
Archives of Mechanics • Archiwum Mechaniki Stosowanej e24, 4, pp. SSS-571, Warszawa 1972 

Flow equations of a multiphase mixture with one coherent liquid or 
gaseous phase 

A. SZANIAWSKI (WARSZAWA) 

THE FLOW of a multicomponent and multiphase mixture is considered. The mixture is composed 
of one volumetrically dominant, coherent, gaseous or liquid phase, in which other phases are 
dispersed in a form of many fractions of particles. After formulating the basic notions and 
assumptions, the equations for mass, momentum and energy transport were deduced for an 
element of mixture and of each fraction separately. It was assumed that the perturbation of local 
equilibrium is sufficiently small to allow linearisation of the equations with respect to the para­
meters of perturbation. 

Rozpatrywany jest przeplyw modelu mieszaniny wieloskladnikowej i wielofazowej o jednej 
cieklej lub gazowej fazie sp6jnej, w kt6rej rozproszone S<! w niewielkiej obj~tosciowo ilosci po­
zostale fazy w postaci wielu frakcji. Po wprowadzeniu podstawowych poj~ i sfotmulowaniu 
zalozeit wyprowadzone zostaly r6wnania przenoszenia masy, p~du i energii dla infinitezymalnego 
elementu mieszaniny oraz dla ka:ldej z frakcji. Zalozono, ze zaburzenie lokalnego stanu r6wno­
wagi jest niewielkie i dopuszczalna jest linearyzacja r6wnait ze wzgl~du na parametry zaburzenia. 

PaccMaTpHBaeTcH TeqeHHe MO,U.eJII>HOH MHOrOI<OMIIOHeHrno:H cMecH MHoro$a3Horo THna, co­
,u.epmame:H O,ll,Hy ~YIO HJIH ra30ByiO CllJIOWHYIO <l>a3Y, B ROTOpOH pacce.R:Hbl B He60JibiiiOM 
o6'heMHoM ROJIH'IecTBe OCTaJibHhie <Pa3bi B liiiH,u.e MHOI'HX <PP~· C<PopMyJIHpoBaHbi oc­
HOBHbie llOHHTHH H npe,u.nOJIO>KeHWI TeOpHH, Ha OCHOBe ROTOpbiX BbiBe,U.eHbi ypaBHeHHH 
nepeHoca Mace, ROJIH'IeCTBa ABH:>KeHH;H H 3HeprHH AJIH 6ecHoHe~o Manoro 3JieMeHTa cMecH 
H ,ll,JIH Ra>K,ll,OH H3 <l:>paRI.\HH. Ilpe,u.nonaraeTCH, qTo OTI(JIOHeHHR: OT JIOI<aJibHOrO COCTOHHHR: 
paBHoaecWI HeBeJIHl<H H ,u.onycrnMa JIHHeapH3ax.vm ypaBHeHHii no OTHOIIIemno R napaMeTpaM 
B03Myiii;eHHH. 

1. Introduction 

FLows of multiphase and multicomponent mixtures are accompanied by various phys­
ico-chemical phenomena which present considerable difficulties as regards theoretical 
description. The phases are separated by surfaces having different geometrical shapes 
and dimensions. The velocities of elements of adjacent phases are not necessarily the same, 
and between the phases may occur interchanges of mass, momentum and energy, also not 
necessarily in equilibrium conditions. These interchanges in the microscale have an impor­
tant influence on the macroscopic behaviour of a mixture, but on the other hand they 
may be influenced by other microscopic phenomena, often of a stochastic character, 
which causes additional deficiency of information necessary to determine the real phenom­
ena. 

The complexity and unsatisfactory state of knowledge of the properties of real mixtures 
necessitates the introduction of very simplified models, based on additional assumptions, 
taking into account the most important factors and disregarding others of secondary 
importance. 
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The very large number of models of multiphase mixtures used for various purposes 
will not be discussed here (see for instance [1] to [11]). The range of application of such 
models is always restricted to specified classes of real mixture and real phenomena. 

It is not the intention to present in this paper equations applicable to a very large 
class of mixtures and flows. A limited class of mixtures with one volumetrically dominant 
phase (such as aerosol, fog, smoke, bubble mixture etc.) will be considered. For a theoret­
ical model of such mixtures, the equations of flow will be deduced. There may also exist 
certain restrictions concerning the application of these equations to flow problems. 

