Q

If, therefore, ak/f — 0, we have also 45 — 0 for ¢ - 0 and (xk/B)2 < 1. It results, by
virtue of (2.24), that ||x|| and ||y|] can be made arbitrarily small if ak/f and ¢ are suffi-
ciently small and (ak/$)2 < 1.

We shall now determine the neighbourhoods in which the solutions for the sub-systems
considered are contained, coupled in a nonlinear manner by the functions f and ¢.

By virtue of (2.9) and (2.10), and the assumptions 1) and 3), we have

ly=nll < kyea fE“"“ Vgu(l|xfl+ (v ds,

t
£l < kaea [ e (x]]+ |7 ds.
To

By virtue of (2.23), these inequalities take the form:

4
ly—mn| < kiag:[(1+40)c] fe‘ﬁlf"”ds = "I%&Sl[(l +Ao)c] (1 —e~Pali=Tod),
1
to

kz F]

x=El < kavagal(t +Ao)e] [ ePs=nds = L35 g,1(1 4 2o)] (1 —e a0,

Hence,

ll.v—nn@"gf“glm+zo)c1=al, Ix—¢]| < ’“’gzr(uzo)c]*az

— that is, if for instance the norm is assumed to be a sum of absolute values of the elements
of the matrices,

(2.27) ni() =6, < i) <n(H)+6, i=1,..,m,
(2.28) ) =0, < x;(0) < §(D+6,, j=1,...,1,
where x;, &, yi, ;i (j=1,...,1, i =1, ..., m) are elements of the column matrices x,

Es Vs ﬂ-
From the above considerations it is seen that we can determine the neighbourhoods
(2.27) and (2.28) in which the solution x(¢), y(¢) is contained if we have information con-
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tained in the assumptions 3) on the coupling functions f and @. From the point of view
of synthesis of a system, the results of the considerations above show how the matrices 4
and B, the coupling functions f'and ¢ and the functions p and z should be selected in order
that the neighbourhoods (2.27) and (2.28) may be arbitrarily narrow. In other words,

~
~+Y

FiG, 2

the above results provide conditions sufficient for determining the manner in which the
synthesis is to be performed for a system — so that nonlinear couplings may in practice
be rejected.
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