The multicomponent and multiphase mixture considered here is composed of S chemi­
cally nonreacting components dissolved in F + 1 phases. One liquid or gaseous phase is 
coherent and volumetrically dominant, and the other, F phases are uniformly dispersed 
in it in the form of a large number of small "particles" of solid, liquid or gaseous phase. 
These particles are divided into N sorts called here "fractions", each fraction containing 
identical particles in the same physical state. The number of fractions N may be larger 
than the number ofF dispersed phases, so that the same phase may be dispersed in differ­
ent fractions (for instance, as drops of different dimensions). 

The particles are very small, but they are also sufficiently distant one from another 
so that the interaction between them may be disregarded, and only the interaction between 
isolated particles with the surrounding coherent phase is taken into account. 

The distance between particles is very large by comparison with the dimensions of 
particles, but it is very small by comparison with characteristic lengths of the flow. This 
assumption enables us to regard our model of a multi phase mixture as a continuous medium 
with an internal "fractional" structure. 

In non-equilibrium state, the interaction of adjacent phases causes perturbations of one 
phase by another, so that the parameters of flow are in general not homogeneous within 
each phase. In the model of a mixture considered it will be assumed, however, that the 
internal inhomogeneity of parameters within all particles and within the coherent phase 
may be disregarded, and that a finite number of parameters, such as in the one-phase case, 
suffices to determine the local state of each fraction and of the coherent phase. Taking 
account the interaction between adjacent phases, it will be assumed, however, that the 
influence of surface tension phenomena may be disregarded. The surface tension causes 
and additional increase of energy proportional to the size of the contact surface, and on 
both sides this surface it causes a difference of pressures proportional to the mean curva­
ture. In very highly dispersed phases, the dimensions of particles may be very small, and 
consequently the surface energy and the pressure differences may be important. But in 
cases of practical interest the quantitative contribution of these phenomena is of secondary 
importance, and therefore they will here be disregarded entirely. 

The particles are also assumed to be sufficiently large, so that no brownian motion is 
taken into account. 

Two of the more obvious ways of classifying particles into N fractions are: 1) a fraction 
consists of identical particles with common history, and 2) a fraction consists of particles 
with different histories but common essential physical and geometrical characteristics, 
such as for instance drop radii.Since no interchange of particles between fractions will be 
taken into account, essentially only the first case will be considered. 
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After formulating the basic assumptions, we shall deduce for the model of a mixture 
introduced the transport equations of mass, momentum and energy. These macroscopic 
transport equations will contain certain unknown fiuxes of mass momentum and energy 
from the coherent phase to microscopic particles. To determine these fiuxes, other supple­
mentary equations, based on the principles of irreversible thermodynamics, will be de­
duced. The phenomenological kinetic coefficients involved should be determined from the 
analysis . of interaction phenomena between adjacent phases. This analysis will not be 
presented here. The sets of equations: macroscopic transport equations and microscopic 
flux equations constitute a system of flow equations, which, supplemented by constitutive 
equations (equations of thermodynamical state and formulae for kinetic coefficients), 
describe the local motion of the model of a mixture considered. 

2. Auxiliary notions and basic assumptions 

The parameters describing the properties of the multicomponent and multiphase 
mixture considered will be denoted by indices as follows. The lower index will denote the 
s components, s = 1 , 2, ... , S, the upper index-theN fractions of particles n = 1 , 2, ... , N, 
or the F dispersed phases N"f = 1, 2, .. . , F. The upper index n = N0 = 0 will be reserved 
for the volumetrically dominant coherent phase, so that the total number of phases 
will be equal to F + 1. The different fractions of particles may belong to the same dispersed 
phase according to the rule: 

if 1 ~ n ~ N1 , the n-th fraction belongs to the 1-st phase, 
if N 1 + 1 ~ n ~ N2 , n-th fraction belongs to the 2-nd phase, 

if NF-l + 1 ~ n ~ NF = N, the n-th fraction belongs to the F-th phase. 
A volume V of the mixture is equal to the sum of the volumes of all fractions or phases: 

N F 

(2.1) V= V0 + ~V"= V0 + ~VN1. 
11=1 /=1 

The mass M of this volume is distributed between S components, N + 1 fractions or F + 1 
phases: 

S N S N F 

M = ~ Ms = ~ _L M; = ~M"= ~ MN,, 
s=l n=0s=1 n=O /=0 

(2.2) 
s n = 0, 1, 2, ... , N, 

M"= ~M;, 
s=1 S = 1, 2, ... , S, 

M" , f = 1, 2, ... • F, 

where M: is the mass of the s-th component in the n-th fraction, and Ms, M", M N, are the 
total masses of s-th component, n-th fraction andf-th phase, respectively. 
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The following mass and volume ratios will be introduced: 

(2.3) 

M, 
~s = M~ 

yn 
f{J,.=v, 

~,.- Mn 
-M' 

VNt 
fPNI = -v' 
N F 

f{J = 1 - f{Jo = }; f{Jn = 2 q;Nt. 
n=l f=l 

A. SZANIAWSKI 

The density (! of the mixture and the densities en of each fraction are given by the formulae: 

(2.4) 
M 

e =V' 
M,. 

(!lt = vn . 

If the energy of surface phenomena (surface tension) is disregarded, the internal spe­
cific energy of a mixture at rest is equal to the sum of the energies of all fractions: 

N 

(2.5) e = 2 ~n~, en= elt(p, rn, ~~J~, ... '~;), 
n=O 

where the specific energy of fraction ~ depends on the parameters of state {p-pressure, 
rn-temperature of the n-th fraction), and on the mass ratios ~~of the n-th fraction only. 
Without taking into account the surface tension, the pressure p in all phases is the same. 

The following evident relations are valid: 

(2.6) 

and 

(2.7) 

s N 

2 ~s =I, 2 ~n =I, 
S=l n=O 

s 

2 ~==I, 
S=l 

N 

(! = .2; f{Jn(!n, 

n=O 

N 

2 ~n~= = ~s, 
n=O 

N 

_!_ = ~ _r_, 
(! LJ (!n 

n=O 

According to assumption, the coherent phase is volumetrically dominant and must be: 

(2.8) fPn < fP ~ I , n = I, 2, ... , N. 

The number od parameters determining the state of mixture is very large. We may 
enumerate here the mass ratios and the parameters of state of each fraction: ~n, p, rn, 
~1, ~~' ... , ~s(n = 0, I, 2, ... ,N), which gives us the number of (N+l) (S+2)+1 inten­
sive physical quantities. But certain relations may exist between them, and thus not all 
these parameters are independent. 

In the state of equilibrium,the number of independent parameters characterising the 
state of a mixture is minimal. Three kinds of equilibrium are here to be considered: mechan­
ical, thermal and phasic. In mechanical equilibrium, the mixture may move uniformly 
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with a constant velocity u and no relative motion exists between phases. In thermal equi­
librium, the temperature of all phases is the same, T" = T. In phase equilibrium, the 
chemical potentials of each s-th component are in all F + 1 phases equal one to another. 
Taking into account the chemical identity of certain fractions of particles, we obtain(!): 

(2.9) 
n = N 1-1 + 1 , N 1-1 + 2, ... N1 , 

Since the parameters of the state of equilibrium of each phase are also not independent, 
the problem arises of choosing a set of independent parameters of the state of equilibrium 
of a mixture. 

For all (F + 1) S + 2 state parameters of equilibrium of each phase p, T, ~~1, ~~1, ••. ~:1 

(f = 0, 1, 2, ... F), and for N + 1 mass ratios ~~~ (n = 0, I, 2, ... N), we obtain from 
(2.6) and (2.9) the following (F+ 1)+SF+ 1 relations: 

(2.10) 

s 
~-N 

L.J ~sI = 1' 
S=l 

N1 (- T ~N1 "tNI ~NI) _ o(- T tO [:o tO) 
fts p, ,s-1 ,s-2 , •.. s-s - fts p, ,s-1,\>2•··· ~E' 

N F 

l0 = I - ~ ~n = 1 - ~~NI. 
n=l /=1 

The number of independent parameters (degrees of freedom) of a mixture in equilib­
rium will be equal to the difference between all FS + N + S + 3 equilibrium parameters 
and all FS+F+2 equilibrium Eqs. (2.10). Thus, we obtain the number N+S-F+ 1 of 
independent parameters of the state of equilibrium. From these N +S-F+ 1 parameters, 

N mass ratios ~1 , ~2 , ••• ~N characterise the fractional composition of the mixture, and 
other S-F+ 1 parameters, resulting from the Gibbs rule, may be. chosen, for instance, 

from S + 1 quantities p, T, ~~, ~g, ... ~~- 1 • The remaining dependent quantities may now 
be determined by the equilibrium Eqs. (2.9) and (2.10) or other general formulae (2.3), 
(2.6), (2. 7). 

During the flow of a mixture, its equilibrium state is in general perturbed and a perturb­
ed state of an infinitesimal element is determined by a larger number of independent 
parameters. Now arises an analogous problem-how to choose a set of independent para­
meters for nonequilibrium states of the model of a mixture considered. 

It should be noted that the model employed here assumes small perturbations of the 
state of equilibrium. 

Hence, to each perturbed state we shall subordinate a reference state of equilibrium, 
with its smaller number of independent parameters, and then we shall introduce the re­
maining parameters characterising the perturbation state. These parameters of perturbation 

(
1

) The values of the mass ratios ~=. ~~1, ~", and of the pressure p for equilibrium conditions will be 

denoted by bars:~=. ~~1, ~", p. 
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should disappear in equilibrium. The equations of flow will be linearised in respect to the 
parameters of perturbation. 

In this way, the N + 1 velocities of each fraction u0, u1, ... uN will be replaced by one 
reference velocity u of the centre of mass of the mixture, and N independent velocities 
Lhv11 characterising the relative motion between phases: 

(2.1 I) 

N 

W
11 = 0

11
-U, 2,; ;11 w11 = 0, 

11=0 

(rejecting higher order terms, we may introduce here;~~ ~ ~11). 
Also, after introducing N +S-F+ I thermodynamic parameters of the reference 

state of equilibrium, we shall choose the parameters of perturbation from the set of I + N + 
+I +(N+ l)S+(N+ I) differences: 

Jp =p-p, L1T" = T 11 -ro, L1T0 = TD-T, 
(2.12) 

J;: = ;~ -~=' LJ;II = ;~~-[". 

Since the state and the mass ratios of each phase determine the state of the mixture 
as a whole, the (N+ 1) (S+2)+ I parameters ; 11

, p, T 11
, ;~, ;~, ••• ;; of each phase suffice 

to describe the behaviour of the mixture as a whole. Taking into account the I + (1 + N) 
relations (2.6) 

N s 

2,; ;11 = 1' 2,;;~=1, 
11=0 .f=l 

we obtain the total number of (N+ I)(S+ 1) independent parameters of the perturbed 
thermodynamic state. The total number (N+ 1) (S+ I) must be equal to the sum of the 
number N +S-F+ 1 of the equilibrium parameters and the number NS + F of the pertur-

bation parameters. Hence, from the (N+ l)(S+2)+ 1 differences L1~", Lip, LIT", LJ;:, ful­
filling the S + N + 1 linear relations resulting from (2.6) 

N 

(2.13) 2,; Cl"L1;: + ~:L1;") = o, 
n=O 

only NS + F may be chosen as parameters of perturbation. The remaining 

f(N+1)(S+2)+I]-(S+N+l)-(NS+F) = N-F+2 

differences may be chosen arbitrarily-for instance, as equal to zero. 
The manner of choosing the thermodynamic parameters of equilibrium and of perturbed 

state depends in part on the properties of the mixture considered. It is convenient to choose 
the mean temperature and the real pressure p as the reference parameters T, p, but it is not 
always possible so to do. 
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For instance, the pressure p and the temperature T of a one-component (S = I) 
three-phase mixture (F = 2) in equilibrium are given constants, a,nd so for this case the 
mass ratios ;t, e, ... ;N (N ~ F, F = 2) and the differe11ces Llp, L1T0, L1Tt, ... LJTN 
might here be chosen as the N reference equilibrium and N + 2 perturbation parameters. 
The remaining N differences L1 e' L1 ; 2

' ••• L1 ;N may be chosen equal to zero. 
In the transport equations, for an infinitesimal element of a mixture some unknown 

fiuxes will appear from the coherent phase to each dispersed fraction. These fiuxes: of the 
mass of each component x;, of momentum yn, and of energy zn will here be defined as the 
quantities transferred during a unity of time into a unity of mass of the n-th dispersed 
fraction. 

Since the fiuxes of momentum and energy may depend on the velocity of the element 
considered, the fiuxes yn and zn introduced here, are defined in the system of reference 
as moving with the n-th dispersed fraction. 

The vector notation will be used, and the product of vectors or tensors will be desig-
nated with or without a point, according to the following examples: 

a· b- scalar product of two vectors a and b, 
ab - diadic product of two vectors a and b, 
A · a - contracted product of a tensor A and a vector a, 
A: B - double contracted product of two tensors A and B. 

3. Transport equations 

Let us consider an element of volume V bounded by a moving surface A. We shall 
now deduce transport equations for the mixture as a whole contained in the volume V, 
assuming that the surface A is convected by the velocity field u0 of the coherent phase. 
Next, we shall deduce transport equations for the n-th dispersed fraction, assuming that 
the surface A is convected by the velocity field un. 

3.1. Transport of mass of the s-th component in the total volume of the mixture 

The mass of the s-th component in the volume V may change due to the convection 
of dispersed fractions through the surface A convected with the velocity field u0 

N 

(3.1) ~ f f!;sdV = -]; f e;n;~(un-u0) ·dA. 
V n=l A 

The infinitesimal area vector dA of an element of surface A, moving with velocity u0
, is 

here directed outward. 
Applying the formula 

(3.2) 

3 Arch. Mech. Stos. nr 4/72 
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known from field theory, for an arbitrary scalar, vector or tensor quantity r, and the Gauss 
theorem, we may transform (3.1) to the form: 

N 

f{ a~;·> +V ·(n°e~.) + 2> ·[(n"-n°)e~~=]}dV = 0. 
V n=l 

Since this equation is valid for arbitrary volume V, its subintegral expression should 
·.be equal to zero: 

Taking into account (2.6), we obtain from it the differential equation: 

(3.3) 

This set of equations fors = 1, 2, ... S may still be transformed as follows. From the 
sum of all S Eqs. (3.3), taking into account (2.6) and (2.11), we obtain the continuity 
equation of a mixture: 

(3.4) 

Substracting this equation from (3.3), we obtain the S linearly dependent equations 

(3.5) 

which, with the continuity Eq. (3.4), costitute the desired set of transport Eqs. of the mass 
of each component. 

3.2. Transport of momentum in the total volume of the mixture 

The increment of momentum in the volume V of the mixture is due to the convection 
of momentum by all dispersed fractions through the surface A and to the forces acting 
on the surface A and on the volume V of the element considered: 

N N 

(3.6) ~ J _2; e~"u"dV = -.2 f e~"u"[(u"-u0)·dA]+ f 't0 ·dA + J efdV. 
V n=O n=l A A V 

On the basis of (2.8) cp~ 1, the resulting force acting on the element dA of the surface 
A is here assumed to be equal to the contracted product of the area vector dA and the 
stress tensor 't0 in the coherent phase only (the perturbing influence of the dispersed 
phases on the stress tensor is disregarded); f denotes the mass force. 
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By proceeding in the same way as in 3.1, we may from (3.6), after some transformations, 
obtain the differential equation: 

N 

o~u) +V ·(euu) = -V· _2; (e~"w"w") +V ·"'0 +ef, 
ut rt=O 

which, by means of the continuity Eq. (3.4), may be transformed into the classical form 
of the momentum equation of a fluid: 

(3.7) 
au 1 
- +(o•V)u =-V·"'+f, at e 

where "'denotes the stress tensor of a mixture 

N 

(3.8) "' = "'o- }; e~"w"w". 
rt=O 

It should be emphasised, however, that the stress tensors 't' and -r0 are equal, in linear 
approximation, in respect to the relative velocities w". 

3.3. Transport of energy in tbe total volume of the mixture 

The increment of energy in the volume V of the mixture results from the convection 
of energy by all dispersed fractions through the surface A, the conduction of heat, and the 
work done by all forces acting on the surface and on the volume of element considered: 

N N 

(3.9) ~ J 2 e~·(e'+ D"~n'}v = -2 f e~·(e'+ D"~D") (u"-u0
) ·dA 

J' rt-0 11=1 A 
A 

- f qo ·dA+ f (-ro. dA) .go+ 2 f e~"f.u"dV. 
A A 11=0 V 

As before, according to the assumption (2.8) (q;~ 1), the perturbing influence of the 
dispersed phases on the heat flux and on the work of stress tensor is disregarded, only the 
coherent phase being here taken into account. 

By proceeding in the same way as before, we may obtain from (3.9) after certain tedious 
transformations, the differential equation: 

(3.10) :t [e(i + ~u )]+V { ue(e + u~u)] = -V ·q +V ·('<•D+-;
0 ·w0

) +ef·U, 

where e is the specific internal energy of mixture in motion [cf. (2.5)1: 

(3.11) 

and q is the total heat flux resulting from the conduction and convection effects: 

(3.12) q = q• +e.~ ~{e-+ w';w" }w•. 

3* 
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Substracting from (3.10) Eq. (3.4) multiplied by (e + u · u/2), and Eq. (3.7) multiplied 
by eu, we obtain: 

(3.13) e( ~; +D· ve) = -V ·q+T:Vn+ V ·(T0 ·w0
). 

Comparing the transport equations of energy for a mixture and for a one-phase fluid, 
we see that the difference between them consists not only in another meaning of the spe­
cific energy e (3.11), the heat flux q (3.12) and the stress tensor -r (3.8), but also in the ap­
pearance of an additional term V · ( -t0 

• w0
). If we consider the linear approximation in 

respect to the relative velocities, we obtain: 

N 

e::::;:e, q::::;q0 +e.l;~"e"W11, 
n=O 

but the additional term V · ( -r0 
• w0

) should be taken into account, since it does not become 
negligibly small. 

3.4. Transport of mass of the s-th component to the n-th dispersed fraction of the mixture 

Let us consider now the volume V of a mixture convected with the velocity field un 
of the n-th dispersed fraction. 

The increment of mass of the s-th component in the n-th dispersed fraction, contained 
in the volume V, is equal to the total mass flux through the contact surfaces with the 
coherent phase: 

(3.14) 

Applying the formula (3.2) with u" instead of u0 , and comparing the subintegral expres­
sions, we obtain the equation 

which, by substracting the continuity Eq. (3.4) multiplied by ~~~ ~=' may be transformed 
to the form: 

(3.15) :t- (~~~~~) + u". V(~"~:) = ~~~x: - ~~~~; _!_· ~w") • 

This system of NS equations may be presented in another form by introducing the total 
flux of mass flowing to the n-th fraction: 

s 
(3.16) X" = _2; X=, n = 1, 2, ... N. 

S=l 

Adding all S equations for each n, and taking into account (2.6), we obtain an equation 
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of the total transport of mass flowing to the n-th fraction: 

(3.17) ien + un • V~~ = ~n xn - ~n ~(:w") , n = 1, 2, ... N. 

Substracting now from (3.15) Eq. (3.17) multiplied by ~=, we obtain a system of NS lin­
early dependent equations (each sum of S equations for n = 1, 2, ... N becomes an iden­
tity) of the mass transport of the s-th component to the n-th dispersed fraction: 

(3.18) , o~= + un • V ~n = xn - tn xn. at . s s "' -~ 

3.5. Transport of momentum to the n-th dispersed fraction of the mixture 

Before deducing the transport equation of momentum, we shall consider the fluxes 
of momentum to the dispersed fraction in different reference systems. 

In the reference system connected with the n-th fraction, the fluxes of mass momentum 
are denoted by xn and yn_ In different reference system, in which the n-th fraction moves 
with the velocity un, the flux of mass xn remains the same, but the flux of momentum may 
change. This change results from the different values of momentum of an element of mass 
transported from the coherent phase to the dispersed fraction in different systems of 
reference. If in the system of reference in which the fraction is at rest the fluxes of mass 
and momentum are xn and yn, then, in the system of reference in which the fraction moves 
with velocity un the flux of mass xn transfers with it also the additional flux of momentum 
xnun and the total flux of momentum becomes equal to yn + xnun. 

Taking into account this resulting flux of momentum and of the volume forces acting 
on the n-th fraction, we may calculate the increment of the momentum of the n":'th fraction: 

(3.19) ~ J e~nundV = J e~n(Yn+Xnun)dV + J e~nfdV. 
V V V 

Applying the formula (3.2), comparing the subintegral expressions, we obtain a differ­
ential equation, which, taking into account (3.4) and (3.17), may be transformed to the 
form: 

(3.20) 

3.6. Transport of energy to the n-th dispersed fraction of the mixture 

The flux of energy to the dispersed phase may also depend on the velocity of the system 
of reference adopted. 

All fluxes of mass xn, momentum yn, and energy zn were defined in the system of refer­
ence connected with the n-th fraction. In different reference system in which the n-th frac­
tion moves with the velocity un, the flux of energy zn will be increased by two additional 
terms, which may be found as follows. 
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Let us consider an element of mass dM" being a part of X"dt, and passing with its own 
velocity c from the coherent phase to the dispersed n-th fraction. The velocity c may be 
decomposed into two components c = u"+C, where C is the velocity of dM" in the refer­
ence system conected with n-th fraction. The momentum and the kinetic energy in the two 
systems of reference-one moving with the n-th fraction and another in which t he n-th 
fraction moves with the velocity u"-are related one to another by: 

(dMi)c = (dM")u"+ (dM")C, 

C•C 'u"·U" C·C 
(dM")2 = (dM;)~ +(dM")u"·C+(dM")-

2
-

from which, by integrating in respect to dM", we obtain the previously presented formula 
for the total flux of momentum 

X"u~+Y", 

and the formula for the total flux of energy: 

u"·U" 
X"-

2
- + Y". u" + Z". 

Now, taking into account this resulting flux of energy, we may consider the increment 
of energy of the n-th fraction, resulting from the flux of energy from the coherent phase 
and from the work done by volume forces: 

(3.21) ; [ e~·(e-+ ... ; ... ).w = [ e;o[(z-+ Y"·D"+X" o";"") +f·o" J.w. 
Applying the formula (3.2), and comparing the subintegral expressions, we obtain n differ­
ential equations, which, taking into account (3.4), (3.20) and (3.17), may be transformed 
to the form: 

(3.22) 

4. Entropy production 

ae" + u"· Vei = Z"- X"e". at 

Into the transport equations obtained, there enter certain new unknown quantities: 
the fluxes of mass, momentum and energy between the coherent and the dispersed phases 
x:, Y:, Z" (n = I, 2, ... N, s = I, 2, ... S). These fluxes characterise the kinetic of dissi­
pative phenomena, and disappear in equilibrium. To analyse the kinetic of dissipative 
phenomena, the method of entropy production of the thermodynamics of irreversible 
processes will be applied here. 

Let us consider a volume V of the mixture convected by the velocity field u0 of the 
coherent phase. The increase of entropy 

(4.1) ~ J esdV = J [a(es) + v · (esu0
)]dV, 

v v at 
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where 
N 

(4.2) s = L ~"s", 
n=O 

(the additivity of entropy of each fraction is assumed) is only partly due to the flux of 
entropy through the surface A : 

From the difference between the increase of entropy (4.1) and the flux of entropy {4.3), 
we obtain the nett volumetric entropy production: 

positive on the basis of the second principle of thermodynamics. 
Taking into account principle of thermodynamics and of all the transport equations 

previously deduced, we may transform this equation to the following form: 

(4.5) 

+ t. ~~( w•t -w";w" )x· 

+P .t. {v ·[<p'(w"-w")]- 9'{;~, +a'· :;· )( ~ -I)}. 
where I denotes the unity tensor. 

As might be expected, this form presents the sum of products of thermodynamic forces 
by thermodynamic fluxes, but the last term is here more difficult for thermodynamical 
interpretation. We should emphasize, however, that the model of a mixture introduced is 
based on certain simplifying assumptions, which may be a source of errors also in the 
entropy production (4.5). Since we assumed that the volume ratios q;" are negligibly small 
(2.8), we have disregarded certain terms in the transport equations and, consequently, 
we should disregard the last term with g;n < q;~ 1 in the entropy production T 00 (4.5). 

We shall disregard also the penultimate term in (4.5), because we shall consider only 
linear relations between thermodynamic forces and thermodynamic fluxes, and the linear 
part of the thermodynamic force (w0 · w0 - wn · wn) is equal to zero. 

The two first terms in brackets take into account the heat conduction and viscosity 
in the coherent phase, which will not be an object of our interest. Thus, we shall consider 
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here only the part ()P (also non-negative) of entropy production due to the mass, momentum 
and energy fluxes between the coherent phase and the dispersed phases: 

N S N 

(4.6) T"O, = 1,2 e~·r•( ~ - ;: ).P, + 2 e~"(w0 -w")-(Y"-w0X"J 
n=ls=l n=l 

5. Onsager relations 

N 

'\'1 t:n To - T" (z" P X") + L.J (!'i ---:m- + 7 ' 
n=l 

To the entropy production ( 4.6) we may apply the principles of thermodynamics of 
irreversible processes, which enable us to deduce the linear Onsager relations between 
thermodynamical forces: 

e~"(wo- w")' n~"To ( ft~ _ ft=) 
~:: T 0 T" ' 

and thermodynamical fluxes 

(Y" - w0 X") ' X~' 

ro_yn 
e~" T" 

We should remark, however, that in an isotropic medium no linear coupling between 
scalar and vector quantities may exist, and that in our model only the interaction between 
the coherent phase and the dispersed phases is taken into account. Assuming also that the 
postulate of the symmetry· of Onsager coefficients is valid, we may present the linear rela­
tions between forces and fluxes in the form: 

s 

(5.1) Z" + Lxn = B" To-T" + yo '\'1 C"( p,~ - p,~) 
e" T" L..J s T 0 T" ' 

S=l 

s 
X"- C" yo_rn 

s - s T" + T 0 '\'1 D" ( p,~ - p,~ ) .L..; sa ro 7"' ' 
a= I 

where the kinetic coefficients A", B", c;, D~a' may depend on parameters of equilibrium 
only. 

According to ()P ~ 0, the symmetric matrix 

(5.2) 

should be positive and 

(5.3) 

[
B" C"] 
C" D: ' s sa 

A"~O. 
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Since only small perturbations of equilibrium are here considered, we should linearise 
Eqs. (5.1) in respect to the parameters of perturbation, reducting them to the form: 

Y" = -A"Lfw", 
s 

X" = - C" L1 T" - T ~ D" L1 ( p,~ ) 
I> s T ~saT"' 

a= I 

Z" = - (B"- ~ p C") LiT" -T ~ (c"- ~ p D" )L1(p,~) .L.J -11 s T .L.J s ~ - 11 as T" ' 
S=l e S=) 11=1 e 

where in L1(p,~/T") only the linear terms should be taken into account: 

s 
L1 ( p,~ ) = p,= _ p,~ = a (P,s/T) L1 T" + a P,s L1 + __!__ ~ ( a Ji: L1 tn _ ap,? _dto) (5.5) 

T" T" T 0 aT Top p T f:t o~: r;a a~2 r; 
11 

• 

6~ Equations of flow 

For small perturbations of equilibrium, all previously deduced equations should be 
linearised in respect to the perturbation parameters (2.11) and (2.12). We shall, however, 
only partly linearise them, because the full linearisation would somewhat complicate 
their form of presentation. The consequent linearisation of the equations presented below 
may be effected during their application to flow problems~ 

The transport equations may be divided into two sets: for the mixture containing all 
phases: 

(6.1) 

ae 7ii +V ·(eu) = 0, 

au 1 0 
ar+(u·V)u =e-V·T +f, 

e( ~; +D·Ve) = -V·q+T0 :Vo+V·('t0 ·w0
), 

N 

a~s + u ·V ~s = - + 2 V· (ew"~" ~:) , 
n= O 

and for each dispersed phase: 

a;; +u". V~"= ~"X"-~" V. ~w")' 

a~= + u"Vt" - X" - t"n X" at r;s - s r;s ' 

(6.2) 
iJu" 
Tt + (u" ·V) u" = Y" + f, 

iJe" 
--+u"·Ve"- Z"-e"X" at - · 
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The interphase tluxes entering here are linear functions of the thermodynamic forces: 

s s s 

x: -tX" = - (c; -~: .2;' c:) "'}'" -r .2;' (v:.-l: .2;' D",.)LI ( ~ ). 
a=l a=l l==l 

(6.3) Y11 = -A 11.1w", 

where the coefficients of dissipation A11
, B11

, c;, D:a, depend only on equilibrium parameters 

of coherent and n-th dispersed phases: p, T, §"~, ~, ... e~, ~~~, ~~t, ... "Egt for N1_ 1 < n ~ N1 . 

These coefficients should be given either from experiments or from theoretical considera­
tions of transport phenomena between isolated particles and the surrounding coherent 
phase. 

To describe the physical properties of the mixture, the equations of state for each frac­
tion (phase) should be given: 

rl = eNt(p, T", ~1, ... ~), e" = eNt(p, T", ~ •... ~;), 

(6.4) 
I'~ = I'~'(P, T", EL ... E;), s = 1, 2, ... s, 

f = 0, n = N1 = 0, 

f = 1, 2, ... F, N l-1 < n ~ N 1 . 

The density e, the specific energy e and the heat flux q are now defined by the formulae: 

(6.5) 

N 

_!_=~_r_ L..J 11' e ,. .. 0 e, 

N 

e = 2 ~e", 
n-0 

N 

q = qo +e 2 E,.e"w ... 
n-0 

The transport Eqs. (6.1), (6.2), the flux equations (6.3) with given coefficients of dissi­
pation A11

, B,., c;, D;a, and the equations characterising the thermodynamical properties 
of the mixture (6.4), (6.5) constitute a set of flow equations of the model considered of 
a multiphase mixture with one coherent, volumetrically dominant phase. 
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